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Abstract
Tensor-based morphometry can recover three-dimensional longitudinal brain changes over time by
nonlinearly registering baseline to follow-up MRI scans of the same subject. Here, we compared the
anatomical distribution of longitudinal brain structural changes, over 12 months, using a subset of
the ADNI dataset consisting of 20 patients with Alzheimer’s disease (AD), 40 healthy elderly
controls, and 40 individuals with mild cognitive impairment (MCI). Each individual longitudinal
change map (Jacobian map) was created using an unbiased registration technique, and spatially
normalized to a geometrically-centered average image based on healthy controls. Voxelwise
statistical analyses revealed regional differences in atrophy rates, and these differences were
correlated with clinical measures and biomarkers. Consistent with prior studies, we detected
widespread cerebral atrophy in AD, and a more restricted atrophic pattern in MCI. In MCI, temporal
lobe atrophy rates were correlated with changes in mini-mental state exam (MMSE) scores, clinical
dementia rating (CDR), and logical/verbal learning memory scores. In AD, temporal atrophy rates
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were correlated with several biomarker indices, including a higher CSF level of p-tau protein, and a
greater CSF tau/beta amyloid 1-42 (ABeta42) ratio. Temporal lobe atrophy was significantly faster
in MCI subjects who converted to AD than in non-converters. Serial MRI scans can therefore be
analyzed with nonlinear image registration to relate ongoing neurodegeneration to a variety of
pathological biomarkers, cognitive changes, and conversion from MCI to AD, tracking disease
progression in 3-dimensional detail.

Introduction
Alzheimer’s disease is the most common form of dementia, afflicting over 24 million people
worldwide. In early AD, short-term memory function is typically among the first to be
impaired, followed by a progressive decline in other cognitive functions (such as language,
attention, orientation, visuospatial skills, and executive function) along with emotional/
behavioral disturbances. At present, there is no cure for AD, whose natural course is insidious
yet gradually debilitating, and is typically fatal at its most advanced stage, usually due to
medical complications. In recent years, scientific interest has also focused on mild cognitive
impairment (MCI), a pre-dementia stage that carries a 4–6-fold increased risk of future
diagnosis of dementia, relative to the general population (Petersen et al., 1999, 2001; Petersen,
2000).

Many investigators have used MRI and PET imaging to measure longitudinal progression of
brain changes in normal aging, MCI and AD, with varying results. As drug candidates that
might slow the progression of Alzheimer’s pathology began to be developed, the need to
develop robust and sensitive imaging methods to quantify progression of Alzheimer’s disease
has become increasingly important. To this end, the National Institute of Aging and
pharmaceutical industry funded the Alzheimer’s Disease Neuroimaging Initiative, with the
goal of developing improved methods based on imaging and other biomarkers, for AD
treatment trials.

A variety of methods have been used to quantify the longitudinal changes in structural brain
MRI including: region-of-interest measurements (especially of the hippocampus (Frisoni et
al., 1999), the “boundary shift integral” technique which quantifies differences between two
successive co-registered 3D MRIs (Fox et al., 2000), voxel-based morphometry (Good et al.,
2001; Whitwell et al., 2007), and tensor-based morphometry (Studholme et al., 2004, 2006;
Leow et al., 2007).

Tensor-based morphometry (TBM) is a relatively new image analysis technique that identifies
regional structural differences in the brain, across groups or over time, from the gradients of
the deformation fields that align, or ‘warp,’ images to a common anatomical template (reviewed
in Ashburner and Friston, 2003). Highly automated methods such as TBM are being tested to
examine their utility in large-scale clinical trials, and in studies to identify factors that influence
disease onset and progression (Leow et al., 2005b; Cardenas et al., 2007), or normal
development (Thompson et al., 2000a; Chung et al., 2001; Hua et al., 2007).

In this paper, TBM is applied to a longitudinal ADNI dataset by using a nonlinear registration
algorithm to match 3D baseline structural MR images with follow-up images acquired 1 year
later (for related approaches, see Leow et al. 2005a; Studholme et al., 2006; Studholme and
Cardenas, 2007; van de Pol et al., 2007; Barnes et al., 2008; Ridha et al., 2008).

Color-coded Jacobian maps — which show the local expansion or compression factor at each
point in the image — can be used to indicate local volume loss or gain relative to the baseline
image (Freeborough and Fox, 1998; Chung et al., 2001; Fox et al., 2001; Ashburner and Friston,
2003; Riddle et al., 2004). Here we examined longitudinal brain changes, using these Jacobian
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maps, in groups of AD and MCI subjects relative to controls. We also investigated, at a
voxelwise level, how ongoing brain atrophy correlated with clinical measures including MMSE
scores, and the global Clinical Dementia Rating (CDR), as well as biomarkers of AD pathology
including CSF levels of tau protein, 181-phosphorylated tau protein (p-tau), beta amyloid
(ABeta 42), and tau/Abeta42 ratio (Andreasen et al. 2001; Itoh et al., 2001; Verbeek et al.,
2003; Clark et al., 2003; Hampel et al., 2004; Lee and Trojanowski, 2006).

Our hypotheses were as follows: (1) brain atrophic rates would be greater in AD and MCI than
in controls, with MCI-control differences restricted primarily to the temporal lobe; (2) MCI
converters (who transitioned to AD during the one-year follow-up interval) would have faster
atrophic rates than non-converters, but slower atrophic rates than those with AD; (3)
longitudinal temporal lobe atrophy would be significantly correlated with progression of
cognitive impairment in AD and MCI; and (4) higher CSF tau protein level, lower CSF
ABeta42 level, and higher p-tau/ABeta42 ratio would be significantly associated with higher
rates of temporal lobe atrophy. In further tests that were considered exploratory rather than
hypothesis-based, for purposes of statistical inference, we also determined which additional
CSF biomarkers might correlate best with atrophic rates in each diagnostic group, and in all
subjects combined.

Methods
Subjects

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005a,b) is a large
multi-center longitudinal MRI and FDG-PET (fluorodeoxyglucose positron emission
tomography) study of 800 adults, ages 55 to 90, including 200 elderly controls, 400 MCI
subjects, and 200 AD patients. The ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies and non-profit
organizations, as a $60 million, 5-year public–private partnership. The primary goal of ADNI
has been to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessments acquired in a multi-site manner mirroring enrollment methods
used in clinical trials, can replicate results from smaller single site studies measuring the
progression of MCI and early AD. Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to develop new treatments
and monitor their effectiveness, as well as lessen the time and cost of clinical trials.

At the time of writing this report, data collection for the ADNI project was in progress. In this
paper, we studied longitudinal brain structural changes in 100 subjects, divided into 3 groups:
40 healthy elderly individuals, 40 individuals with amnestic MCI, and 20 individuals with
probable AD. All groups were well matched for gender and age: each group included 50% men
and 50% women; mean ages for the control, MCI and AD groups were, respectively, 75.27
years (standard deviation (SD)=5.33 years), 75.43 years (SD=7.02), and 75.70 years
(SD=7.36), with no significant age differences among the three groups. We included twice as
many subjects in the MCI and control groups versus the AD group, based on the availability
of one-year follow-up scans at the time of writing this paper.

All subjects underwent thorough clinical/cognitive assessment at the time of both the baseline
and the follow-up scan acquisitions. As part of each subject’s cognitive evaluation, the Mini-
Mental State Examination (MMSE) was administered to provide a global measure of mental
status based on evaluation of five cognitive domains (Folstein et al., 1975; Cockrell and
Folstein, 1988); scores of 24 or less (out of a maximum of 30) are generally consistent with
dementia. The Clinical Dementia Rating (CDR) was also assessed as a measure of dementia
severity (Hughes et al., 1982; Morris, 1993). A global CDR of 0, 0.5, 1, 2 and 3, respectively,
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indicate no dementia, very mild, mild, moderate, and severe dementia. The elderly normal
subjects had MMSE scores between 28 and 30 (inclusive), all had a global CDR of 0, and no
symptoms of depression, MCI, or other forms of dementia. The MCI subjects had MMSE
scores in the range of 24 to 30, all had a global CDR of 0.5, and mild memory complaints, with
memory impairment assessed via education-adjusted scores on the Wechsler Memory Scale–
Logical Memory II (Wechsler, 1987). All AD patients met NINCDS/ADRDA criteria for
probable AD (McKhann et al., 1984) with baseline MMSE scores as high as 26, and a lower
limit of 20. In this study, 16 AD patients had a CDR of 0.5, and the remainder had a CDR of
1. Detailed exclusion criteria, e.g., regarding concurrent use of psychotropic medications, can
be found in the ADNI protocol (Mueller et al., 2005a,b). Briefly, subjects were excluded if
they had any serious neurological disease other than incipient AD, any history of brain lesions
or head trauma, or psychotropic medication use (including antidepressants, neuroleptics,
chronic anxiolytics or sedative hypnotics, etc.).

MRI acquisition and image correction
All subjects were scanned with a standardized MRI protocol, developed after a substantial
effort evaluating and comparing 3D T1-weighted sequences for morphometric analyses (Leow
et al., 2006; Jack et al., 2008). High-resolution structural brain MRI scans were acquired at
multiple ADNI sites using 1.5 Tesla MRI scanners from General Electric Healthcare and
Siemens Medical Solutions (ADNI also collects a smaller subset of data at 3 Tesla but it was
not analyzed here to avoid the additional complications of combining data across scanner field
strengths). All scans were collected according to the standard ADNI MRI protocol. For each
subject, two T1-weighted MRI scans were collected using a sagittal 3D MP-RAGE sequence.
As described in Jack et al. (2008), typical 1.5 T acquisition parameters are repetition time (TR)
of 2400 ms, minimum full TE, inversion time (TI) of 1000 ms, flip angle of 8°, 24 cm field of
view, with a 192×192×166 acquisition matrix in the x-, y-, and z-dimensions yielding a voxel
size of 1.25×1.25×1.2 mm3. In-plane, zero-filled reconstruction yielded a 256×256 matrix for
a reconstructed voxel size of 0.9375× 0.9375×1.2 mm3.

Additional image corrections were also applied, using a processing pipeline at the Mayo Clinic,
consisting of: (1) a procedure termed GradWarp for correction of geometric distortion due to
gradient non-linearity (Jovicich et al., 2006), (2) a “B1-correction,” to adjust for image intensity
inhomogeneity due to B1 non-uniformity using calibration scans (Jack et al., 2008), (3) “N3”
bias field correction, for reducing residual intensity inhomogeneity (Sled et al., 1998), and (4)
geometrical scaling, according to a phantom scan acquired for each subject (Jack et al.,
2008), to adjust for scanner- and session-specific calibration errors. In addition to the original
uncorrected image files, images with all of these corrections already applied (GradWarp, B1,
phantom scaling, and N3) are available to the general scientific community (at
www.loni.ucla.edu/ADNI).

Image pre-processing
To adjust for global differences in brain positioning and scale across individuals, all scans were
linearly registered to the stereotactic space defined by the International Consortium for Brain
Mapping (ICBM-53) (Mazziotta et al., 2001) with a 9-parameter (9P) transformation (3
translations, 3 rotations, 3 scales) using the Minctracc algorithm (Collins et al., 1994). Globally
aligned images were resampled in an isotropic space of 220 voxels along each axis (x, y, and
z) with a final voxel size of 1 mm3.

Specifically, baseline scans were first linearly normalized with a 9-parameter registration to
the ICBM space. Follow-up scans, on the other hand, were 9-parameter registered to their
corresponding baseline scans, followed by normalization to the ICBM space using the same
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baseline transformation that carries baseline scans to the ICBM space (for discussions on the
effect of global scaling in longitudinal studies, see Paling et al., 2004; Whitwell et al., 2004).

Three-dimensional Jacobian maps quantifying structural changes over time
To quantify 3D patterns of volumetric brain atrophy over time for each subject, an individual
change map, or Jacobian map, was computed by non-linearly registering the follow-up scan
to the baseline scan with an unbiased registration algorithm we developed (Leow et al.,
2007). The unbiased image registration technique computes deformation fields by penalizing
statistical bias in the resulting Jacobian maps, thus eliminating skew from the distribution of
Jacobian determinants, and has been shown to perform favorably in recovering true
physiological changes in serial MRI data (Yanovsky et al., 2007). Non-positive Jacobians are
prevented when using unbiased registration, as a regularization term is penalized based on the
logarithmic transform of the local Jacobian values. Moreover, unbiased registration is
inherently symmetric (i.e., inverse-consistent), so there is no methodologically-induced bias
towards detecting gain versus loss (see Leow et al., 2005, Leow et al., 2007, for examination
of the Jacobian statistical distributions).

Unbiased group average template — Minimal Deformation Target (MDT)
To facilitate voxelwise comparisons between groups, we followed our previous approaches
and further nonlinearly registered all individual brains and their corresponding Jacobian maps
to the Minimal Deformation Target (MDT) created in Hua et al. (2008), an unbiased average
template image in the ICBM space representing common anatomical features on a voxel level
for the group of control ADNI subjects (Good et al., 2001; Kochunov et al., 2002; Joshi et al.,
2004; Studholme and Cardenas, 2004; Kovacevic et al., 2005; Christensen et al., 2006;
Lorenzen et al., 2006; Lepore et al., 2008).

After this final step, these spatially normalized Jacobian maps now share a common anatomical
coordinate as defined by the MDT. Thus, statistical analyses may be conducted at each voxel
to assess the magnitude and significance of deficits in MCI and AD versus the healthy controls.

Statistical tests
Using these spatially normalized Jacobian maps that encode longitudinal brain changes, we
carried out voxel-wise statistical tests between the Jacobian maps in each group. The Jacobian
maps in MCI and AD were compared to those from normal controls, using both a spatial average
of the Jacobian values within specific regions of interest (ROIs; defined below), and voxel-
wise tests controlled for multiple comparisons. In the latter, at each voxel, we evaluated the
significance level of group differences using a two-sample t test with unequal variance. The
resulting p-values were displayed as maps to visualize patterns of significant differences
throughout the brain.

To correct for multiple comparisons, we used permutation testing to assess the overall
significance of group differences (see, e.g., Bullmore et al., 1999; Nichols and Holmes 2002;
Thompson et al. 2003a,b; Chiang et al., 2007a,b). A null distribution for the group differences
in Jacobian at each voxel was constructed using 10,000 random permutations of the data. The
number of permutations N was chosen to be 10,000, to control the standard error SEp of the
omnibus probability p, which follows a binomial distribution B(N, p) with known standard
error (Edgington, 1995). When N=10,000, the approximate margin of error (95% confidence
interval) for p is approximately 5% of p. For each test, the subjects’ diagnosis was randomly
permuted and voxel-wise t tests were conducted to identify voxels more significant than
p=0.05. The volume of voxels in the brain more significant than p=0.05 was computed for the
real experiment and for the random assignments. Finally, a ratio, describing the fraction of the
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time the suprathreshold volume was greater in the randomized maps than the real effect (the
original labeling), was calculated to give an overall p-value for the significance of the map.

CDF plots
Cumulative distribution function (CDF) plots based on the above two-sample t-tests were used
to compare the effect sizes of group differences and effects of covariates of interest in all three
groups. These CDF plots are commonly generated when using false discovery rate methods to
assign overall significance values to statistical maps (Benjamini and Hochberg, 1995;
Genovese et al., 2002; Storey, 2002); they may also be used to compare effect sizes of different
methods, subject to certain caveats (Lepore et al., 2008; Hua et al., 2008; Morra et al.,
2008a,b), as they show the proportion of supra-threshold voxels in a statistical map, for a range
of thresholds.

Regions of interest (ROIs)
Regions of interest, including frontal, parietal, temporal, and occipital lobes, were defined by
manually labeling the normal group MDT. The MDT was traced by a trained anatomist to
generate binary masks for each lobe, which were subsequently used to summarize brain atrophy
at a regional level in each group. Within each lobe, tissue types were distinguished by creating
maps of gray and white matter, CSF, and non-brain tissues using the partial volume
classification (PVC) algorithm from the BrainSuite software package (Shattuck and Leahy,
2002). One single voxel was eroded from the boundary of each tissue class to avoid the
inclusion of partial volumed voxels at tissue interfaces (e.g., CSF, gray and white matter
mixtures) where the Jacobian values may not be representative of the rest of the region. To
avoid confounding the average values in regions where tissue atrophy was assessed, CSF was
excluded from the masks for the ROI-based Jacobian averages, but was included for voxel-
wise comparisons (i.e., maps of group differences).

Correlations of structural brain differences (Jacobian values) with clinical measurements
and biomarkers

At each voxel, correlations were assessed for each group, using the general linear model,
between the Jacobian values and several clinical measures at baseline — MMSE scores
(Folstein et al., 1975), the geriatric depression scale (GDS), Clinical Dementia Rating summary
scores (Morris, 1993), and CDR sum-of-boxes scores. The CDR assesses a patient’s cognitive
and functional performance in six areas on a scale of 0 (no impairment) to 3 (impaired):
memory, orientation, judgment and problem solving, community affairs, home and hobbies,
and personal care. As there is a significant range restriction with global CDR scores, we also
assessed correlations with the CDR ‘sum-of-boxes’ scores, which has a greater dynamic range
(0–18), and may provide more useful information than the CDR global score, especially in
mild cases (Lynch et al., 2006). In addition, several biomarkers obtained from CSF were also
included for assessing correlations, including beta amyloid 1-42 (ABeta42), tau protein,
phosphorylated-tau protein 181 (p-tau), the tau and ABeta42 ratio (tau/ABeta42), and p-tau
ABeta42 ratio (p-tau/ABeta42). Biomarker measurements were performed by Drs. Leslie Shaw
and John Trojanowski of the ADNI Biomarker Core at the University of Pennsylvania School
of Medicine, which collects and banks biological samples (DNA, blood, urine and CSF) from
all participating sites, and conducts studies of selected AD biomarkers, including
apolipoprotein E (ApoE) genotype, isoprostanes, tau, ABeta, and homocysteine levels (Shaw
et al., 2007).

As individual Jacobian maps encode structural differences between baseline and follow-up
scans, correlations were also assessed between the Jacobian values and the differences in
clinical measures between the two time points. All correlations were corrected for multiple
comparisons as described above.

Leow et al. Page 6

Neuroimage. Author manuscript; available in PMC 2009 June 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Results
3D maps of brain atrophy in MCI and AD

We first visualized the mean brain structural change map for each group (AD, MCI, and CTL)
by averaging individual Jacobian maps within each group. These maps may be considered as
showing the mean percent tissue loss over the one-year interval, or, if changes are assumed to
be approximately linear, they provide a regional estimate of the atrophy rate. The resulting
statistical maps, shown in Fig. 1, suggest widespread progressive atrophy throughout the entire
brain and expansion of ventricular and CSF spaces in AD (compared to controls), and a more
restricted pattern of atrophy in MCI. To test whether there were statistically significant volume
changes, over this 12-month time period, for each group, and whether these changes differ
between groups, we conducted regional (ROI) analyses as well as voxel-wise tests controlled
for multiple comparisons as follows (Figs. 2 and 3).

Mean Jacobian values within each ROI, normalized to indicate annualized rates of atrophy (in
percent per year) were computed to represent overall differences in the rates of atrophy for
each region (Fig. 3). Here, we also separated MCI converters (N=7) from MCI non-converters
(N=32). (These MCI subgroups excluded the one MCI subject whose diagnosis was changed
to control at follow-up). In general, a consistent trend was observed for atrophy rates, with AD
>MCI converters >MCI non-converters. MCI non-converters showed comparable rates to
controls (see bars colored camel and white, respectively, in Fig. 3). The AD group (N=40)
showed significant progressive atrophy (p values, based on 1-sample t-test, <0.01 for all ROIs)
in the frontal lobes (annual atrophy rate in AD: 2.41%), occipital lobes (2.07%), parietal lobes
(2.40%), and temporal lobes (2.22%). The corresponding mean atrophy rates were 0.37%,
0.63%, 0.22%, and 0.74% for the control group, with corresponding P-values exhibiting
significance for the occipital lobes (p=0.02) and the temporal lobes (p=0.05) (the MCI non-
converter group showed a similar atrophy profile; see Fig. 3 for more explanations). The small
group of MCI converters (N=7) showed an atrophy profile resembling AD (no statistical tests
were conducted in this sub-group due to a smaller sample size, although the MCI converters/
AD combined group, with a sample size of 27, also exhibited significant volume loss for all
ROIs). These data are consistent with earlier reports assessing atrophy rates using 2 MRI brain
scans separated by a 12-month interval: using the boundary shift integral method, Fox et al.
(2000) found that mean (SD) rate of brain atrophy for the patients with mild to moderate AD
was 2.37% (1.11%) per year, while in the control group it was 0.41% (0.47%) per year.

Permutation tests, using suprathreshold percentages, were conducted to assess the presence of
statistically significant local volume change differences between groups, based on the voxel-
wise two-sample t-test on the rates of change (Fig. 2). This step provides a detailed 3-D
visualization of the local atrophy profile, in terms of voxel-wise mean change rates and their
significance level). Here, significantly greater atrophy rates in AD versus controls were
confirmed for all ROIs, including left/right/both temporal lobes (p=0.0021/0.0015/0.0015,
corrected), occipital lobes (p=0.0014, corrected), parietal lobes (p =0.0015, corrected), and
frontal lobes (p=0.005, corrected). Also, significantly greater atrophy rates in MCI versus
controls were confirmed in the left/right/total temporal lobe (p=0.03/0.03/0.03, corrected), and
parietal lobe (p=0.046, corrected) but not in the occipital or frontal lobes (non-converters were
not separated in this permutation testing, due to a relatively small sample size of 7). This is
consistent with previous findings that parietal and temporal lobes are among the first to be
involved in AD. Although mean Jacobian values (Fig. 3) — when spatially averaged across
the temporal lobe — were similar in MCI (both converters and non-converters) and controls
(annual atrophy rate 0.73% and 0.74%), locally faster atrophy was detected in the MCI group
versus controls using a voxelwise permutation test. This is partly due to contributions from the
converters, who have smaller Jacobian values in general —denoting faster atrophy —
compared to non-converters. This also shows that permutation testing, on the suprathreshold
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volume of statistics in a map may be more powerful for detecting group differences than
performing univariate tests on regional averages (numeric summaries) derived from the maps.

Correlations of Jacobian values with clinical measures and biomarkers
Any quantitative measure of brain atrophy has greater value if it can be shown to correlate with
established measures of cognitive or clinical decline, or with future outcome measures. Here,
we investigated whether longitudinal temporal lobe atrophy over this 12-month period
correlates with cognitive decline over the same interval. Our results in Tables 1 and 2 show
corrected p-values for these correlations (although all markers and clinical measures were
correlated for each diagnostic group, only significant results are reported here). To avoid
reductions in power due to restricting the range to the AD or MCI groups separately,
correlations were also examined across the entire sample of 100 subjects (which we will refer
to as the “pooled” group). In this case, the normal subjects, who tend to score in the normal
range for all clinical measures, drive these associations to some extent. Diagnostic groups were
not pooled together for these cognitive tests since the groups are stratified according to their
test scores.

Our results in Table 1 and Fig. 4a indicate that higher CSF tau protein level, lower CSF ABeta42
level, and higher p-tau/ABeta42 ratio are significantly associated with higher rates of temporal
lobe atrophy only in the pooled group (p=0.003, 0.001 and 0.002, corrected), but not in any of
the 3 individual diagnostic groups. On the other hand, correlations between temporal lobe
atrophy rates and the CSF p-tau level and tau/Abeta42 ratio were significant for both the pooled
data (p=0.01 and 0.0003) and within the AD group (p=0.02 and 0.02).

For clinical measures (Table 2; Fig. 4b), longitudinal temporal lobe atrophy was significantly
correlated with progression of cognitive impairment in the MCI group, including an increase
over time in CDR score (p=0.03), a decrease over time in MMSE (p=0.02), a worsening in
immediate logical memory performance (p=0.04), and worsening scores on the 30-minute
delayed auditory verbal learning test (AVLT) (p=0.04). Moreover, a higher baseline Geriatric
Depression Score (i.e., more severe depression) and a lower baseline score on the delayed
logical memory test also correlated with a greater ongoing rate of temporal lobe atrophy
(p=0.02 and 0.04). Lastly, converters exhibited significantly faster rates of temporal lobe
atrophy (p=0.03) than non-converters (i.e., atrophy rates differentiated the group of converters
from non-converters).

Interestingly, in our analysis, longitudinal temporal lobe atrophy was not correlated with
baseline MMSE, CDR, or sum-of boxes scores. Nor does it correlate with the change in sum-
of-boxes scores over the one-year interval. However, in the AD group, a higher baseline sum-
of-boxes score, i.e., greater cognitive impairment at baseline, correlated with less ongoing
atrophy (i.e., larger Jacobian values) (p=0.02). In AD, the sum-of-boxes score may therefore
better reflect the disease severity in advanced AD, at a point when advanced temporal atrophy
has already occurred, and progressive atrophy has slowed.

CDF curves
The cumulative distribution curves in Fig. 4 show relative effect sizes for the associations
between rates of brain atrophy and different pathological markers and clinical correlates. In
general, curves that rise more sharply at the origin denote statistical maps with greater effect
sizes, and those curves that intersect the line y=20x at points other than the origin, pass the
conventional criterion of controlling the false discovery rate at an expected rate of 5%, and are
regarded as significant after multiple comparisons correction. This approach allows an
approximate ranking of the effect sizes for different correlates: higher tau/ABeta42 ratio was
the pathological biomarker most highly correlated with higher rates of temporal lobe atrophy
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when all subjects were combined; other biomarkers showed comparable but slightly lower
effect sizes. The clinical score that correlated most with higher rates of temporal lobe atrophy
was one-year change in MMSE in MCI, with many other cognitive measures showing
comparable but slightly lower effect sizes.

Discussion
In this paper, our hypotheses were largely confirmed regarding longitudinal brain structural
changes in three groups of subjects including normal controls, those with MCI, and patients
with Alzheimer’s disease. Alzheimer’s disease was associated with significantly faster ongoing
atrophy in the temporal and parietal lobes, relative to matched healthy controls. There was also
significantly faster expansion in the CSF spaces, consistent with previous studies (e.g., Boyes
et al., 2006), and significant progressive tissue loss in frontal and occipital lobes, indicating
that ongoing atrophy is widely distributed in AD.

Prior studies of the disease trajectory in AD (e.g., Scahill et al., 2002; Thompson et al.,
2003a,b), show a shift in the distribution of atrophy with advancing disease. In line with the
trajectory of neurofibrillary pathology (Braak and Braak, 1991), the entorhinal and medial
temporal lobes show the earliest signs of atrophy in MCI, with frontal atrophy typically
occurring later, and primary sensory and motor cortices spared until late in the illness (see
Thompson and Apostolova, 2007, for a review of this trajectory mapped with different imaging
modalities). Consistent with this, in our MCI group, progressive atrophy was detected only in
the temporal and parietal lobes, in line with evidence that ongoing changes are more
anatomically restricted at this pre-dementia stage.

One notable aspect of the topography of brain matter loss shown in Figs. 1 and 2 is that the
greatest proportion of brain matter loss appears to lie in the white matter rather than at the
voxels on the cortical surface. There are two reasons for this, both technical: (1) the
deformations are spatially smooth and partial volume averaging effects occur and diminish the
signal somewhat at tissue boundaries, such as the cortex/CSF interface, and (2) the registration
accuracy of TBM is poorer at the cortical surface, at least relative to some approaches that
explicitly model the cortical surface. To clarify this, note that Figs. 1 and 2 visualize group
differences by averaging rates of volumetric changes (i.e., Jacobian maps), after nonlinearly
aligning individual maps of change to the minimal deformation template (MDT). This
deformation field is spatially smooth, so some partial volume effects between cortex and CSF
are inevitable and are more pronounced along the MDT boundary. As a result, some signal
spillover from outside of the brain tissue may be present, explaining the reduction in the atrophy
signal along the boundary. This effect has been noted in our prior work (Hua et al., 2008),
where the disease-related expansion in the ventricles spills over into the subcortical white
matter by about 1–2 mm, in the average maps. Similarly, the cortical atrophy signal is partially
canceled by the signal in the CSF outside the brain, which may not show the same level of
atrophy, and if anything, may show slight expansion over time. Second, and perhaps more
importantly, the deformation fields are based on automated matching of intensities in the
images, and the spatial smoothness of the fields makes it difficult to register the entire cortical
mantle within subjects from one time-point to the next, as would be required to gauge the
atrophy of cortical gray matter. Alternative approaches may be used that compute thickness at
each point, but these are typically more time-consuming as they generally require extraction
of explicit models of the cortical surface as geometric meshes, prior to computing the cortical
thickness either directly from the meshes (Lerch and Evans, 2005), or by tissue classification
of the images and voxel coding (Thompson et al., 2004;Aganj et al., 2008).

There are at least two possible solutions to better sensitizing our TBM approach for detecting
cortical gray matter loss. The first is to use a method termed voxel-based morphometry (VBM;
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Ashburner and Friston, 2000) or a related approach termed RAVENS (Davatzikos et al.,
2001). In VBM, the deformation-based compression signal at each point is multiplied by maps
of gray matter density, which are based on smoothing maps of gray matter voxels derived from
an explicit tissue classification into gray and white matter and CSF. An additional modulation
step is also included that preserves information on the volume of gray matter in the baseline
images after warping. When gray matter density and deformation signals are multiplied
together in this way, VBM maps in AD do typically show progressive cortical gray matter
atrophy in a temporal-to-frontal pattern that matches the spread of neurofibrillary tangle
pathology (Baron et al., 2001). A second approach to identifying cortical gray matter atrophy
with TBM was developed by (Studholme et al., 2003), in which deformation-based
compression signals at each point are smoothed adaptively depending on the amount of gray
matter lying under the filter kernel. This is a way to avoid some of the signal depletion that
occurs when atrophying gray matter is partial-volumed with CSF. A third solution is to run the
deformation maps at a very high spatial resolution and with less spatial regularization, or with
a regularization term that enforces continuity but not smoothness. Because of the complexity
of differentiating cortical gray matter changes from underlying white matter changes, we seek
to assign signals to the cortex without surface-based modeling, which can be time consuming
for larger analyses (Thompson et al., 2004), Thus, in this paper, we decided to combine both
gray and white matter for each region of interest (ROI) in our analyses, instead of separating
them.

Although much of the literature has suggested that gray matter loss is the primary change in
AD that is observable on MRI (see Thompson and Apostolova, 2007, for a review), there has
been substantial theoretical and empirical evidence supporting white matter pathology in AD
(Bartzokis et al., 2003). For example, in Rose et al. (2000), the authors summarized recent DTI
studies in AD, and many have reported reduced FA (fractional anisotropy) in temporal, frontal,
and parietal lobes, especially in the internal capsule and limbic association fibers, the
corticothalamic pathway, superior longitudinal fasciculus, and posterior cingulate bundle
(Yoshiura et al., 2002). White matter degeneration in AD has also been detected with MR
relaxometry (Bartzokis et al., 2003) and myelin and oligodendrocyte reductions have been
detected in neuropathological studies of AD. Future MRI studies, using state-of-the-art
techniques such as diffusion-weighted MRI (Rose et al., 2000; Choi et al., 2005; Medina et al.,
2006) or High Angular Resolution Diffusion Imaging (HARDI), are likely to further elucidate
white matter pathology in AD.

A further notable feature, which requires some explanation, is that a related technique (the
voxel-compression method) has shown unequivocally temporal gray matter loss and
ventricular expansion, but no change in the white matter (Fox et al., 2001) in serial MRI studies
of AD. As already noted, we did indeed detect subtle and diffuse changes in the subcortical
white matter, but the ability to detect them depends to some degree on the level of regularization
used in TBM. In TBM, there is a smoothness term, which causes correlations in the deformation
signals at neighboring voxels. In general, for simplicity and practicality, an elastic (Leow et
al., 2005a) or fluid (Fox et al., 2001) model of registration is used, in which the Green’s function
of the governing operator is spatially uniform and fixed. If the correlations are assumed to be
long-range (i.e., the deformations are spatially quite smooth), there is more signal enhancement
in large homogeneous regions such as the white matter, whereas if the correlations are assumed
to be short-range (i.e., the deformations are spatially quite rough, as in the fluid registration
model of Fox et al., 2001), there is typically more sensitivity to finer-scale differences (as found
in the gray matter in the Fox et al. study), while sacrificing some power to detect broader-scale
differences (e.g., the failure to detect white matter atrophy in Fox et al., 2001). In future, the
differential sensitivity of both approaches could be combined by estimating these spatially
varying correlations empirically from anatomical landmarks using 6-dimensional covariance
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tensors (Fillard et al., 2008) and incorporating them into a statistically-based adaptive
registration model as we have begun to do (Brun et al., 2007 and 2008).

In this paper, the correlations between atrophy and CSF biomarkers are also of significant
interest. Prior literature has indicated that there is lower ABeta42, but higher tau and p-tau
protein, in the CSF of AD patients versus those with other dementia subtypes or normal subjects
(Andreasen et al. 2001; Itoh et al., 2001; Verbeek et al., 2003; Clark et al., 2003; Hampel et
al., 2004). More recently, researchers have also investigated the utility of using these markers
for predicting conversion from MCI to AD (Fagan et al., 2007; Li et al., 2007). In our results,
progressive temporal lobe atrophy was highly correlated with baseline p-tau, tau/ABeta42 ratio
(for both AD groups and all subjects pooled), ABeta42, and tau (the latter two only for data
pooled across all diagnostic groups). This suggests that p-tau and tau/Abeta42 may be more
clinically useful than Abeta42 or tau in predicting ongoing atrophy (in Fig. 4, CDF curves rise
more rapidly for the correlations with p-tau and with the tau/ABeta42 ratio).

We could not demonstrate significant correlations between biomarkers and ongoing temporal
lobe atrophy in the MCI group. This is perhaps not surprising due to the heterogeneous nature
of MCI, and the relatively small sample of 40 subjects.

Clinical measures correlated more strongly with atrophy rates in MCI than in AD, supporting
the use of serial neuropsychiatric testing in monitoring disease progression in MCI. In AD,
atrophy rates exceeded those in MCI, but did not correlate so strongly with interval changes
in neuropsychiatric test scores. This may suggest that (1) decline in cognition is more tightly
linked with atrophy rates early in the illness, or (2) in late AD, atrophy rates may eventually
plateau or slow down, which may disrupt any correlation between the absolute rate of tissue
loss and further changes in cognition, or (3) correlations may only be detectable in samples
that are larger and/or have a broader range of disease severity. Our AD sample was only half
the size of our MCI sample, and was somewhat restricted in disease severity to reflect relatively
mild AD; by contrast, in recent study of 52 subjects with mild-to-moderate AD (Ridha et al.,
2008), there was a strong association between brain atrophy rate and MMSE decline (r=0.59,
p<0.0001). In addition, there is some evidence that atrophy rates do not slow down as AD
progresses; Chan et al. (2003) found that in 12 patients with mild dementia (MMSE=23),
scanned from a presymptomatic stage through to moderately severe dementia, mean yearly
loss of brain volume was 2.8% (95% CI: 2.3–3.3), but rose by 0.32% per year (0.15–0.50). In
39 healthy control subjects, Scahill et al. (2003) also found rates of atrophy accelerated
nonlinearly with increasing age, with the most marked changes occurring after the age of 70.

To summarize, our results further support the value of serial MRI scanning, combined with
quantitative nonlinear registration, for tracking disease progression in Alzheimer’s and MCI.
Our detailed 3D Jacobian maps, reflecting regional brain atrophy, correlated well with disease
progression and conversion to AD, as well as with various biomarkers and clinical measures.
Moreover, groups of MCI converters and non-converters were differentiated by measures of
temporal lobe atrophy over time.

Lastly, instead of separating hippocampus in our analysis, it was included as part of the
temporal lobe. Any TBM study is limited by the accuracy with which deformable registration
can match anatomical boundaries between individual brains and corresponding regions on the
template. Our mean deformation template (MDT) was created after rigorous nonlinear
registration, and geometric centering. Most anatomical features and boundaries are well-
preserved in the MDT, and the hippocampus is sufficiently discernible to be labeled by hand.
Even so, it may not always be possible to achieve accurate regional measurements of atrophy
in small regions such as the hippocampus, since that would require a locally highly accurate
registration. Some research groups have successfully computed hippocampal atrophy rates
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from fluid registration methods (e.g., Crum et al., 2001), and found that they can be superior
to manual delineations in separating AD from controls (p<0.0001; Barnes et al., 2007a,b) and
more reliable (van de Pol et al., 2007).

To detect more subtle effects, direct modeling of brain structures, e.g., using surface-based
geometrical methods (e.g., Morra et al., 2008a,b), or using a template in conjunction with
boundary shift integral measures (Barnes et al., 2007a,b), may offer additional statistical power
to detect subregional differences. We are currently investigating longitudinal hippocampal
changes using the ADNI dataset with a range of different methods, which we plan to report in
the future.
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Fig. 1.
Unbiased registration was performed on 100 pairs of serial MR images, acquired 12 months
apart, from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The selected
sample consisted of 20 patients with Alzheimer’s disease (AD), 40 individuals with mild
cognitive impairment (MCI), and 40 healthy elderly controls (CTL). The mean of the resulting
Jacobian maps in each group is superimposed on a brain volume.
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Fig. 2.
Voxel-wise Z-statistics (top row) comparing mean Jacobian values for AD (N =20) versus
Controls (N=40) on the top, and MCI (N=40) versus Controls (N=40) on the bottom.
Corresponding color-coded P maps also show the local significance of these differences
(bottom row). There is widespread progressive atrophy in AD, at a faster mean rate than in
normals — this difference in rates reaches the voxelwise significance level of 0.05 in most
regions of the brain, and remains significant after corrected for multiple comparisons in ROIs
including the temporal lobes, parietal lobes, occipital lobes, and frontal lobes. By contrast, for
MCI versus Controls, only the parietal and temporal lobes reach ROI significance. Please refer
to the Results section for more detailed discussions.
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Fig. 3.
Percent brain tissue loss from baseline to follow-up as determined by the average Jacobian
value within each lobe (with CSF excluded). The diagnosis for the AD, MCI, and CTL groups
was determined at baseline. Here, MCI at 12Mo denotes subjects diagnosed with MCI at
baseline who did not convert to AD at 12-month follow-up, whereas MCI to AD signifies those
who had converted to AD at 12-month follow-up. One MCI subject’s diagnosis converted back
to control at follow-up, and thus was excluded from the MCI subgroups. The first bar in each
group (colored white), shows mild but significant progressive atrophy in controls. The 2nd bar
(turquoise) denotes MCI subjects at baseline, and is followed by bars denoting converters and
non-converters. Mean rates are typically higher in the converters, comparable to subjects
diagnosed as AD at both time-points, or AD at the last time point (last two bars). An * indicates
p<0.01 for the comparison. Here, p values for MCI to AD group are not given, as there were
only 7 subjects (significance levels were as follows: p<0.01 for all lobes in AD and AD at
12Mo; p=0.012, 0.054, and 0.02 in MCI for the temporal, frontal and occipital lobes; p=0.02
and 0.055 in controls for the occipital and temporal lobes; p=0.068 and 0.045 in MCI at 12Mo
for occipital and temporal lobes; regions not reported here do not reach significance at the 0.05
level).
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Fig. 4.
(a) CDF plots for voxel-wise correlation of progressive temporal lobe tissue loss in MCI, AD,
and pooled groups (ALL, N=100) with (a) various biomarker indices including ABeta42
(AB142), tau protein (TAU), phosphorylated-tau 181 (PTAU), tau/ABeta42 ratio (TAUAB),
and PTAU/AB42 ratio (PTAUAB), and (b) various clinical measures corresponding to those
in Tables 1 and 2. Here, biomarkers correlate better in AD and the pooled group (but not in
MCI), while clinical measures manifest better correlations in the MCI group. For more sensitive
biomarkers or clinical measures, the departure of the early part of the corresponding CDF curve
(i.e., the upswing) will be larger. The lack of significant correlations between biomarkers and
ongoing temporal lobe atrophy in the MCI group is most likely due to the heterogeneous nature
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of MCI. By contrast, the better correlations with clinical measures in the MCI group support
the use of serial neuropsychiatric testing in monitoring disease progression. Please refer to text
for more detailed discussions.
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