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Abstract
We introduce an automated segmentation method, extended Markov Random Field (eMRF) to
classify 21 neuroanatomical structures of mouse brain based on three dimensional (3D) magnetic
resonance imaging (MRI). The image data are multispectral: T2-weighted, proton density-weighted,
diffusion x, y and z weighted. Earlier research (Ali et al., 2005) successfully explored the use of MRF
for mouse brain segmentation. In this research, we study the use of information generated from
Support Vector Machine (SVM) to represent the probabilistic information. Since SVM in general
has a stronger discriminative power than the Gaussian likelihood method and is able to handle
nonlinear classification problems, integrating SVM into MRF improved the classification accuracy.
The eMRF employs the posterior probability distribution obtained from SVM to generate a
classification based on the MR intensity. Secondly eMRF introduces a new potential function based
on location information. Third, to maximize the classification performance eMRF uses the
contribution weights optimally determined for each of the three potential functions: observation,
location and contextual functions, which are traditionally equally weighted. We use the voxel overlap
percentage and volume difference percentage to evaluate the accuracy of eMRF segmentation and
compare the algorithm with three other segmentation methods – mixed ratio sampling SVM (MRS-
SVM), atlas-based segmentation and MRF. Validation using classification accuracy indices between
automatically segmented and manually traced data shows that eMRF outperforms other methods.
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Introduction
MRI is often the imaging modality of choice for noninvasive characterization of brain anatomy
because of its excellent soft tissue contrast. Its detailed resolution allows the investigation of
normal anatomical variability bounds, as well as the quantization of volumetric changes
accompanying neurological conditions. A prerequisite for such studies is an accurate
segmentation of the brain; therefore many studies have focused on tissue classification into
white matter, gray matter and cerebrospinal fluid (CSF), as well as anatomical structure
segmentation. Several successful methods for tissue segmentation include statistical
classification and geometry-driven segmentation (Ballester et al., 2000), statistical pattern
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recognition methods based on a finite mixture model (Andersen et al., 2002), expectation
maximization algorithm (Kovacevic et al., 2002), artificial neural network (Reddick et al.,
1997), hidden Markov Random Field (Zhang et al., 2001), and region-based level-set and fuzzy
classification (Suri, 2001). Compared to anatomical structure segmentation, tissue
segmentation is a relatively easier task (Heckmann et al., 2006). This is because the MR signals
are in general distinctive enough to have the brain tissues classified into white matter, gray
matter and CSF while the anatomical structures can be composed of more than one tissue type,
and have ambiguous contours. Nevertheless, segmenting neuroanatomical structures has
recently attracted considerable attention since it can provide stronger foundation to help in the
early diagnosis of a variety of neurodegenerative disorders (Fischl et al., 2002).

Automated methods for segmenting the brain in anatomically distinct regions can rely on either
a single imaging protocol, or multispectral data. For example, Duta et al. (1998) have
segmented T1-weighted MR images of the human brain into 10 neuroanatomical structures
using active shape models. Fischl et al., (2002) accomplished an automated labeling of each
voxel in the MR human brain images into 37 neuroanatomical structures using MRF.
Heckemann et al. (2006) segmented T1-weighted human MR images into 67 neuroanatomical
structures using nonrigid registration with free-form deformations, and combined label
propagation and decision fusion for classification. Multispectral imaging was used as the basis
of segmentation for example by Zavaljevski et al. (2000) and Amato et al. (2003). Zavaljevski
et al. (2000) used Gaussian MRF and maximum likelihood method on multi-parameter MR
images (including T1, T2, proton density, Gd+ T1 and perfusion imaging) to segment the
human brain into 15 neuroanatomical structures. Amato et al. (2003) used independent
component analysis (ICA) and nonparametric discriminant analysis to segment the human
brain into nine classes.

Developments in small animal imaging capabilities have led to increased attention being given
to the problem of mouse brain segmentation, since mice provide excellent models for the
anatomy, physiology, and neurological conditions in humans, with whom they share more than
90 percent of the gene structure. Unfortunately, the methods for human brain anatomical
structure segmentation cannot directly be applied with the same success to the mouse brain.
This is probably due to the facts that (1) a normal adult mouse brain is approximately 3000
times smaller than an adult human brains – thus the spatial resolution needs to be scaled
accordingly from the 1-mm3 voxels commonly used in the study for human brains to voxel
volumes < 0.001 mm3; (2) the inherent MR contrast of the mouse brain is relatively low
compared to the human brain.

Research on mouse brain image segmentation is still limited thus far and the major directions
of research include the atlas based approach and the probabilistic information based approach.
The atlas based approach is to create a neuroanatomical atlas, also called reference atlas, using
training brains and nonlinearly register the atlas to test brains with the scope of labeling each
voxel of the test brains (Mazoyer et al., 2002; Kovacevic et al., 2005; Ma et al., 2005; Bock et
al., 2006). For example, Ma et al. (2005) segmented T2*-weighted magnetic resonance
microscopy (MRM) images of 10 adult male formalin-fixed, excised C57BL/6J mouse brains
into 20 anatomical structures. They chose one mouse brain image out of the 10 mouse brains
as a reference atlas. The rest nine testing images were aligned to the reference atlas using a
six-parameter rigid-body transformation and then the reference atlas were mapped to the nine
testing brain images using a nonlinear registration algorithm. The registration step yields a
vector field, called a deformation field, which contains information on the magnitude and
direction required to deform a point in the reference atlas to the appropriate point in the testing
brain images. Using the deformation fields, the labeling of the reference atlas is transformed
to the testing images to predict the labeling of the testing images. Kovacevic et al. (2005) built
a variational atlas using the MR images of nine 129S1/SvImJ mouse brains. The MR images
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of the genetically identical mouse brains are aligned and nonlinearly registered to create the
variational atlas comprised of an unbiased average brain. The probabilistic information based
approach uses probabilistic information extracted from training datasets of MR images for the
segmentation. Ali et al. (2005) incorporates multi-spectral MR intensity information, location
information and contextual information of neuroanatomical structures for segmentation of
MRM images of the C57BL/6J mouse brain into 21 neuroanatomical structures using the MRF
method. They modeled the location information as a prior probability of occurrence of a
neuroanatomical structure at a location in the 3D MRM images and the contextual information
as a prior probability of pairing of two neuroanatomical structures.

MRF has been widely used in many image segmentation problems and image reconstruction
problems such as denoising and deconvolution (Geman and Geman, 1984). It provides a
mathematical formulation for modeling local spatial relationships between classes. In the brain
image segmentation problem, the probability of a label for a voxel is expressed as a combination
of two potential functions: one is based on the MR intensity information and the other is based
on contextual information, such as the labels of voxels in a predefined neighborhood around
the voxel under study. Bae et al. (2008) developed an enhanced SVM model, called Mix-Ratio
sampling-based SVM (MRS-SVM), using the multispectral MR intensity information and
voxel location information as input features. The MRS-SVM provided a comparable
classification performance with the probabilistic information based approach developed in Ali
et al. (2005). Furthermore, Bae’s study also suggested that compared to MRF, the MRS-SVM
outperforms for larger structures, but underperforms for smaller structures.

Based on these studies which suggest that integrating a powerful SVM classifier into the
probabilistic information based approach may improve the overall accuracy of mouse brain
segmentation, we introduce a novel automated method for brain segmentation, called extended
MRF (eMRF). In this method (eMRF), we use the voxel location information by adding a
location potential function. Other than using Gaussian probability distribution to construct a
potential function based on MR intensity, the SVM classifier is used to model the potential
function of MR intensity. We assess the accuracy of the automated brain segmentation method
in a population of five adult C57BL6 mice, imaged using multiple (five) MR protocols. All 21
neuroanatomical structures are segmented, and the accuracy is evaluated using two metrics
including the volume overlap percentage (VOP) and volume difference percentage (VDP). The
use of these two metrics allows us to compare the accuracy of our method with the atlas-based
segmentation, MRF and MRS-SVM methods.

Materials and Methods
Subjects and Magnetic Resonance Microscopy data

The MRM images used in this work were provided by the Center for In Vivo Microscopy in
Duke University Medical Center and they were previously used in Ali et al. (2005) as well.
Five formalin-fixed C57BL/6J male mice of approximately 9 weeks in age were used. The
MRM image acquisition consisted of isotropic 3D T2-weighted, proton density-weighted,
diffusion x, y and z weighted scans. Image acquisition parameters for all acquisition protocols
include the field of view of 12×12×24 mm and matrix size of 128×128×256. All protocols used
the same flip angle of 135 degrees and 2 excitations (NEX). Specific to the PD image, TE/TR
was 5/400 ms and bandwidth was 62.5 KHz; for the T2 weighted image, TE/TR was 30/400
ms and bandwidth was 62.5 kHz bandwidth; and for the three diffusion scans, TE/TR was
15.52/400 ms, and bandwidth was 16.25 MHz. The Stejskal Tanner sequence was used for the
acquisition of the diffusion-weighted scans. Bipolar diffusion gradients of 70 G/cm with pulse
duration of 5 ms and inter-pulse interval of 8.56 ms were applied along the three axes and the
effective b value of 2600 s/mm2 was used. A 9-parameter affine registration which accounts
for scaling, rotation and translation was applied to each mouse brain, to bring it into a common
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space. Manual labeling of 21 neuroanatomical structures was done by two experts using T2-
weighted datasets of the five mouse brains. These manual labelings were regarded as true
labeling for each voxel. Table 1 presents the list of the 21 neuroanatomical structures and
abbreviations to be segmented in this work.

Markov Random Field Theory
MRF theory is a class of probability theory for modeling the spatial or contextual dependencies
of physical phenomena. It has been used for brain image segmentation by modeling
probabilistic distribution of the labeling of a voxel jointly with the consideration of the labels
of a neighborhood of the voxel (Fischl et al., 2002; Ali et al., 2005). For simplicity, let us
consider a 2D image represented by an m×n matrix, let X be a vector of signal strength and Y
be the associated labeling vector, that is, X=(x11, x12, …, x1n, …, xm1, … xmn), and Y=(y11,
y12, …, y1n, …, ym1, … ymn). We will rewrite yab as yi where i=1, 2, …, S, S=mn, Y is said to
be a MRF on S with respect to a neighborhood N if and only if the following two conditions
are satisfied:

(Eq. 1)

(Eq. 2)

where S-{i} denotes the set difference, and Ni denotes the set of sites neighboring site i. Eq. 1
is called the positivity property and Eq. 2 is the Markovianity property, which states only
neighboring labels (or clique) have direct interaction with each other. If these conditions are
satisfied, the joint probability P(Y) of any random field is uniquely determined by its local
conditional probabilities.

The equivalence between the MRF and Gibbs distribution (Hammersley-Clifford theorem)
provides a mathematically efficient way of specifying the joint probability P(Y) of an MRF.
The theorem states the joint probability P(Y) can be specified by the clique potential function
Vc(Y) which can be defined by any appropriate potential function based on a specific system’s
behavior. For more information about potential function, please refer to Li (2001). That is, the
probability P(Y) can be equivalently specified by a Gibbs distribution as follows:

(Eq. 3)

where  is a normalizing constant, ΩY is the set of the all possible Y on S,
and U(Y) is an energy function which is defined as a sum of clique potential Vc(Y) over all
cliques c ∈ C:

(Eq. 4)

where a clique, c, is a set of points that are all neighbors of each other and C is a set of cliques,
or the neighborhood of the clique under study. The value of Vc(Y) depends on a certain
configuration of labels on the clique c.
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For the image segmentation problem, we try to maximize a label’s posterior probability for
given specific features, that is P(Y|X). With the assumption of feature independency the
posterior probability can be formulated using Bayesian theorem as:

(Eq. 5)

Eq. 5 can be rewritten as:

(Eq. 6)

Typically in MRF, a multivariate Gaussian distribution is used for P(X|Y) and the maximum
likelihood estimation is performed to find the labeling based on MR signals. This model
assumes that the relationship between the features and labels follows the Gaussian distribution.
In some of image segmentation problems, this assumption is too restrictive to model the
complex dependencies between the features and the labels (Lee et al., 2005). If some data
mining techniques, such as SVM, are integrated with MRF, the overall segmentation
performance will be improved due to their powerful class discrimination abilities even for the
cases with complex relationship between the features and labels.

Support Vector Machines Theory
SVM (Vapnik, 1995) was initially designed for binary classification by constructing an optimal
hyperplane which gives the maximum separation margin between two classes. Considering a
training set of m samples (xi, yi), i=1, 2, …, m where xi ∈ Rn and yi ∈ {+1, −1}. Samples with
yi=+1 belong to positive class while those with yi=−1 belong to negative class. SVM training
involves finding the optimal hyperplane by solving the following optimization problem:

(Eq. 7)

where w is the n dimensional vector, b is a bias term, ξ= {ξ1, …, ξm} and QP is the objective
function of the prime problem. The non-negative slack variable (ξi) allows Eq. 7 to always
yield feasible solutions even in a non-separable case. The penalty parameter (C) controls the
trade-off between maximizing the class separation margin and minimizing the classification
error. A larger C usually leads to higher training accuracy, but may over-fit the training data
and cause the classifier un-robust. To enhance the linear separability, the mapping function
(Φ(xi)) projects the samples into a higher-dimensional dot-product space called the feature
space. Figure 1 shows the optimal hyperplane in solid line, which can be obtained by solving
Eq. 7. The squares represent the samples from the positive class and the circles represent the
samples from the negative class. The samples which satisfy the equality are called support
vectors. In Figure 1, the samples represented as the filled squares and the filled circles are the
support vectors.

Eq. 7 presents a constrained optimization problem. By introducing the non-negative
Lagrangian multiplier αi and βi, it can be converted to an unconstrained problem as shown
below:
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(Eq. 8)

where α = {α1, …,αm} and β = {β1, …, βm}. Furthermore, by differentiating with respect to
w, b and ξi and introducing the Karush-Kuhn-Tucker (KKT) condition, Eq. 8 is converted to
the following Lagrangian dual problem:

(Eq. 9)

The optimal solution αi
* for the dual problem determines the parameters w* and b* of the

following optimal hyperplane, also known as SVM decision function:

(Eq. 10)

where K(xi, xj) is a kernel function defined as K(xi,xj)=Φ(xi)TΦ(xj). The kernel function
performs the nonlinear mapping implicitly. We chose a Radial Basis Function (RBF) kernel,
defined as:

(Eq. 11)

where γ in Eq. 11 is a parameter related to the span of an RBF kernel. The smaller the value
is, the wider the kernel spans.

To extend the application of SVM for multiclass classification, a number of methods have been
developed, which mainly fall in three categories: One-Against-All (OAA), One-Against-One
(OAO) and All-At-Once (AAO). In OAA method, one SVM is trained with the positive class
representing one class and the negative class representing the others. Therefore, it builds n
different SVM models where n is the number of the classes. The idea of AAO is similar to that
of OAA, but it determines n decision functions at once in one model, where the kth decision
function separates the kth class from the other classes. In OAO method, a SVM is trained to
classify the kth class and the lth class. Therefore, it constructs n(n−1)/2 SVM models. Hsu and
Lin (2002) reported that the training time of OAO method is less than that of OAA or AAO
method. OAO is more efficient on large datasets than OAA and AAO method. Thus, OAO
method is used in this study. In OAO method, the following problem is to be solved:

(Eq. 12)

Bae et al. Page 6

Neuroimage. Author manuscript; available in PMC 2010 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



eMRF
As discussed earlier in Eq. 6, traditional MRF mainly focuses on MR intensity as well as the
contextual relationship. Research on brain segmentation has concluded that beside of MR
intensity and contextual relationship with neighboring structures, location within the brain also
plays an important role (Fischl et al., 2002;Ali et al., 2005,Bae et al., 2008). To incorporate the
three different types of information into an image segmentation model, Bayesian theorem is
used. Consider a 3D MR image represented by an m×n×o matrix, with its associated
multivariate intensity vector X=(x111, x112, …, x11o, …, x1n1, … xm11, …, xmno), a location
vector L=(l111, l112, …, l11o, …, l1n1, … lm11, …, lmno), and class label configuration Y=
(y111, y112, …, y11o, …, yl1n1, … ym11, …, ymno). We rewrite yabc as yi where i=1, 2, …, S, and
S=mno. The posterior probability of having a label configuration Y given a multivariate
intensity vector X and a location vector L is formulated as follows:

(Eq. 13)

Assuming X and L independent from each other yields following expression:

(Eq. 14)

If we make logarithmic transformation to Eq. 14, we obtain

(Eq. 15)

Each term of the right hand side of Eq. 15 can be regarded as the contribution to labeling from
MR signal intensities, voxel coordinates, and prior belief of label, which incorporates the
contextual information into the labeling decision. The function can be modified as following:

(Eq. 16)

where w1, w2 and w3 are model parameters which indicate the degree of contribution of each
term to the posterior probability P(Y|X,L), and Ni denotes the neighboring sites of site i.

The first term, Ai(yi, xi), in Eq. 16 is the observation potential function that models the MR
intensity information. EMRF model employs SVM in order to take advantage of the excellent
discriminative ability of SVM. Since SVM decision function gives as output the distance from
an instance to the optimal separation hyperplane, Platt (2000) proposed a method for mapping
the SVM outputs into posterior probability by applying a sigmoid function whose parameters
are estimated from the training process. The observation potential function is defined as
follows, for voxel i:

(Eq. 17)
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where fk(xi) is the SVM decision function for class k, α and β are the parameters determined
from the training data. P(yi=k|xi) is the likelihood that the label yi is labeled as class k given
the MR intensity xi. When applying SVM to MR image segmentation, the overlapping of MR
signals is a critical issue. Adding the three coordinates (x, y and z coordinates of each data
point in a 3D MR image) as features into SVM classifier helps in classification by relieving
the class overlapping problem of MR intensities between different structures (Bae et al.,
2008). In one of our preliminary experiments, it is interesting to find that using two MR
protocols (T2-weighted and proton density-weighted) along with coordinate features yield
better segmentation performance than using all the five MR protocols 1. Our preliminary result
also indicates that adding more MR contrasts does not aid the classifier because it increases
the overlapping among MR signals and makes the dataset noisier. Thus, the intensity feature
vector X forms a five dimensional vector, consisting of the two MR intensities (T2-weighted
and proton-density (PD) weighted acquisition) and the three coordinate features.

The second term Bi(yi, li) in Eq. 16, is the location potential function. Fischl et al. (2002) point
out that the number of possible neuroanatomical structures at a given location in a brain atlas
becomes small as registration become accurate. Therefore, the location of a voxel in a 3D image
after registration is critical for classification of the voxel into the neuroanatomical classes. The
location potential function is computed as follows:

(Eq. 18)

where P(yi=k|li=r) is the probability that a voxel’s label yi is predicted as class k given that the
location li of the voxel is r. The denominator in Eq. 18 is equal to the number of mice used in
the training set. This location information is similar to the apriori probability used in human
brain segmentation study (Ashburner and Friston, 1997) as implemented in SPM.

The third term Vi(yi,yNi) in Eq. 16 is the contextual potential function which models the
contextual information using MRF. Based on the MRF theory, the prior probability of having
a label at a given site i is determined by the label configuration of the neighborhood of the site
i. The contextual potential function for site i will have a higher value as the number of neighbors
that have the same label increases. It is defined as

(Eq. 19)

where n(Ni) is the number of voxels in a neighborhood of site i. We use a first order
neighborhood system as a clique, which consists of the adjacent six voxels in the four cardinal
directions in a plane and the front and back directions through the plane.

In fact, other than observation and contextual potential function, eMRF introduces location
potential function to the problem. Secondly, noticing that each potential function can
independently classify a voxel, eMRF model integrates them together and assigns weight
optimally to each of them based on their classification performance from the training set. The

1Using the two indices VOP (the larger the better), VDP (the smaller the better) introduced in the next section, the experiment on two
MR protocols with coordinates yields 72.42% VOP and 19.21% VDP in average. The experiment on all five MR protocols with
coordinates generates 59.38% VOP and 24.16% VDP.
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weight parameter indicates the contributions from the three different potential functions to
predict the labeling. The optimal weight parameter is determined by grid search on several
possible sets of w1, w2 and w3 using cross-validation. The Y that maximizes the posterior
probability P(Y|X,L) corresponds to the most likely label given the information of X and L.
This is known as the maximum a posterior (MAP) solution which is well known in the machine
vision literatures (Li, 2001). Finding the optimal solution of the joint probability of a MRF

 is very difficult because of the complexity caused by the interaction among
multiple labels. A local search method called iterated conditional modes (ICM) proposed by
Besag (1986) is used in this study to locate the optimal solutions. The ICM algorithm is to
maximize local conditional probabilities sequentially by using the greedy search in the iterative
local maximization. It is expressed as

(Eq. 20)

Given the data xi and li, the algorithm sequentially updates  into  by switching the
different labels to maximizing P(yi|xi, li) for every site i in turn. The algorithm terminates when
no more labels are changed. In the ICM algorithm, how to set the initial estimator y(0) is very
important. We use the MAP solution based on only the location information as the initial
estimator of the ICM algorithm, i.e.,

(Eq. 21)

Performance Measurements
The VOP and VDP are used to measure the performance of the proposed automated
segmentation procedure (Fischl et al., 2002; Ali et al., 2005, Hsu and Lin, 2002). The VOP
and VDP are calculated by comparing the automated segmentation with the true voxel labeling
(from the manual segmentation). Denote LA and LM as labeling of the structure i by automated
segmentation and manual segmentation respectively, and V(L) as the volume of the labeling.
The volume overlap percentage for class i is defined as

This performance index is the larger the better. When all the labels from the automated and
manual segmentation coincide, VOPi(LA, LM) is 100%. VOP is very sensitive to the spatial
difference of the two labelings, because a slight difference in spatial location of the two
labelings can cause significant decreases in the numerator of VOPi(LA, LM).

The VDP for class i is used for quantifying the volume difference of the structures delineated
by the two segmentations, and it is defined as
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This performance index is smaller the better. When all the labelings from the two segmentations
are identical, VDPi(LA, LM) is 0.

Results
Segmentation and Model Validation

The eMRF algorithm was implemented and tested on a group of 90 μm isotropic resolution
MR images of five C57/BL6 mice. To assure the validity of all results from this experiment,
a five-fold cross validation was used in the every step of the experiment. Each mouse was used
as a test brain, while the remaining four mice were used as the training set. Hence we tested
the algorithm on five distinct training and testing sets. To calculate the observation potential
function in Eq. 17, we built five SVM models for the five different training sets using the MRS-
SVM procedure (Bae et al., 2008). Building a SVM model for mouse brain segmentation is
challenging because the number of the classes is large (>20) and the classes are highly
imbalanced. The MRS-SVM procedure enabled us to build SVM model for the brain
segmentation efficiently and effectively. Testing each SVM model yielded the posterior
probability P(Y|X) in Eq. 17 for each tested mouse. The location potential function was
calculated for the five mouse based on Eq. 18. After the observation and location potential
functions were calculated for each mouse, the ICM algorithm was used to provide the
contextual potential function in Eq. 19 and the posterior probability P(Y|X,L) in Eq. 16. To find
the best weight for each potential function we conducted a grid search over the range of each
wi= {0.1, 0.2, …, 0.9} (i=1, 2, 3), where w1 + w2 + w3= 1. The best model parameters determined
were w1=.1, w2=.6 and w3=0.3 for observation, location and contextual functions, respectively.

We also implemented the atlas-based segmentation for the same mouse brain images to
compare its performance with the eMRF method. One mouse brain image was chosen out of
the five mouse brains as a reference brain. First, the rest four testing images were realigned to
the reference brain using a 12-parameter affine registration which adjusts the global position
and size differences between the individual brain images. Next, the reference brain was mapped
to the testing brain images using a nonlinear registration which deforms each neuroanatomical
structure into a common space. The registrations were done using Image Registration Toolkit
(ITK) software and the registration parameters were optimized by the software. Each image
of the five mouse brain was used as the reference brain, while the remaining four images were
used as the testing brains. Therefore, each brain image was segmented four times with different
reference brain each time.

Table 2 presents estimates of the segmentation performance based on two metrics: VOP and
VDP between the automated and manual label images. These estimates are based on five mouse
brains, and with the use of five-fold cross validation. The results for the eMRF method are
compared with three other segmentation methods – the aforementioned atlas-based
segmentation method, the MRS-SVM method (Bae et al., 2008) and the MRF method (Ali et
al., 2005). Overall eMRF outperforms all the three segmentation methods. Compared to MRS-
SVM the average VOP of eMRF is improved by 8.68%, 10.05% compared to the atlas-based
segmentation, and 2.79% compared to MRF. Corresponding to an increase in the average VOP,
the average VOD of eMRF is decreased. It is improved by 42.04% compared to MRS-SVM,
23.84% compared the atlas-based segmentation, and 12.71% compared to MRF. Figure 2
illustrates the VOP (top) and the VDP (bottom) of the four different segmentation methods.

The eMRF method outperforms the MRS-SVM method in most structures. The improvement
in segmentation performance as assessed by VOP is greatest for white matter structures like
the anterior commissure (99.29%), and cerebral peduncle (15.55%) but also for ventricles
(35.91%). Exceptions where eMRF underperforms to MRS-SVM are three large structures:
CORT, CBLM and OLFB. The MRS-SVM method performs better for large structures because
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the classifier tends to generate the separation hyperplane between a large class and a small
class such that it is biased towards the large class. Therefore, a voxel that is located at the
boundary between the large class and the small class is more likely predicted as the large class
and this reduces the misclassification of a large class voxel to a small class voxel. However,
the eMRF method balances the contributions from the MR intensity information, the location
information and the contextual information by assigning potential functions with different
weights. In our study, the weight assigned to observation potential function (w1) is smaller
than the other two. The averages of the VOP and the VDP of the eMRF method are improved
by 8.68%, and 42.04% respectively, compared to the MRS-SVM method, which indicates that
the overall segmentation performance has been improved by the use of eMRF.

The eMRF method provides better performances in most structures than the atlas-based
segmentation method. Based on the VOP, the eMRF method outperforms the atlas-based
segmentation method in all the structures except the two structures, AC and INTP. The
performance differences in these two structures are only 0.45% in AC and 5.49% in INTP. The
eMRF method has a better VDP performance than the atlas-based segmentation method in 17
structures. There are four small structures (AC, VEN, INTP and CC) that the atlas-based
segmentation method has better VDP performance than eMRF. Since each labeling of the
voxels in the reference brain is mapped to the testing brain in the atlas-based segmentation
process, the number of labeling for a structure in the reference brain is well maintained in the
number of labeling for the structure in the testing brain. Therefore, the VDP values of the atlas-
based segmentation method in all the structures are quite consistent (11.14–15.23). However,
this method has the worst VOP performance among the four different segmentation methods,
indicating that the accuracy of atlas-based segmentation is poor. The eMRF method can
improve the averages of the VOP and the VDP by 10.05% and 23.84%, respectively, which
shows that overall the eMRF method outperforms the atlas-based segmentation method.

Based on the voxel overlap metric, the eMRF method shows better performance in 13 out of
21 structures compared to the MRF method. The eMRF method provides more than 5%
performance improvement in 7 structures (CPED, PAG, MED, PON, SNR, OPT and TRI), the
largest improvements are seen for optic tract (29.39%) and trigeminal tract (15.63%). Based
on the volume difference metric, the eMRF method shows better performance in 16 structures
out of 21 structures. VDP improvement ranged from 61.68% for optic tract and to 3.61% for
globus pallidus. In four small structures (PAG, INFC, AC and INTP), which take less than 1%
volume compared to the whole brain volume, the MRF method shows better performance. This
is due to the fact that in the MRF method labeling a voxel depends on the labelings of the
neighborhood of the voxel, thus the identification of small structures is enhanced. Nevertheless,
the averages of the VOP and the VDP of the eMRF method are improved by 2.79%, and 12.71%
respectively, compared to the MRF method. The eMRF method can make a balance between
the overfitting of the SVM method to the larger classes and the overfitting of the MRF method
to the smaller classes so that the overall segmentation performance is improved.

A visual comparison of the three segmentation methods, manual labeling (the gold standard),
eMRF and MRS-SVM, is shown for two specific coronal levels (one at the level close to the
hippocampal commissure, and one at the level of the pons) in Figure 3. On the left column of
Figure 3 are displayed the manual segmentations (used as the gold standard), on the middle
column are the automated segmented images by the eMRF method and the right column, those
produced by the MRS-SVM method. The eMRF method seems to deviate less than the MRS-
SVM method from the manual labeling, and to respect better the topology of the structures.
The testing time of the MRS-SVM algorithm for a mouse brain dataset (472,100 voxels) was
289.4 minutes with a 3.4-GHz PC. The testing experiment was run using MATLAB, and
executed the eMRF segmentation of one mouse brain in 75 minutes.
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Discussion and Conclusion
In this paper, we developed an eMRF method, which first adds a potential function based on
location information, then integrates the SVM and MRF for a more accurate and robust
segmentation of mouse brain MR images by taking the advantages of the two methods. MRF
has been used in the human brain image segmentation task because it utilizes the contextual
information of a voxel, which describes the correlation of the voxel and its neighbors for
segmentation (Fischl et al., 2002). A similar algorithm has been successfully implemented for
the mouse brain (Ali et al., 2005). Other than contextual information and MR intensity
information, Bae et al. (2008) recently studied the use of SVM based on MR intensity
information and location information for mouse brain segmentation and a novel automated
segmentation method, termed MRS-SVM, was proposed. Experimental results indicate that
the MRF method outperforms the MRS-SVM method for smaller structures while the MRS-
SVM method outperforms the MRF method for larger structures. The complementary nature
of the two methods directs the development of eMRF. Specifically, other than using Gaussian
probability distribution to model the MR intensity signal, the eMRF method employs the
posterior probability distribution obtained from the SVM to generate classification based on
the MR intensity information. Secondly, eMRF introduces a new potential function based on
the location information. Instead of considering the contributions from the three potential
functions – observation, location and contextual functions – equally, eMRF further applies
ICM to optimally determine the contribution weights for each function.

To validate the proposed method, we conducted a comparison of the four different algorithms:
MRF (Ali et al., 2005), MRS-SVM (Bae et al., 2008), atlas-based segmentation and eMRF for
the automate segmentation of mouse brain into 21 structures, using the same dataset. Our test
results show that the overall performance of the eMRF method is better than all the three
segmentation methods in terms of both the average VOP and average VDP, even though the
MRS-SVM method is slightly better on a small number of large structures, and the atlas-based
segmentation and MRF methods are slightly better on a few small structures.

In the future, we will extend and adapt the eMRF method to human brain segmentation and
compare the results with the existing study in literature (Powell et al., 2008). Further
developments of this work would also include obtaining higher resolution images and more
labels of neuroanatomical structures, which could provide more information to be incorporated
in atlases of the normal mouse brain. Moreover, we foresee that the automated segmentation
method described in the paper will accelerate the study of brain images of large quantity, thus
help developing small animal disease models for many neurodegenerating disorders, such as
Alzheimer disease and Parkinson disease.
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Figure 1.
SVM binary classification problem (adopted from Vapnik, 1995). The solid line between the
two dashed lines is the optimal hyperplane. The squares represent the samples from the positive
class and the circles represent the samples from the negative class. The samples represented
as the filled squares and the filled circles are the support vectors.
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Figure 2.
Comparison of the relative performances of the eMRF, MRS-SVM, atlas-based segmentation
and MRF methods based on the voxel overlap percent - VOP (top) and the volume difference
percent -VDP (bottom) indices
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Figure 3.
Coronal slices through the labeled brain at the level of anterior hippocampus and third ventricle
(upper row), and pons and substantia nigra (lower row) show in a qualitative manner the relative
superiority of eMRF compared to MRS-SVM. Note that eMRF segmentation better preserved
the shapes of striatum and corpus callosum (as seen in the manual labels), compared to MRS-
SVM; and also that eMRF was able to segment a small CSF filled region in the center of PAG,
while MRS-SVM missed it.
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