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Abstract
In this article, we review recent mathematical models and computational methods for the processing
of diffusion Magnetic Resonance Images, including state-of-the-art reconstruction of diffusion
models, cerebral white matter connectivity analysis, and segmentation techniques. We focus on
Diffusion Tensor Images (DTI) and Q-Ball Images (QBI).
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1. Introduction
Diffusion MRI is an exciting extension of MRI introduced in the mid-1980s (Le Bihan and
Breton, 1985; Merboldt et al., 1985; Taylor and Bushell, 1985). It provides a unique and
sensitive probe for the architecture of biological tissues. The key idea behind diffusion MRI
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is that water diffusion in structured tissues, such as the brain’s white matter, reflects its
architecture at a microscopic scale. This is because molecular motion is favored in directions
aligned with fiber bundles and hindered in the orthogonal orientations. Measuring, at each
voxel, the effect of water diffusion on the MR signal in a number of directions provides
exquisite insight into the local orientation of fibers. Shortly after the first acquisitions of images
characterizing the anisotropic diffusion of water molecules in vivo (Moseley et al., 1990;
Osment et al., 1990), the Diffusion Tensor (DT) formalism was introduced (Basser et al.,
1994). Diffusion Tensor Imaging (DTI) is an analytic means to precisely describe the three-
dimensional nature of anisotropy in tissues. The diffusion tensor model encapsulates the
average diffusion properties of water molecules (inside a typical 1–3mm sized voxel), as the
3×3 covariance matrix of a Gaussian distribution. DTI has been extensively used to study a
wide range of neurological disorders such as cerebro-vascular diseases, multiple sclerosis,
Alzheimer’s and Parkinson’s disease, schizophrenia and brain tumors. It has also been very
useful for studying brain development, effects of aging, and the structure of anatomical and
functional networks in brain substructures, such as the thalamus, striatum and various fiber
bundles. Tractography and connectivity mapping techniques are at the core of many of these
studies.

However, between one-third to two-thirds of imaging voxels in the human brain’s white matter
are thought to contain multiple fiber bundle crossings (Behrens et al., 2007), in which case the
Diffusion Tensor model breaks down. High Angular Resolution Diffusion Imaging (HARDI)
techniques (Tuch, 2002) such as Diffusion Spectrum Imaging (DSI) (Callaghan et al., 1988;
Wiegell et al., 2000) or Q-Ball Imaging (QBI) (Tuch, 2004), have therefore been proposed to
overcome the limitations of the diffusion tensor model and recover fiber crossing information.
With QBI, model-free mathematical approaches can be developed to reconstruct the angular
profile of the diffusion displacement probability density function (PDF) of water molecules,
known as the diffusion orientation distribution function (ODF). The underlying fiber
distribution (fODF) can also be estimated, which is fundamental for tractography.

The estimation of diffusion tensors or diffusion/fiber ODFs is challenging given the complexity
of the diffusion MRI data, the mathematical tools used to describe them and the computational
tools used to process them. Here we address several different theoretical and computational
issues that arise in processing diffusion MRI. Ultimately, the goal is to recover the underlying
fiber distribution so the white matter architecture can be inferred with tractography and
segmentation methods. Therefore, we guide the reader from local diffusion model
reconstruction in Section 2, to tractography algorithms in Section 3, and finally, to fiber bundle
segmentation methods, from DTI or QBI, in Section 4.

2. Local Diffusion Models
To measure the molecular motion in the direction of a given diffusion gradient g, the Stejskal-
Tanner imaging sequence (Stejskal and Tanner, 1965) is commonly used and relates the MR
signal attenuation S(q, τ) to the statistical properties of the net displacement vector R by

(1)

where S0 is a reference signal acquired with no diffusion gradient, τ is the molecular diffusion
time, q = γδg/2π is the displacement reciprocal vector (with γ the gyromagnetic ratio of water
protons and δ the duration of the diffusion gradients), and p(R|τ) is the ensemble average
propagator (EAP). S(q, τ) is thus expressed as the 3D Fourier transform ℱ of the EAP. This
function is ultimately the function we are looking to reconstruct in diffusion MRI. Intuitively,
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one has to sample the diffusion PDF along many q vectors to be able to reconstruct the diffusion
PDF. The space of all possible 3D q vectors is called q-space. This is the idea behind q-space
imaging (Callaghan, 1991). If the diffusion process is assumed to be Gaussian, the Stjeskal-
Tanner equation (1) boils down to

(2)

where g is the unit vector q/|q|, b is the so-called b-value given by τ|q|2 and D is the 3
dimensional diffusion tensor. In this case, p takes the simple form

In contrast, HARDI acquisition schemes are model-free. They do not make any assumption
about the form of the EAP but rather sample q-space along as many directions and q-magnitudes
as possible, to reconstruct p as accurately as possible. Typically, there are two strategies used
in HARDI: 1) sampling of the whole q-space 3D Cartesian grid and estimation of the EAP by
inverse Fourier transformation (DSI), 2) single shell spherical sampling and estimation of fiber
distributions from the diffusion/fiber ODF (QBI), Persistent Angular Structure (Jansons and
Alexander, 2003) or Diffusion Orientation Transform (Ozarslan et al., 2006). Recent work
(Khachaturian et al., 2007) has proposed to improve the accuracy of QBI by fusing information
from multiple q-shells. In this section, we focus on the estimation of diffusion tensors and
diffusion/fiber ODFs from diffusion MRI.

2.1. Estimation of Diffusion Tensor Images
Several authors have already studied the properties of the non-linear space of diffusion tensors
(i.e., symmetric positive-definite matrices) in the context of diffusion tensor processing (Basser
and Pajevic, 2003; Fletcher and Joshi, 2004; Batchelor et al., 2005; Pennec et al., 2006; Lenglet
et al., 2006b; Fillard et al., 2007; Schwartzman, 2006). Here we briefly describe the theoretical
tools necessary for understanding the tensor estimation procedure introduced in this subsection.

2.1.1. Computational Framework—We consider the family of 3D Gaussian distributions
with 0-mean as the 6-dimensional parameter space of variances and covariances. We identify
it with S+(3), the set of 3 × 3 symmetric positive-definite matrices. A Riemannian metric can
be introduced for S+(3) in terms of the Fisher information matrix (Burbea and Rao, 1982), and

it has the form , where {Ei} i, j = 1,
…, 6 denotes the basis of the tangent space TΣS+(3) = SΣ(3) at Σ ∈ S+(3). The geodesic distance

 g induced by this metric was investigated by several authors and the original theorem can
be found in Atkinson and Mitchell (1981). We recall that the distance between two elements
Σ1 and Σ2 of S+(3) is the length of the minimizing geodesic curve between these two points.
Calvo and Oller derived an explicit solution of the geodesic equations for general multivariate
Gaussian distributions (Calvo and Oller, 1991). The geodesic starting at Σ1 in the direction V
∈ TΣ1S+(3), the tangent space of S+(3) at Σ1, is

(3)

Lenglet et al. Page 3

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and the geodesic distance between the two endpoints Σ1 and Σ2 is

Using these concepts, we can now describe a diffusion tensor estimation algorithm that
naturally enforces their positive-definiteness (Lenglet et al., 2006b).

2.1.2. Tensor Estimation—The estimation of a diffusion tensor image relies on the Stejskal-
Tanner equation (2). At least N =30 (and not just the theoretical minimum of N =6) diffusion
gradients g are typically necessary to robustly estimate the apparent diffusion coefficient,
fractional anisotropy and tensor orientations (Jones, 2004). The classical technique for tensor
estimation relies on a least-squares procedure where equation (2) is rewritten as a linear system,
which can be solved efficiently. However, it has the disadvantage of potentially producing
tensors with negative eigenvalues, which are physically impossible. We therefore seek to
minimize the following objective function at each voxel of the acquired volume:

(4)

where ψ: ℝ ↦ ℝ is a real-valued function which reduces the effect of outliers by replacing
the classical least-squares residual by a function such as the Cauchy, Fair, Huber or Tukey
M-estimators. We can minimize this energy by an intrinsic gradient descent procedure that
naturally evolves on S+(3). The gradient of ℰ is (Lenglet et al., 2006b)

where we recall that gi is known and given by the diffusion gradient direction, S is a diffusion
weighted image and D is the unknown diffusion tensor. ∇ℰ can be used as the velocity V in
the geodesics equation (3) to minimize ℰ while remaining on the manifold of interest S+(3).
In Table 1, we compare the performance of a least-squares estimation procedure with the
gradient descent technique outlined above and further detailed in Lenglet et al. (2006b). 2500
tensors were generated to span a wide range of configurations and an artificial set of 12
diffusion-weighted images was created from these tensors by using the Stejskal-Tanner
equation. Gaussian noise was added and tensors were re-estimated with the two methods. The
gradient descent technique clearly outperforms the least-squares approach as it is able to avoid
non-positive definite tensors and produces results much closer to the ground-truth data. In
practice, although this method is more time-consuming, it has proved to be very useful to avoid
degenerate tensors in areas such as the genu or splenium of the corpus callosum. As recently
proposed, the Log-Euclidean framework (Fillard et al., 2007) may also be used to estimate
diffusion tensors robustly and efficiently. We now move to the estimation of higher-order
models of diffusion properties.

2.2. Analytical Reconstruction of the Diffusion ODF
In contrast with DTI, QBI (Tuch, 2004) is a model-independent method to estimate the
diffusion ODF, which contains the full angular information of the diffusion PDF and is defined
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using spherical coordinates as , where (θ, φ) obey the physics convention
(θ ∈ [0, π], φ ∈ [0, 2π]). A smoothed version of the diffusion ODF can be directly reconstructed
from a single-shell HARDI acquisition using the Funk-Radon transform (FRT) (Tuch, 2004).
Intuitively, the FRT value at a given spherical point is the great circle integral of the signal on
the sphere defined by the plane through the origin perpendicular to the point of evaluation. The
original QBI has a numerical solution (Tuch, 2004). More recent methods (Anderson, 2005;
Hess et al., 2006; Descoteaux et al., 2007a) have introduced an analytical spherical harmonic
reconstruction solution that is faster, more robust to noise and does not require as many
gradient-encoding directions. To develop the analytical solution to QBI, the HARDI signal
first needs to be represented using spherical harmonics (SH) and then, the FRT can be solved
analytically using the SH basis. Letting  denote the SH of order ℓ and degree m (m = −ℓ, …,
ℓ), a modified SH basis that is real and symmetric is defined. For even order ℓ, a single index
j in terms of ℓ and m is used such that j(ℓ, m) = (ℓ2 + ℓ + 2)/2 + m. The modified basis is given
by

(5)

where  and  represent the real and imaginary parts of  respectively. The basis
is designed tobe symmetric, real and orthonormal. It is then possible to obtain an analytical
diffusion ODF estimate, Ψ, with

(6)

where L = (ℓ + 1)(ℓ + 2)/2 is the number of elements in the spherical harmonic basis, cj are the
SH coefficients describing the input HARDI signal, Pℓ(j) is the Legendre polynomial of order
ℓ(j)2 and  are the coefficients describing the ODF Ψ. Here, the cj coefficients are estimated
with the solution presented in Descoteaux et al. (2006) with a Laplace-Beltrami regularization
of the SH coefficients cj to obtain a more robust ODF estimation. The detailed implementation
of the Laplace-Beltrami regularization and a comparison with other state-of-the art methods
(Anderson, 2005; Hess et al., 2006) are presented in Descoteaux et al. (2006, 2007a).

2.3. Analytical Reconstruction of the Fiber ODF
The relation between the measured diffusion ODF and the underlying fiber distribution, the
fiber ODF, is still an important open question in the field (Tuch, 2002; Perrin et al., 2005), the
answer to which depends on the physics of diffusion, cell membrane permeability, the free
diffusion coefficients, axonal packing, the distribution of axonal diameters, the degree of
myelination in the underlying fiber bundles, and other parameters. The diffusion ODF is thus
a blurred version of the “true” fiber ODF. Because of this blurring effect, the extracted maxima
of the diffusion ODF are often used for fiber tractography. An alternative is to use spherical
deconvolution (SD) methods that provide an estimate of the fiber ODF (Tournier et al.,
2004; Jian and Vemuri, 2007), also called the fiber orientation density (FOD). These techniques

2ℓ (j) is the order associated with the jth element of the SH basis, i.e., for j = 1, 2, 3, 4, 5, 6, 7, … ℓ(j) = 0, 2, 2, 2, 2, 2, 4, …
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have better angular resolution than QBI and produce sharper fiber ODF profiles than the q-ball
diffusion ODF. Smaller fiber compartments with smaller volume fractions may be visible in
the fiber ODF but not in the diffusion ODF. SD and fiber ODF estimation are currently topics
of active research. Here, we use a simple linear transformation of the analytical QBI solution.
A schematic view of the spherical deconvolution method is shown in Fig. 1.

The fiber ODF is reconstructed in three steps:

1. The regularized diffusion ODF coeffcients  are reconstructed using equation (6) of
the previous section, .

2. The single fiber diffusion ODF, R, used as a deconvolution kernel, is estimated from
the real data. We assume an axially symmetric diffusion tensor model with
eigenvalues (e2, e2, e1) and e1 ≫ e2 for the underlying single fiber diffusion model
(Tournier et al., 2004). The values of e1 and e2 are estimated from 300 voxels with
highest FA value in our real dataset, as these voxels can each be assumed to contain
a single fiber population. The single fiber diffusion ODF kernel has an analytical

expression (Descoteaux et al., 2007b) and is given by , where α = (1
−e2/e1), b is the b-value of the real dataset and t ∈ [−1, 1] is the variable that represents
the dot product between the direction of the fiber and the point of evaluation (θ, φ)
on the sphere.

3. The SH coefficients of the fiber ODF, fj, are then obtained by a simple linear

transformation, , with , which can be solved
analytically by taking the power expansion of Pℓ(j)(t) and integrating rℓ(j) term by
term. As for the analytical diffusion ODF solution, the spherical deconvolution is
obtained with the Funk-Hecke theorem (Descoteaux et al., 2007a). Therefore, the
fiber ODF, expressed in terms of the HARDI signal, is

(7)

The final fiber ODF can be reconstructed for any (θ, φ) as . F provides
a valid choice for the fiber ODF (Descoteaux et al., 2007b), in close agreement with the SD
method Tournier et al. (2004).

Diffusion tensors and ODFs are at the heart of the white matter connectivity and complexity
analysis methods of the next sections.

3. White Matter Connectivity Analysis
3.1. Identification of Sub-voxel Fiber Bundle Configurations

Despite the many advantages of HARDI reconstructions over the diffusion tensor model, they
can still be ambiguous and difficult to interpret in the presence of complex sub-voxel fiber tract
configurations (Le Bihan et al., 2006; Parker and Alexander, 2005) and thus confound fiber
tracking algorithms. Different fiber geometries can yield similar diffusion/fiber ODFs, but
require different decisions in tractography. To illustrate this, consider the two types of sub-
voxel fiber structures depicted in Fig. 2. Both the single curving fiber tract (left) and the fanning
fiber tract (right) are likely to result in an almost indistinguishable ODF with a single broad
peak oriented in the vertical direction (middle panel in left and right subfigures). This is due
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to the presence of a relatively wide array of fiber tangent directions within one voxel, which
results in a broad fiber ODF profile. Although they yield a similar ODF, because of a similiar
sub-voxel fiber tangent distribution, each of these structures requires a different decision from
a fiber tracking algorithm. For a curving fiber bundle, only one path should be recovered, with
a local tangent given by the medial direction of the broad maximum (left). But for a fanning
configuration, multiple paths should be followed when propagating in one direction (polarity
vector represented by a green arrow in the right subfigure), and only one direction should be
followed when propagating in the other (blue arrow). This illustrates the importance of
recovering the polarity of the fanning in addition to its extent. Hence, in order to take the
appropriate action, it is crucial for tracking methods to be able to differentiate between these
types of sub-voxel configurations. The distinction between a fanning fiber tract and a single
fiber tract with high curvature is known to be particularly challenging (Le Bihan et al., 2006;
Parker and Alexander, 2005). It can be addressed by relating fiber ODF data to the underlying
white matter fiber tracts, modeled as 3D curves (Savadjiev et al., 2008). This approach is based
on the 3D curve inference method (Savadjiev et al., 2006) described below, which infers the
curves that best describe the underlying white matter fibers in each voxel. By integrating
information over a local neighborhood, this method can resolve ambiguities that cannot be
clarified by only considering individual ODFs.

3.1.1. 3D Curve Inference—3D curve inference is a differential geometric method for
inferring of helical arcs as osculating approximations to arbitrary 3D curves, based on a support
measure defined over a local neighborhood. In the context of diffusion MRI orientation data,
this enables the local curvature and torsion of white matter fibers to be estimated. Distinct sub-
voxel fiber bundle configurations that share the same tangents (orientations) at a particular
voxel can be distinguished from one another. As input, the algorithm requires a discretized
regular (typically rectangular) 3D lattice, with a fiber ODF defined at each lattice location
(voxel). Each of these ODFs is then sampled along several orientations. A notion of co-
helicity can be formally defined (Savadjiev et al., 2006) and relates individual orientations at
distinct voxels through a geometrical constraint. In particular, the conditions under which three
orientations defined at three distinct locations in space can be tangent to a helix are determined.
Based on these conditions, a measure of the support that a given orientation (at a given voxel)
receives from co-helical configurations of neighboring orientations (at neighboring voxels) is
calculated. This measure is weighted by the ODF value along these orientations at the voxels
of interest. We then discretize the parameter space describing helical curves. A best-fit helix
is determined for each orientation, based on the support obtained from the neighborhood. 3D
curve inference can be used to perform ODF regularization (Savadjiev et al., 2006). ODF values
in orientations that are not aligned with the inferred curves are discarded, whereas those that
are aligned with the inferred curves are supported. The inferred best-fit helices can be used to
disambiguate curving vs. fanning subvoxel fiber configurations (Savadjiev et al., 2008), as
described next.

3.1.2. Labeling of Ambiguous Sub-voxel Fiber Tract Configurations—To motivate
the approach, consider Fig. 3, which shows a schematic of the inferred curves in the case of a
fanning fiber tract and of a single curving fiber tract. For simplicity, only a 2D case is illustrated,
but the technique is applicable to any 3D ODF dataset. In the general 3D case, the inferred
curves will be helical, i.e., they will have both curvature and torsion. Local helix
approximations to fibers are constructed by searching for co-helical triplets of fiber ODF
maximum orientations in a local neighborhood. A co-helical triplet is interpolated to a helix
which is used as a local approximation to the (arbitrary) 3D curve that represents an underlying
white matter fiber tract. Thus, a given fiber ODF orientation presents evidence for an underlying
curve (helix) if it is the central element of a co-helical triplet in a spherical neighborhood
centered on that voxel and if its parameterization inferred through 3D curve inference agrees
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with the parameters (curvature, torsion) of the cohelical triplet. As an example, the three
sampling orientations corresponding to the three blue maxima in Fig. 3 (right) form a co-helical
triplet of orientations. Similarly, in Fig. 3 (left), the groups of red, green and blue maxima all
form co-helical triplets with the black maximum, which is common to all three groups. One or
more such helices can pass through a given voxel, as one helix is assigned to each ODF
orientation in that voxel. For example, three such helices pass through the central ODF in Fig.
3 (left), associated with the red, green and blue orientations, respectively. The number and the
configuration of these helices are used to label the voxel as belonging to a fanning, crossing,
or single fiber tract configuration, as described in Table 2. This labeling uses two types of
information: 1) ODF shape information at each voxel. (The number of local maxima can be
used to distinguish crossings from the other two cases. The crossing case is included for
completeness.) 2) A geometric model inferred from a neighborhood of voxels. The helices
inferred by the 3D curve inference algorithm are used to distinguish fanning configurations
from single, possibly curving, fiber tracts. We emphasize that the inferred helical curves are
local approximations to more global 3D curves, obtained independently at each voxel. Thus
the local helical approximations will typically differ from one location (voxel) to the next. In
summary, the approach uses evidence from inferred helix curves and their local configurations
to disambiguate the three cases outlined in Table 2. Since helices are parametric curves, and
since they are represented by co-helical triplets of tangents, it is straightforward to check the
number and local configuration of helices that pass through any given voxel. These ideas are
developed into an algorithm, described in pseudocode in Savadjiev et al. (2008), where
implementation details are also discussed. As we show in the next section, this labeling
information turns out to be very important when performing fiber tractography.

3.2. Diffusion MRI Tractography
3.2.1. Overview—The previous sections have discussed how to robustly extract information
about fiber orientations, at the voxel scale, using diffusion MRI. One application of such
techniques is to infer global connectivity in the central nervous system. Fiber tractography is
used to integrate the voxel-scale fiber orientations in order to create maps of connectivity
between distant areas. The delineation of these pathways is useful in determining whether
specific areas of the brain are connected, the course of these connections, and how these
connections change in diseases. The extracted pathways can be used as regions of interest in
which to investigate other scalar parameters, such as fractional anisotropy or measures
extracted from other types of MRI contrast. The pathways may also be used for parcellation
of given brain regions based on differences in connectivity to and from them (Behrens et al.,
2003; Frey et al., 2006). Numerous fiber tractography algorithms exist, but different integration
and interpolation schemes, and varying step sizes (Lori et al., 2000), and seeding protocols
(Campbell et al., 2005), can greatly influence the streamline propagation results. Integration
approaches include Fiber Assignment by Continuous Tracking (FACT) (Mori et al., 1999),
Euler-Lagrange (Conturo et al., 1999), and Runge-Kutta (Basser et al., 2000). Each technique
has benefits, such as robustness to high curvature (Lazar and Alexander, 2003), as well as
drawbacks. Front evolution approaches, including level-set techniques, have also been
investigated for tractography (Parker et al., 2002; Campbell et al., 2005; Tournier et al.,
2003; Jackowski et al., 2005; Prados et al., 2006). There are clear theoretical benefits of
incorporating information about complex sub-voxel fiber geometry in tractography. We have
investigated the improvements in vivo and in phantoms. Fig. 4 shows an example tractography
comparison in the human brain. Fig. 4a is the result of using the diffusion tensor model and
propagating along the principal eigenvector. Fig. 4b is the result of using the q-ball model-free
reconstruction method (Tuch, 2004), propagating along the fiber ODF maxima. Using DTI,
generally only the most medial projections of the corpus callosum are seen. Q-Ball Imaging is
more capable of picking up the projections that cross through the cortico-spinal tract and
superior longitudinal fasciculus. The tractography shown in Fig. 4c is performed by exploiting
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the labeling of fanning and curving fibers described in Section 3.1. Using the labeling
information generally results in subtle improvements in the sensitivity of the tractography,
especially for fiber bundles fanning toward the cortex. This can be a great benefit, e.g., in
assessing connectivity between cortical areas, such as co-activated areas in functional studies.

3.2.2. Details and Comparison of Tractography Methods—For the tracking results
shown in Fig. 4b/c, we proceeded as follows. In Fig. 4b, the deterministic method described
in Savadjiev et al. (2008) was used. No interpolation was performed. Streamlines were
propagated using FACT integration along the ODF maxima. The tracking was stopped if the
fractional anisotropy (FA) was less than 0.1, the mean diffusivity was greater than 10−6 mm2/
ms, or the angular difference in the orientation of the tract from one voxel to the next was
greater than 80° (these parameters also apply to Fig. 4a). An alternate solution for deterministic
tracking using fiber ODFs was proposed to take into account multiple maxima at each step
(Descoteaux et al., 2007b). This is illustrated in Fig. 5a. Similar initialization and parameters
to those of Savadjiev et al. (2008) were used and trilinear interpolation was performed to obtain
diffusion ODF, fiber ODF and DT at subvoxel precision.

In Fig. 4c, except where fanning was indicated, the direction of propagation was also given by
the ODF maximum. However, when fanning was indicated (i.e., the dot product of the incoming
direction with the fanning polarity vector was positive), the tracking algorithm followed all
fiber directions from the fiber ODF, thus exploiting the rich information provided by the
labeling of ambiguous sub-voxel fiber tact configurations of Section 3.1. Tracking was initiated
in all voxels in a small region of interest in the corpus callosum. At voxels labeled as single
curves, the propagation direction was given by the fiber ODF maximum closest to the incoming
direction. At voxels labeled fanning fibers, the direction of propagation depended on whether
the incoming direction was in the direction of the fanning, or in the direction of the merge. For
the former, all directions in the extent of the fanning area, given by the fiber ODF distribution,
were followed; for the latter, the fiber ODF maximum only was followed. For voxels with
multiple fiber ODF maxima, the maximum closest to the incoming direction was followed.
The fanning was accomplished by running the entire tracking process iteratively and randomly
selecting a direction at each iteration. 10000 iterations were used. For all starting ROI voxels,
the tracking was initiated on a 3×3×3 grid of start points in order to facilitate branching.
Streamlines were propagated using FACT integration. Tracts that erroneously turned down the
cortical-spinal tract were excluded. A connectivity profile of all voxels reached by the tracking
was saved and an example result is presented in Fig.4c.

Finally, the rich information of fiber ODFs can be exploited in a probabilistic way (Descoteaux
et al., 2007b). A random walk method (Koch et al., 2002) was extended as follows: A large
number of particles is typically started from a seed point. The particles randomly propagate
according to our local fiber ODF estimate, F, and the number of times a voxel is reached by
the path of a particle is counted. This yields higher transitional probabilities along the main
fiber directions. For each elementary transition of a particle, the probability of a movement
from the seed point x to the target point y in direction uvxy is computed as the product of the
local fiber ODFs in direction uvxy, i.e. P(x → y) = F(uvxy)x · F (uvxy)y, where P (x → y) is the
probability for a transition from point x to point y and F(uvxy)x is the fiber ODF at point x in
direction xy (by symmetry, direction xy and yx are the same). This method is illustrated in Fig.
5b/c. A tractogram (i.e., the 3D distribution of connected voxels to the seed voxel) of a voxel
of the corpus callosum and sample fiber tracts included in the probability map are presented.

3.2.3. Sensitivity and Error Analysis—Fiber tractography is rarely fully automatic. It is
prone to false positive and false negative results, and the precise tracking protocol has a large
effect on the end results. As described above, we can initiate tracking on a grid within each
start voxel. This approach facilitates branching and improves the sensitivity of the technique.
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We have found that the density of seeding in each start voxel impacts the tracking results: the
point at which the result converges depends on the system under investigation. For any given
pathway, the regions of interest selected to delineate the pathway will impact the result. The
user can also choose between initiating tracking only in these regions of interest, or initiating
tracking everywhere and retaining those tracts that pass through the ROIs (the “brute force”
approach (Conturo et al., 1999)). Fig. 6a shows the result using brute force seeding for the
same tract-delineating ROI used in Fig. 4. Brute force tractography generally reduces false
negatives and seed point dependence of the results, and enables fanning to some extent, as can
be seen by comparison to Fig. 4c. It also guarantees reversible tractography results: the
connectivity between point x and point y should be the same as the connectivity between point
y and point x. Tractography is usually supervised, in that exclusion masks are used to remove
false positives. At the resolution of typical diffusion imaging protocols, it is probable that
inferred fiber trajectories will jump from one pathway to another, so some prior knowledge of
the anatomy is necessary. One common artifact, when reconstructing the corpus callosum for
instance, is to jump onto the cortico-spinal tract (CST), as shown in Fig. 6b. Masks were used
to remove the CST from the other tracking results in Fig. 4.

As with any measurement, uncertainty in the tractography result should be quantified.
Uncertainty in tractography arises from uncertainty in the directions of propagation in all of
the voxels that constitute a tract. The uncertainty should reflect our confidence that there is a
fiber in a given direction, and the confidence in the direction itself. Uncertainty in the direction
arises from imaging noise and from limitations of the chosen reconstruction technique. In the
case of DTI, it is relatively easy to acquire multiple datasets in order to estimate the standard
deviation σθ of the distribution for the angle of propagation. For high angular resolution, in
which the minimal data acquisition is much larger, statistical techniques such as bootstrap
methods (Haroon and Parker, 2007; Berman et al., 2008) and Markov Chain Monte Carlo in a
Bayesian framework (Fonteijn et al., 2007; Behrens et al., 2007) are being explored. Here, we
illustrate this concept of uncertainty in probabilistic q-ball tractography in Fig. 6c, using the
finite angular resolution of the acquisition to determine σθ (Frey et al., 2006). The confidence
in the direction of propagation is given by a truncated Gaussian profile with maximum at the
maximum of the diffusion ODF and standard deviation σθ. The connectivity map is shown as
a maximum intensity projection. The connectivity value of a voxel to a given ROI is given by
the lowest confidence value of all tract segments along the tract between the voxel the ROI
(Parker et al., 2002; Campbell et al., 2005). An advantage of this “weakest link” approach over
counting the number of times a voxel is reached by a random tracking process (Behrens et al.,
2007) is that if a voxel is reached many times but by different routes, it still has low probability
of connection to the ROI. It is also more amenable to the brute force tracking approach. Here,
tracking was performed using the brute force approach, with 1000 starts per voxel in order to
randomly sample the cones of uncertainty around each maximum.

In the human brain, there is no gold standard tractography result with which to evaluate
tractography algorithms. Anatomy varies from brain to brain, and our understanding of human
neuroanatomy is still incomplete. There is therefore a need for phantoms for evaluation of
tractography. There has been considerable work on synthetic phantoms, e.g., (Lazar and
Alexander, 2003; Tournier et al., 2002; Perrin et al., 2005; Close et al., 2008). Physical
phantoms are useful for evaluating MRI sequences and evaluating post-processing techniques
in the presence of imaging artifacts, such as eddy-current induced distortions, and noise. These
include biological phantoms (Boujraf et al., 2001) and phantoms made from textiles (Watanabe
et al., 2006). We have created a physical phantom made from excised rat spinal cords (Campbell
et al., 2005) (see Fig. 7). While simple, this phantom provides a gold standard tractography
result for quantitative comparisons between algorithms, seeding strategies, and other tracking
parameters. A physical phantom should have structures that restrict diffusion in a timeframe
compatible with an MRI experiment, and diffusion properties and complex fiber geometries
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comparable to those in vivo. It is also desirable to match the MR relaxation properties of human
tissue. Fig. 7 illustrates the use of the phantom to compare tracking approaches. Both diffusion
tensor and q-ball reconstruction were performed on the same dataset. Fig. 7a and 7b show
tracking results using the diffusion tensor model and q-ball imaging, respectively, using the
same tract-delineating ROI on the curved tract and brute force seeding. The tensor model fails
to capture the crossing fibers necessary to reconstruct the whole tract. Fig. 7c illustrates ODF
tracking without brute force seeding: the differences between using brute force seeding and
not are often evident near curves. This example also illustrates that connections to regions more
distant from the ROI are sparser.

4. White Matter Segmentation and Complexity Analysis
Clustering methods for diffusion MRI have been recently introduced and provide a
complementary point of view to the analysis of the white matter architecture. They typically
rely on some metric between diffusion tensors or ODFs and allow us to identify various fiber
bundles or regions of the white matter with different diffusion pro-files. While many techniques
have been proposed to classify the gray matter, white matter and cerebrospinal fluid from T1-
weighted MR images, the literature addressing the clustering of white matter and sub-cortical
structures from diffusion MRI is fairly recent. In this context, two main features identify each
element of a diffusion image: the position on the image and the diffusion characteristics. To
perform effective clustering, the contribution of these two features must be carefully exploited.
Quantifying the similarity between the diffusion features (tensors, ODFs) is still a subject of
current investigations. In the following, we denote the position in the diffusion image by xi and
Di stands for the diffusion characteristic (either the diffusion tensor or some representation of
the ODF).

4.1. Methods Based on DTI
The first approach that used DTI to elucidate structure in the brain by means of clustering was
designed to identify the different nuclei of the thalamus (Wiegell et al., 2003). It uses a k-means
algorithm. The spatial metric is the Mahalanobis distance with respect to each cluster and the
feature metric is the Frobenius norm of the difference between tensors. The choice of this last
metric is crucial and discussed in the following, where we focus on fiber bundle segmentation.

One of the very first approaches to fiber bundle segmentation (Zhukov et al., 2003) was able
to cluster white matter structures by only using the fractional anisotropy as the diffusion
characteristic, in a surface evolution framework (which is well-suited for controlling the shape
and smoothness of the resulting clusters). A 3D surface S is represented by the zero level set
of a 4-dimensional function φ, S = {x ∈ ℝ3: φ (x, t) = 0}, and φ is evolved according to the
differential equation ∂ φ(x, t)/∂t = −F (x)||∇ φ (x, t)||, where F is a scalar-valued function which
drives the evolution of φ, and implicitely deforms the surface S along its normals. F is usually
made of two terms F = Fc +βFs. Fc quantifies characteristics of the regions to segment and
Fs drives the smoothness of the surface; β is a user-selected weight. Fs and Fc can be
respectively chosen as the mean curvature of the surface S and an edge detector function ℝ ↦
[0, 1] applied to a smoothed FA map (Zhukov et al., 2003). To generalize this approach and
take advantage of the full tensor information, the function Fc was adapted to work on a
generalized structure tensor for diffusion tensor fields (Feddern et al., 2003). This approach
allowed some improvements over the previous work and was among the first to focus on the
definition of an adequate metric between diffusion tensors. Later, a statistical level-set
segmentation method was introduced (Wang and Vemuri, 2004). In this method, Fc is based
on a regional description of the inner and outer compartments:
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(8)

where D ̄in and D ̄out are the Fréchet means of side and outside the surface S. The Fréchet mean
D ̄ of a set of N tensors {Di}i=1,…, N is analytically or iteratively computed as the minimizer of
the tensors’ variance, depending on the choice of metric. Such a regional approach allows the
tensors in the inner and outer regions to vary in a piecewise constant manner, contrary to
approaches which only search for sharp variations of the FA, or other anisotropy maps (Zhukov
et al., 2003). Thus, the algorithm presented in Wang and Vemuri (2004) is capable of detecting
fiber bundles where the tensor’s shape changes smoothly. However, because of the use of the
Euclidean distance  f between tensors (Frobenius norm), the Fréchet mean D ̄in/out is not
guaranteed to be positive-definite, thus generating artifacts and incorrect segmentations in
regions where tensors’ variation is large. To overcome this problem, several authors have
studied the influence of the metric. Considering the diffusion tensor as the covariance matrix
of a zero-mean Gaussian distribution, the symmetrized Kullback-Leibler divergence or J-
Divergence was introduced (Wang and Vemuri, 2005):

and used to extend previous work (Wang and Vemuri, 2004). It is a natural metric between
probability distributions, which turns out to have a closed form expression in the Gaussian
case. It also has a closed form expression for the mean tensor. Next, two different distances
between tensors were introduced in a similar level set formulation (Jonasson et al., 2005). This
was later extended to prevent overlapping when propagating multiple surfaces for the
segmentation, for instance, of the thalamic nuclei (Jonasson et al., 2007b). The first distance,
called Integrated Similarity, compares the diffusion properties from two different voxels. It is

expressed as , where d1(r) is the diffusion coefficient in
direction r for the tensor D1. This metric compares diffusion coefficients over all possible
directions and is very sensitive to small differences between the shapes of the tensors. It has,
however, a high computational cost. Another metric is used to calculate the empirical mean of
a set of tensors. It measures the overlap between two tensors and is defined as

. It has also been proposed to use a Riemannian metric derived from
the Fisher information matrix in an extended statistical framework (Lenglet et al., 2006a). This
metric yields a geodesic distance on the manifold of zero-mean Gaussian distributions S+(3),
as presented in Section 2.1.1. This distance can also be expressed as

 where the scalars λi are the eigenvalues of the matrix

. The authors also demonstrated how to approximate a Gaussian distribution on
S+(3) and to exploit this information in the segmentation procedure. The practical differences
of using the three different distances,  f/j/g, in the extended statistical surface evolution frame-
work of Lenglet et al. (2006a) are illustrated in Fig. 8. Recently, a distance with similar
properties to those of  g was introduced (Arsigny et al., 2006). This Log-Euclidean distance
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has the advantage to be simple to implement and fast to compute. However, it has not been
extensively studied for segmentation tasks yet, aside from its use in two recent papers
(Weldeselassie and Hamarneh, 2007; Malcolm et al., 2007). In both works, the image is
segmented into two parts by minimizing an energy functional similar to the one of Wang and
Vemuri (2005). A non-parametric approach relying on the Log-Euclidean distance and a
Markov random field framework was also recently described (Awate et al., 2007). Finally, a
graph-theoretical approach, known as N-Cuts (Shi and Malik, 2000), was used (Ziyan et al.,
2006). This graph partitioning technique is based on the link between the second smallest
eigenvector of the Laplacian matrix of a graph and optimal partitions. The nodes of the graph
are the voxel xi of the image and the weights of the edges between those nodes are obtained
from similarities between neighboring tensors. The similarity between tensors can be any of
the previously described distances or restricted to the directional information of the principal
eigenvectors. The outline of the procedure proposed in Ziyan et al. (2006) is as follows: First,
a matrix Ws is built to encode local similarity between tensors. It is only non-zero for
neighboring voxels:

(9)

σ is a chosen scale parameter. Next, local similarities are propagated to a full affinity matrix
W by converting Ws into a one-step transition probability matrix whose rows and columns sum
to one. Markovian relaxation (Tishby and Slonim, 2000) is used to generate the n-step transition
probability matrix. Finally, this matrix is recursively partitioned in two clusters by using
eigenvalue decomposition and thresholding the eigenvector with the second smallest
eigenvalue. This produces a hierarchical clustering. The number of recursions is ultimately
chosen to obtain the desired number of clusters. The main limitation of this algorithm is the
need for a uniform sampling of the (xi, Di) at the end of the Markovian relaxation. An extension
of this approach to ODFs was recently proposed (Wassermann et al., 2008), as we will describe
in the next section. As we are now going to discuss, level set, Markov random fields and graph-
theoretic segmentation frameworks have also recently been extended to HARDI datasets.

4.2. Methods based on HARDI
As described in Section 2, the diffusion tensor model cannot describe complex white matter
fiber configurations, and HARDI techniques like QBI were introduced to overcome this issue.
It is thus natural to exploit this information to improve white matter segmentation results. The
5D space defined by the location of the ODFs on the acquisition grid and their orientational
information can be used (Hagmann et al., 2006; Jonasson et al., 2007a). These segmentation
procedures are respectively implemented with a hidden Markov random field or level set
framework. Mixtures of von Mises-Fisher distributions were proposed to model the ODFs
(McGraw et al., 2006) and segmentation was also performed with a hidden Markov random
field scheme in this work. It is possible to use a spherical harmonics (SH) decomposition of
the ODF at each voxel xi. The diffusion characteristic Di is then replaced by a vector of SH
coefficients. Although the most appropriate metric between ODFs is an open area of research,
the L2 norm can be used and efficiently computed. Two other clustering techniques have been
proposed that take advantage of the SH representation. First, in Descoteaux and Deriche
(2008), we generalized the level set algorithm presented in Wang and Vemuri (2004); Lenglet
et al. (2006a) to the HARDI case. Equation (8) is modified such that the distance is the L2 norm
of the difference of SH coefficients. As can be seen in the two images on the left of Fig. 9, the
projections of the corticospinal tract to the cortex can only be successfully segmented by using
HARDI data. Second, in Wassermann et al. (2008), we extended the work presented in Ziyan
et al. (2006) in three ways: 1) The matrix presented in equation (9) was rewritten to use the
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L2 norm between the SH coefficients of the ODFs. 2) The matrix obtained after Markovian
relaxation is normalized in order to relax the hypothesis on the sampling of the (xi, Di). 3) This
matrix is finally used as an input for the diffusion maps method (Lafon and Lee, 2006). This
method produces a mapping, where each element (xi, Di) is represented as a point in Euclidean
space, and an estimation of the number of clusters existing in the set. A k-means algorithm is
used to automatically find the clusters. The two images on the right of Fig. 9 show that
segmentation results are coherent with white matter anatomical knowledge.

In the following section, we show how HARDI clustering techniques can be extended to
quantify the geometrical complexity of segmented fiber bundles. Beyond the assignment of
labels, it is possible to provide a scalar measure that correlates with the expected variations of
the configurations of the white matter fiber tracts.

4.3. Quantification of the Non-uniform Complexity of the White Matter
In this section, we describe how the white matter microstructure complexity (or dimensionality)
may be studied. Here, the complexity is understood as meaning the minimum number of
parameters needed to represent the diffusion MRI data (tensors, ODFs) in an underlying sub-
manifold of ℝm (m ≥ 6 depends on the order of the SH approximation of ODFs). Regions with
or without fiber crossings clearly belong to manifolds with different complexity, and we use
stratifications (Haro et al., 2008b) (i.e., the union of manifolds with different dimensions and
densities) to quantify the local complexity of DTI and HARDI datasets and relate it to known
features of neuroanatomy (Haro et al., 2008a).

A geometric and probabilistic method was recently proposed to estimate the local dimension
and density of point clouds in ℝm (Levina and Bickel, 2005). It was then extended by modeling
high-dimensional sample points as a process of translated Poisson mixture, with regularizing
restrictions (Haro et al., 2008b). Noise is naturally handled and it is possible to identify the
underlying manifolds with different dimensions and densities. The outline of the method is as
follows: If we sample an m-dimensional manifold with T points, the proportion of points falling
into a ball around xt is  (Levina and Bickel, 2005). The point cloud of
interest, embedded in high dimension D, is X = {xt ∈ ℝD; t = 1,…, T}, k is the number of points
inside the ball, ρ(xt) is the local sampling density at point xt, V(m) is the volume of the unit
sphere in ℝm, and Rk(xt) is the Euclidean distance from xt to its k-th nearest neighbor (kNN).
The inhomogeneous process N(R, xt), which counts the number of points falling into a D-
dimensional sphere B(R, xt) of radius R centered at xt, can be approximated by a Poisson process
with rate λ(R, xt) = ρ(xt)V (m)mRm−1. The local intrinsic dimension and density estimators at
each point xt are obtained from the Maximum Likelihood (ML) estimator based on a Poisson
distribution with this rate.

Noise usually contaminates the point cloud, so the observed point process (i.e., the ODFs) is
not a sampling of a low-dimensional manifold but rather a perturbation of this sample process.
This is modeled with a translated Poisson process (Snyder and Miller, 1991), which translates
an underlying (unobservable) point process into an output (observable) point process according
to a conditional probability density f called the transition density. If each point is translated
independently and no deletion or insertion occur, any translated Poisson process with an
integrable intensity function λ on the input space X is also a Poisson process with intensity μ
(z) = ∫Xf(z|x)λ(x)dx, ∀ z ∈Z, on the output space. The intensity of our observable process λ(r,
xt) is parameterized by the Euclidean distance between points so the density f(s|r) transforms
a distance r in the input space to a distance s in the observable space. The intensity of the

Poisson process in the output space is , where R′ > R since
points originally at a distance greater than R from xt can be placed within a distance less than
R after the translation process.
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Maximizing the likelihood of the new translated Poisson process, we obtain a nonlinear
recursive expression for the local dimension m(xt) at point xt, which is difficult to solve. We
approximate it by an easier to compute closed expression, with explicit bounds on the
approximation (see Haro et al. (2008b) for details),

(10)

The associated density estimator is . However, these estimators
are local. We propose to compute an ML on the whole point cloud simultaneously (not just for
each point independently) by using a mixture of translated Poisson distributions which
accommodates noise and different classes (characterized by their own dimension and density)
(Haro et al., 2008b). This Translated Poisson Mixture Model (TPMM) is solved with an
Expectation Maximization algorithm, which leads to explicit estimations of each cluster
dimensionality and density, as well as a soft clustering according to these parameters; see Haro
et al. (2008b) for details.

We recently applied this technique to HARDI datasets. ODFs were estimated with the
techniques described in Section 2. We examined the complexity of the raw Diffusion Weighted
Images (points in ℝ30) as well as that of 4th and 6th order ODFs (ℝ15 and ℝ28 respectively),
and corresponding (sharpened) fiber ODFs (Fig. 10, top). Clusterings from 4th and 6th order
ODFs are almost identical, as 30 gradients may be insufficient to fit a detailed 6th order model.
Clusterings obtained from the ODFs are clearly better than those from the raw HARDI data
and we can readily distinguish (Fig. 10, top) the gray matter in green, complex white matter
in purple (e.g., forceps minor/major, anterior/posterior corona radiata or superior longitudinal
fasciculus), anisotropic white matter in light blue (e.g., genu/splenium of the corpus callosum
or internal capsule), and highly anisotropic white matter in blue (e.g., genu of the corpus
callosum, cortico-spinal tract). Using 4th order fiber ODFs had little effect. 6th order fiber ODFs
decreased the clustering accuracy, perhaps by enhancing high-frequency noise in the higher-
order model. We also compared our complexity/dimension estimates to the known complexity
of white matter configurations, in the genu of the corpus callosum and forceps minor. Callosal
fibers are tightly packed at the interhemispheric plane, but diverge and mingle with other fiber
bundles as they progress toward the frontal lobes. Our method identifies and quantifies this
increase in complexity. The dimension and density of the four submanifolds both increase (Fig.
10, bottom) as fibers leave the highly anisotropic genu region.

5. Conclusion
Diffusion MRI and variations such as DTI or QBI have opened up a landscape of extremely
exciting discoveries for medicine and neuroscience. The development of powerful analysis
tools for these modalities has occupied the medical image analysis community for about a
decade now and has already resulted in fundamental advances in research on various
neurological disorders such as stroke, cancer or neurodegenerative diseases. Here we have
briefly reviewed state-of-the-art mathematical models and computational techniques for
processing diffusion MRI data. We showed how to efficiently estimate local diffusion models
such as the diffusion tensor or diffusion/fiber orientation distribution functions. We then
described a framework to identify of sub-voxel fiber bundle configurations (crossing, fanning,
etc.) from QBI data. Along with an overview of current approaches for white matter
tractography, we showed how this framework can be used to extend QBI deterministic
tractography. We finally introduced a set of techniques based on surface evolution or graph-
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theoretic methods for clustering white matter structures in DTI or QBI. We also demonstrated
how machine learning techniques can be applied to such datasets to quantify the non-uniform
complexity of the cerebral white matter.

Acknowledgements
This work was partially supported by ONR, NGA, NSF, NIH (grants P41 RR008079, P30 NS057091, R01 EB007813,
R01 HD050735, and P41 RR013642), DARPA, the PAI Procope, the Diffusion MRI INRIA ARC, NSERC Canada,
FQRNT Québec and the Spanish Ministerio de Ciencia e Innovación, under program Juan de la Cierva and project
TEC2007-66858/TCM.

References
Anderson A. Measurements of fiber orientation distributions using High Angular Resolution Diffusion

Imaging. Magn Reson Med 2005;54:1194–1206. [PubMed: 16161109]
Arsigny V, Fillard P, Pennec X, Ayache N. Log-Euclidean metrics for fast and simple calculus on

diffusion tensors. Magnetic Resonance in Medicine 2006;56:411–421. [PubMed: 16788917]
Atkinson C, Mitchell A. Rao’s distance measure. Sankhya: The Indian Journal of Stats 1981;43(A):345–

365.
Awate S, Hui Z, Gee J. A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: With

applications to DTI-tract extraction. IEEE Transactions on Medical Imaging 2007;26 (11):1525–1536.
[PubMed: 18041267]

Basser P, Mattiello J, Bihan DL. Estimation of the effective self-diffusion tensor from the NMR spin
echo. Journal of Magnetic Resonance B 1994;(103):247–254.

Basser P, Pajevic S. A normal distribution for tensor-valued random variables: Applications to diffusion
tensor MRI. IEEE Transactions on Medical Imaging 2003;22 (7):785–794. [PubMed: 12906233]

Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography using DT-MRI data.
Magn Reson Med 2000;44:625–632. [PubMed: 11025519]

Batchelor P, Moakher M, Atkinson D, Calamante F, Connelly A. A rigorous framework for diffusion
tensor calculus. Magnetic Resonance in Medicine 2005;53 (1):221–225. [PubMed: 15690523]

Behrens T, Johansen-Berg H, Woolrich M, Smith S, Wheeler-Kingshott C, Boulby P, Barker G, Sillery
E, Sheehan K, Ciccarelli O, Thompson A, Bardy J, Matthews P. Non-invasive mapping of connections
between human thalamus and cortex using diffusion imaging. Nature Neuroscience 2003;6 (7):750–
757.

Behrens TEJ, Johansen-Berg H, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion
tractography with multiple fibre orientations. what can we gain? NeuroImage 2007;34 (1):144–155.
[PubMed: 17070705]

Berman J, Chung S, Mukherjee P, Hess C, Han E, Henry R. Probabilistic streamline q-ball tractography
using the residual bootstrap. NeuroImage 2008;39 (1):215–222. [PubMed: 17911030]

Boujraf S, Luypaert R, Eisendrath H, Osteaux M. Echo planar magnetic resonance imaging of anisotropic
diffusion in asparagus stems. MAGMA 2001;13 (2):82–90. [PubMed: 11502422]

Burbea J, Rao C. Entropy differential metric, distance and divergence measures in probability spaces: A
unified approach. Journal of Multivariate Analysis 1982;12:575–596.

Callaghan, PT. Principles of nuclear magnetic resonance microscopy. Oxford University Press; Oxford:
1991.

Callaghan PT, Eccles CD, Xia Y. Rapid Communication: NMR microscopy of dynamic displacements:
k-space and q-space imaging. Journal of Physics E Scientific Instruments 1988;21:820–822.

Calvo M, Oller J. An explicit solution of information geodesic equations for the multivariate normal
model. Statistics and Decisions 1991;9:119–138.

Campbell J, Siddiqi K, Rymar V, Sadikot A, Pike G. Flow-based fiber tracking with diffusion tensor and
q-ball data: Validation and comparison to principal diffusion direction techniques. NeuroImage
2005;27 (4):725–736. [PubMed: 16111897]

Lenglet et al. Page 16

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Close, T.; Tournier, J.; Calamante, F.; Johnson, L.; Mareels, I.; Con-nelly, A. Software tool to generate
complex structures for validation of fibre tracking. Proc. of the International Society for Magnetic
Resonance in Medicine; 2008. p. 431

Conturo T, Lori N, Cull T, Akbudak E, Snyder A, Shimony J, McKinstry R, Burton H, Raichle M.
Tracking neuronal fiber pathways in the living human brain. Proc of the National Academy of
Sciences 1999;96:10422–10427.

Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Apparent diffusion coefficients from High Angular
Resolution Diffusion Imaging: Estimation and applications. Magnetic Resonance in Medicine
2006;56:395–410. [PubMed: 16802316]

Descoteaux M, Angelino E, Fitzgibbons S, Deriche R. Regularized, fast, and robust analytical q-ball
imaging. Magnetic Resonance in Medicine 2007a;58 (3):497–510. [PubMed: 17763358]

Descoteaux M, Deriche R. High angular resolution diffusion MRI segmentation using region-based
statistical surface evolution. Journal of Mathetical Imaging in Vision. 2008

Descoteaux M, Deriche R, Anwander A. Deterministic and probabilistic q-ball tractography: from
diffusion to sharp fiber distributions. Tech Rep 2007b;6273INRIA Sophia Antipolis

Feddern, C.; Weickert, J.; Burgeth, B. Level-set methods for tensor-valued images. Proc. of the Second
IEEE Workshop on Geometric and Level Set Methods in Computer Vision; 2003. p. 65-72.

Fillard P, Arsigny V, Pennec X, Ayache N. Clinical DT-MRI estimation, smoothing and fiber tracking
with Log-Euclidean metrics. IEEE Transactions on Medical Imaging 2007;26 (11):1472–1482.
[PubMed: 18041263]

Fletcher, P.; Joshi, S. Principal geodesic analysis on symmetric spaces: Statistics of diffusion tensors.
Proc. Computer Vision Approaches to Medical Image Analysis; Prague. 2004. p. 87-98.

Fonteijn HJ, Verstraten FJ, Norris D. Probabilistic inference on q-ball imaging data. IEEE Trans in Med
Imaging 2007;26 (11):1515–1524. [PubMed: 18041266]

Frey, S.; Campbell, J.; Pike, G.; Petrides, M. Dissociation of areas 44 and 45 (broca’s area) using diffusion
tensor fiber tractog-raphy. Society for Neuroscience Meeting; 2006. p. 159

Hagmann P, Jonasson L, Deffieux T, Meuli R, Thiran JP, Wedeen VJ. Fibertract segmentation in position
orientation space from High Angular Resolution Diffusion MRI. Neu-roImage 2006;32:665–675.

Haro, G.; Lenglet, C.; Sapiro, G.; Thompson, P. On the nonuniform complexity of brain connectivity.
Proc. IEEE Intl. Symposium on Biomedical Imaging: From Nano to Macro; Paris. 2008a. p. 887-890.

Haro G, Randall G, Sapiro G. Translated poisson mixture model for stratification learning. International
J of Computer Vision. 2008b

Haroon, HA.; Parker, GJ. Using variants of the wild bootstrap to quantify uncertainty in fibre orientations
from q-ball analysis. Proc. of the Organization for Human Brain Mapping annual meeting; 2007. p.
273

Hess C, Mukherjee P, Han E, Xu D, Vigneron D. Q-ball reconstruction of multimodal fiber orientations
using the spherical harmonic basis. Magnetic Resonance in Medicine 2006;56:104–117. [PubMed:
16755539]

Jackowski M, Kao C, Qiu M, Constable R, Staib L. White matter tractography by anisotropic wavefront
evolution and diffusion tensor imaging. Medical Image Analysis 2005;9 (5):427–440. [PubMed:
16040268]

Jansons K, Alexander D. Persistent angular structure: new insights from diffusion magnetic resonance
imaging data. Inverse Problems 2003;19:1031–1046.

Jian B, Vemuri B. A unified computational framework for deconvolution to reconstruct multiple fibers
from diffusion weighted MRI. IEEE Transactions on Medical Imaging 2007;26 (11):1464–1471.
[PubMed: 18041262]

Jonasson L, Bresson X, Hagmann P, Cuisenaire O, Meuli R, Thiran JP. White matter fiber tract
segmentation in DT-MRI using geometric flows. Medical Image Analysis 2005;9:223–236.
[PubMed: 15854843]

Jonasson L, Bresson X, Thiran JP, Wedeen VJ, Hagmann P. Representing diffusion MRI in 5-D simplifies
regularization and segmentation of white matter tracts. IEEE Trans on Med Imaging 2007a;26 (11):
1547–1554.

Jonasson L, Hagmann P, Pollo C, Bresson X, Wilson C, Meuli R, Thiran JP. A level set method for
segmentation of the thalamus and its nuclei in DT-MRI. Signal Processing 2007b;87:309–321.

Lenglet et al. Page 17

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Jones D. The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A
Monte Carlo study. Magnetic Resonance in Medicine 2004;51:807–815. [PubMed: 15065255]

Khachaturian M, Wisco J, Tuch D. Boosting the sampling efficiency of q-ball imaging using multiple
wavevector fusion. Magnetic Resonance in Medicine 2007;57:289–296. [PubMed: 17260358]

Koch M, Norris D, Hund-Georgiadis M. An investigation of functional and anatomical connectivity using
magnetic resonance imaging. NeuroImage 2002;16:241–250. [PubMed: 11969331]

Lafon S, Lee A. Diffusion maps and coarse-graining: A uni-fied framework for dimensionality reduction,
graph partitioning, and data set parameterization. IEEE Pattern Analysis and Machine Intelligence
2006;28 (9):1393–1403.

Lazar M, Alexander A. An error analysis of white matter tractography methods: synthetic diffusion tensor
field simulations. NeuroImage 2003;20 (2):1140–1153. [PubMed: 14568483]

Le Bihan D, Breton E. Imagerie de diffusion in vivo par résonance magnétique nucléaire. CR de
l’Académie des Sciences 1985;301:1109–1112.

Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn
Reson Imaging 2006;24(3):478–88. [PubMed: 16897692]

Lenglet C, Rousson M, Deriche R. DTI segmentation by statistical surface evolution. IEEE Transactions
on Medical Imaging June;2006a 25 (6):685–700. [PubMed: 16768234]

Lenglet C, Rousson M, Deriche R, Faugeras O. Statistics on the manifold of multivariate normal
distributions: Theory and application to diffusion tensor MRI processing. J Mathematical Imaging
and Vision 2006b;25 (3):423–444.

Levina, E.; Bickel, P. NIPS. Vol. 17. Vancouver: 2005. Maximum likelihood estimation of intrinsic
dimension.

Lori, N.; Akbudak, E.; Snyder, A.; Shimony, J.; Conturo, T. Diffusion tensor tracking of human neuronal
fiber bundles: Simulation of effects of noise, voxel size and data interpolation. Proc. International
Society for Magnetic Resonance in Medicine; 2000. p. 775

Malcolm, J.; Rathi, Y.; Tannenbaum, A. A graph cut approach to image segmentation in tensor space.
IEEE Conference on Computer Vision and Pattern Recognition; 2007. p. 1-8.

McGraw, T.; Vemuri, B.; Yezierski, R.; Mareci, T. Segmentation of High Angular Resolution Diffusion
MRI modeled as a field of von mises-fisher mixtures. Proc. European Conf. on Computer Vision;
2006. p. 463-475.

Merboldt K, Hanicke W, Frahm J. Self-diffusion NMR imaging using stimulated echoes. J Magn Reson
1985;64:479–486.

Mori S, Crain B, Chacko V, van Zijl P. Three dimensional tracking of axonal projections in the brain by
magnetic resonance imaging. Annals of Neurology 1999;45:265–269. [PubMed: 9989633]

Moseley M, Cohen Y, Mintorovitch J, Kucharczyk J, Tsuruda J, Weinstein P, Norman D. Diffusion-
weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology
1990;176 (2):439–445. [PubMed: 2367658]

Osment P, Packer K, Taylor M, Attard JJ, Carpenter TA, Hall LD, Doran SJ, Herrod NJ. NMR imaging
of fluids in porous solids. Phil Trans Roy Soc 1990;333:441–452.

Ozarslan E, Shepherd T, Vemuri B, Blackband S, Mareci T. Resolution of complex tissue
microarchitecture using the diffusion orientation transform (DOT). NeuroImage 2006;31 (3):1086–
1103. [PubMed: 16546404]

Parker G, Alexander D. Probabilistic anatomical connectivity derived from the microscopic persistent
angular structure of cerebral tissue. Phil Trans R Soc B 2005;360:893–902. [PubMed: 16087434]

Parker GJM, Wheeler-Kingshott CAM, Barker GJ. Estimating distributed anatomical connectivity using
fast marching methods and diffusion tensor imaging. IEEE Transactions Medical Imaging
2002;21:505–512.

Pennec X, Fillard P, Ayache N. A Riemannian framework for tensor computing. International Journal of
Computer Vision 2006;66 (1):41–66.

Perrin, M.; Poupon, C.; Cointepas, Y.; Rieul, B.; Golestani, N.; Pallier, C.; Riviere, D.; Constantinesco,
A.; Bihan, DL.; Mangin, J-F. Fiber tracking in q-ball fields using regularized particle trajectories.
Information Processing in Medical Imaging; 2005. p. 52-63.

Lenglet et al. Page 18

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Prados, E.; Lenglet, C.; Pons, J.; Wotawa, N.; Deriche, R.; Faugeras, O.; Soatto, S. Control theory and
fast marching methods for brain connectivity mapping. Proc. IEEE Conf. CVPR; 2006. p. 1076-1083.

Savadjiev P, Campbell JSW, Descoteaux M, Deriche R, Pike GB, Siddiqi K. Labeling of ambiguous sub-
voxel fibre bundle configurations in high angular resolution diffusion MRI. NeuroImage 2008;41
(1):58–68. [PubMed: 18367409]

Savadjiev P, Campbell JSW, Pike GB, Siddiqi K. 3D curve inference for diffusion MRI regularization
and fibre tractog-raphy. Medical Image Analysis 2006;10 (5):799–813. [PubMed: 16919994]

Schwartzman, A. PhD thesis. Stanford University; 2006. Random ellipsoids and false discovery rates;
statistics for diffusion tensor imaging data.

Shi J, Malik J. Normalized cuts and image segmentation. IEEE Pattern Analysis and Machine Intelligence
2000;22

Snyder, DL.; Miller, MI. Random Point Processes in Time and Space. Springer-Verlag; 1991.
Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field

gradient. Journal of Chemical Physics 1965;42:288–292.
Taylor D, Bushell M. The spatial mapping of translational diffusion coefficients by the NMR imaging

technique. Physics in Medicine and Biology 1985;30 (4):345–349. [PubMed: 4001161]
Tishby, N.; Slonim, N. NIPS. Vol. 14. 2000. Data clustering by markovian relaxation and the information

bottleneck method.
Tournier J, Calamante F, Gadian D, Connelly A. Diffusion-weighted magnetic resonance imaging fibre

tracking using a front evolution algorithm. NeuroImage 2003;20 (1):276–288. [PubMed: 14527588]
Tournier J, Calamante F, Gadian D, Connelly A. Direct estimation of the fiber orientation density function

from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 2004;23:1176–1185.
[PubMed: 15528117]

Tournier J, Calamante F, King M, Gadian D, Connelly A. Limitations and requirements of diffusion
tensor fiber tracking: an assessment using simulations. Magnetic Resonance in Medecine 2002;47
(4):701–708.

Tuch, D. PhD thesis. Harvard University and Massachusetts Institute of Technology; 2002. Diffusion
mri of complex tissue structure.

Tuch D. Q-ball imaging. Magn Reson Med 2004;52(6):1358–1372. [PubMed: 15562495]
Wang, Z.; Vemuri, B. Proc ECCV. 2004. Tensor field segmentation using region based active contour

model; p. 304-315.
Wang Z, Vemuri B. DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE

Trans Med Imag 2005;24(10):1267–1277.
Wassermann D, Descoteaux M, Deriche R. Diffusion maps clustering for magnetic resonance Q-Ball

imaging segmentation. International Journal of Biomedical Imaging 2008;2008(526906)
Watanabe M, Aoki S, Masutani Y, Abe O, Hayashi N, Ma-sumoto T, Mori H, Kabasawa H, Ohtomo K.

Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner. Radiat
Med 2006;24(9):605–609. [PubMed: 17111268]

Weldeselassie Y, Hamarneh G. DT-MRI segmentation using graph cuts. SPIE Medical Imaging
2007;6512:65121.

Wiegell M, Larsson H, Wedeen VJ. Fiber crossing in human brain depicted with diffusion tensor MR
imaging. Radiology 2000;217:897–903. [PubMed: 11110960]

Wiegell M, Tuch D, Larsson H, Wedeen VJ. Automatic segmentation of thalamic nuclei from diffusion
tensor magnetic resonance imaging. NeuroImage 2003;19 (2):391–401. [PubMed: 12814588]

Zhukov L, Museth K, Breen D, Whitaker R, Barr A. Level set modeling and segmentation of DT-MRI
brain data. Journal of Electronic Imaging 2003;12 (1):125–133.

Ziyan, U.; Tuch, D.; Westin, C-F. Segmentation of thalamic nuclei from DTI using spectral clustering.
Proc. MICCAI; 2006. p. 807-814.

Lenglet et al. Page 19

Neuroimage. Author manuscript; available in PMC 2010 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Left: Convolution between the diffusion ODF kernel, R, and true fiber ODF produces a smooth
diffusion ODF estimate, Ψ. Right: The Funk-Radon transform of the HARDI signal, S,
produces a smooth diffusion ODF, Ψ, which is transformed into a sharper fiber ODF estimate,
F, by the deconvolution.
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Figure 2.
Sub-voxel fiber configurations that can cause ambiguous fiber ODF shapes. The red curves
denote fibers in a specific voxel, and the yellow glyph shows the reconstructed ODF. The
arrows show the directions of a typical fiber path traversing this voxel; configurations differ
despite having the same ODF.
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Figure 3.
Co-helical triplets obtained by the 3D curve inference algorithm. In the fanning case (left),
multiple ODFs on the fanning side can have their maxima (red, green, blue) cohelical with
different orientations in the central (ambiguous) ODF and with the same maximum (black) of
an ODF on the merging side. The inferred curves are shown with dashed lines. In the single
curving tract case (right), only one set of co-helical triplets of ODF maxima (blue) exists. Only
one curve is inferred.
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Figure 4.
Effect of incorporating information on complex sub-voxel fiber geometry in tractography.
Fiber tracking result in human brain using (a) DTI, (b) QBI, and (c) the fiber geometry
information described in Section 3.1. Tracking results are displayed as isosurfaces
encompassing all voxels connected to the seed ROI (green)
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Figure 5.
Deterministic and probabilistic tracking of the projections of the corpus callosum to Broca’s
area. (a) Deterministic Split-Streamline tractography, (b) Probabilistic tractogram, (c)
Probabilistic fibers colored by their end point projections. In subfigures (b) & (c), colors
indicate probability of connection.
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Figure 6.
Error and uncertainty in tractography. (a) Brute force seeding strategy, using identical
parameters to Fig. 4b. (b) False positive tracking results in the absence of exclusion masks. (c)
Maximum intensity projection of probabilistic connectivity values. All experiments used the
same tract-delineating ROI in the corpus callosum.
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Figure 7.
Fiber tracking result in phantom using (a) diffusion tensor and brute force seeding, (b) q-ball
and brute force seeding, (c) q-ball with seeding only in the tract-delineating ROI, located in
the bottom curved part of the tract. A transparent surface indicating the gold standard cord
segmentation is shown for reference.
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Figure 8.
DTI statistical segmentation using different distances: f, j, g Differences are observed in
the splenium of the corpus callosum.
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Figure 9.
Left: Comparison between DTI and HARDI level set segmentation methods. Right: Diffusion
Maps clustering of HARDI data
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Figure 10.
Top: Influence of the input model on the labeling of 2 axial slices. Bottom: Increasing
complexity in the forceps minor
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Table 2
Labels obtained from local helix curves configuration and fiber ODF maxima.

Label ODF Maxima Curves Configuration

Single fiber tract 1 One helix.

Fanning 1 Two or more distinct and diverging helices.

Crossing ≥ 2 Number of helices = number of ODF maxima with sufficient angular
separation.
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