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Abstract
Functional network connectivity (FNC) is an approach that examines the relationships between brain
networks (as opposed to functional connectivity (FC) that focuses upon the relationships between
single voxels). FNC may help explain the complex relationships between distributed cerebral sites
in the brain and possibly provide new understanding of neurological and psychiatric disorders such
as schizophrenia. In this paper, we use independent component analysis (ICA) to extract the time
courses of spatially independent components and then use these in Granger causality test (GCT) to
investigate causal relationships between brain activation networks. We present results using both
simulations and fMRI data of 155 subjects obtained during two different tasks. Unlike previous
research, causal relationships are presented over different portions of the frequency spectrum in order
to differentiate high and low frequency effects and not merged in a scalar. The results obtained using
Sternberg item recognition paradigm (SIRP) and auditory oddball (AOD) tasks showed FNC
differentiations between schizophrenia and control groups, and explained how the two groups
differed during these tasks. During the SIRP task, secondary visual and cerebellum activation
networks served as hubs and included most complex relationships between the activated regions.
Secondary visual and temporal lobe activations replaced these components during the AOD task.
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1 Introduction
Functional connectivity (FC) investigates relationships using the functional MRI (fMRI)
activation patterns among individual voxels or regions (Biswal et al., 1995). A recent extension
of FC called functional network connectivity (FNC) is a powerful way of characterizing
distributed changes in the brain by examining the functional interactions among different
correlated brain networks, usually identified using independent component analysis (ICA)
(Jafri et al., 2008; Londei et al., 2006).

In order to quantify the strength of interactions between brain regions and to reveal directed
interactions of activated brain areas, Goebel et al. (2003) proposed using the Granger causality
test (GCT) on fMRI measurements of a selected region of interest. They employed a measure
of linear influence between two time series presented by Geweke (1982). In addition to a
simulation example, they also used the averaged time-course of voxels in a specified reference
region in a Granger causality test with other time courses obtained from each single voxel in
the functional volume of the brain. Three parameters (ratios of the variance of noise in the
autoregressive (AR) and autoregressive moving average (ARMA) models) presented by
Geweke (1982) were evaluated for each reference region chosen. The results revealed a directed
influence exerted by the left lateral prefrontal cortex and premotor areas on the left posterior
parietal cortex.

Van De Ven et al. (2004) proposed applying spatial ICA to decompose fMRI time series data
into maximally independent signals and to find functionally connected brain regions within
sensory and motor regions in the resting-state fMRI data. They indicated that selecting seed
voxels and correlating fMRI time courses of these with those of all other voxels is biased
because the results only showed functional connectivity for that chosen brain region. The
results showed that prefrontal and parietal areas were functionally connected during resting
state and results were consistent in spatial, temporal and frequency parameters among subjects.

Londei et al. (2006) carried out a similar analysis to Goebel et al. (2003) except the Granger
causality test was applied to the timecourses associated with ICA components (or networks).
Three different parameters, first presented by Geweke (1982), were used to explain the causal
relationships between ICA components based on the reduction of noise in an autoregressive
model (Londei et al., 2006).

The results demonstrated the method as a promising approach to detect cognitive and causal
relationships in neuroimaging data. It is proposed that spatial and temporal activities of fMRI
data could be used first to extract components most correlated with the stimuli, which
represented the independent functional activities. Then, GCT could be used to understand the
dynamics of higher order processes that are usually difficult to detect and analyze causal
relationships of brain activity networks. The empirical demonstration included in the study
was useful in terms of explaining the application of GCT on the ICA components but there
was no spectral information present.

Spectral analysis of the FC with both task-activation functional MRI and resting-state data
were investigated by Cordes et al. (2001) using cross-correlation maps obtained from time
courses of voxels. Contributions of low frequency components and physiological noise were
examined. Since only low sampling rates were used during regular fMRI image acquisitions,
they applied multi-slice acquisitions with a faster sampling rate (TR=0.4s instead of TR=2s)
to prevent aliasing and to better be able to observe the effect of physiological noise in the
spectrum. It has been found that low-frequency fluctuations (<0.1Hz) constituted more than
90% of the correlation coefficient spectrum. Physiological (respiratory, 0.1Hz to 0.5Hz and
cardiac, 0.6Hz to 1.2Hz) noise contributed only 10% of the functional connectivity maps. We
believe that investigation the spectral behavior of FNC can also be useful in understanding the
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complex interactions in the brain and their impact on the neurological disorders. Our approach
in this paper is novel in the sense that the GCT approach we use enables us to determine causal
information as a function of frequency. Hence we can identify which frequencies are driving
the identified relationships between the time courses.

A particularly useful application of FNC would be to examine abnormal relationships among
brain networks in psychiatric patients to better understand the neurobiological basis of the
disorders. Schizophrenia is a chronic mental illness whose symptoms are thought to have a
strong neurobiological basis. Functional segregation (i.e. the brain is an ensemble of
functionally segregated areas) and functional integration (i.e. functionally specialized areas are
integrated and psychological function are caused by distributed interactions) are two main
views on brain functioning and they both find support today with the recent developments in
functional neuroimaging (Friston, 1994). Localized pathophysiology of cortical areas in the
brain might be sufficient to explain some aspects of schizophrenia, but does not appear
sufficient to fully account for all possible symptoms, clinical course, or treatment
considerations, which instead may be more related to the (dys)function of distributed networks
(Friston and Frith, 1995). Indeed, one hypothesis is that schizophrenia is related to disruption
of proper functional integration within key neural circuits in the brain (Friston and Frith,
1995; Friston, 1998).

Based on popular ‘disconnection’ theories in schizophrenia (Friston and Frith, 1995; Friston,
1998; Benes, 2000), we broadly hypothesized that patients with schizophrenia would show
disrupted patterns of causal influence among networks. Previous functional neuroimaging
literature has identified specific abnormalities in lateral and medial prefrontal cortex regions,
along with evidence for disturbance in the integration of activity across a number of brain
regions that include auditory cortex (Fletcher et al., 1999; Friston, 1999).

We previously examined FNC differences between schizophrenic and healthy adult control
participants (Jafri et al., 2008) using the lag between time courses of independent components
obtained via ICA. This approach defined the temporal relationships among ICA component
time courses as a measure of functional network connectivity and applied it on the data for
patients with schizophrenia and healthy controls. Using fMRI data obtained during an alert,
passive “resting state”, it was found that patients with schizophrenia showed higher correlation
than healthy controls.

In this study, we present a novel approach to analyze the causal relationships between
functional brain networks without being dependent on any brain region to analyze the
difference between patients with schizophrenia and healthy controls. There are several key
differences between previous work and what we are proposing in this paper. First is the
examination of FNC during two active tasks instead of passive rest. Our methodological
approach also differs in that after application of ICA to decompose the fMRI data into
maximally independent spatial components and corresponding time courses, the time courses
are used as input to Granger causality test and spectral responses are presented for different
directions, as described in the seminal paper (Granger, 1969). We are presenting the same
equations in Section 2.3 for the sake of completeness and the background information on signal
processing and statistics can be obtained from various sources (Oppenheim et al., 1996; Stark
and Woods, 2001). The causal relationships between functional networks are presented as a
spectrum and not just as a scalar to differentiate the low/high frequency responses and to
investigate the differing behavior in various frequency bands.

In Section 2, we give detailed information on the data we used and the methods followed. Then,
we present example simulations to demonstrate the validity of the technique and results that
we obtained using fMRI data of a neurological task in Section 3. Next, we apply to two tasks
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collected from 155 patients with schizophrenia and healthy controls. In this case, we can
identify the best distinguishing causal relationships between the groups by applying a two-
sample t-test to the spectra computed from the GCT. Finally, Section 4 presents the concluding
remarks and discusses the applicability of the technique.

2 Data and Methods
2.1 Data

We obtained the fMRI data used in this study through the Mind Research Network, which is
a research consortium founded to help diagnose mental illnesses and other brain disorders, and
to understand the course and neural mechanisms of schizophrenia. The data whose results were
presented here were 155 subjects; 57 schizophrenia patients and 98 healthy controls, from two
different sites (New Mexico and Iowa).

The data from the New Mexico site included 70 subjects; 34 patients with schizophrenia and
36 healthy controls. Patients with schizophrenia were receiving stable treatment with atypical
antipsychotic medications (aripiprazole(7), olanzapine(2), risperidone(1), ziprasidone(1),
clozapine(1)). Twenty eight subjects in each class were males. There were no significant
between-group differences in age. The healthy controls ranged in age from 18 to 54 years
(mean=28.9, SD=12.3). The patients ranged in age from 18 to 60 years (mean=31.4, SD=11.6).

The data from the Iowa site included 85 subjects: 23 patients with schizophrenia and 62 healthy
controls. Patients with schizophrenia were receiving stable treatment with atypical
antipsychotic medications (aripiprazole(13), olanzapine(7), risperidone(12), ziprasidone(4),
clozapine(1), quetiapine(5)). 32 of the healthy controls and 10 of the patients were males.
Healthy participants ranged in age from 18 to 57 years (mean=30.2, SD=10.6). Patients ranged
in age from 18 to 60 years (mean=32.4, SD=12.3). In the second data set, there was no
significant difference in the average ages of the two groups.

Schizophrenia patients in the data set were limited to those with a DSM-IV diagnosis of
schizophrenia on the basis of a structured clinical interview and review of the case file (First
et al., 1995). The healthy volunteer subjects were recruited from communities through
newspaper advertising and carefully screened using a structured interview to rule out medical,
neurological, and psychiatric illnesses, including substance abuse. Subjects with history of
neurologic or psychiatric disease other than schizophrenia, head injury resulting in prolonged
loss of consciousness and/or neurological sequelae, skull fracture, epilepsy, except for
childhood febrile seizures, prior neuro-surgical procedure, and IQ less than or equal to 70,
based on a standard IQ test or the ANART were excluded from the study. All subjects were
fluent in English, provided written, informed, IRB approved consent at the scanning locations
and were paid for their participation.

We applied our proposed method on fMRI data sets obtained during two different tasks.
Subjects were scanned during performance of a Sternberg item recognition paradigm (SIRP)
and auditory oddball (AOD) tasks. Sections 2.1.1 and 2.1.2 describe these tasks briefly. We
present information on ICA and GCT that constitute the two consecutive steps in our algorithm
in Sections 2.2 and 2.3, respectively.

2.1.1 Sternberg Item Recognition Paradigm (SIRP) Task—A working memory (WM)
deficit is consistent with some of the symptoms of schizophrenia, since performing cognitive
operations using WM permits individuals to respond in a flexible manner, to formulate and
modify plans, and to base behavior on internally-held ideas and thoughts rather than being
driven by external stimuli (Baddeley, 1992). The SIRP task was utilized as it is a choice reaction
time task that requires working memory. Participants in the SIRP task are asked to memorize
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targets (digits) during the “encode” epoch and then are asked to respond by indicating whether
the probe is a target (a member of the memorized set) or a foil (not a member of the memorized
set). Figure 1 shows one of those blocks during an experiment.

Each block is composed of three epochs. During the encode epoch, one of the three possible
WM blocks are pseudorandomly selected and the targets (digits) presented sequentially.
Subjects are asked to respond to the probes (single digits) presented during the “probe” epoch
and asked to respond with a right trigger press if the digit is a target (a member of the memorized
set) or a left trigger press if the digit is a foil (not a member of the memorized set). In each of
the probe epochs half the probes are targets and half are foils. A “fixation” epoch follows where
a point is shown on the screen and subject is asked to relax and get ready for the next trial. The
duration of the fixation epochs within a run is random, changing between 4 and 20 seconds.
Six blocks (two blocks of each of the 3 conditions in a pseudorandom order) constitute a run
and each run lasts approximately 6 minutes requiring the sum of fixation epochs to be 78
seconds.

2.1.2 Auditory Oddball Discrimination (AOD) Task—It is hypothesized that an
important deficit in schizophrenia involves information processing (Braff, 1993). Patients with
schizophrenia complain that they are subject to more stimuli than they can interpret (McGhie
and Chapman, 1961). They misperceive, confuse internal with external stimuli
(hallucinations), or do not respond at all to external stimuli. Patients sometimes cannot allocate
attentional resources relevant tasks (resource allocation). Alternatively, patients may be unable
to suppress irrelevant stimuli (inhibit) in order to focus on more significant ones (Watersa et
al., 2003). This is why the auditory oddball task is widely used to assess sensory processing
ability (McCarley et al., 1993; Shankardass et al., 2001; Tecchio et al., 2003; Symond et al.,
2005).

During auditory oddball tasks, our participants wore sound-insulated earphones (Avotec,
Stuart, FL) that present the auditory stimuli while shielding from noise due vibration of the
gradient coil. Subjects are asked to respond by pressing a button with their right index finger
every time they hear a target stimulus and not to respond to other standard tones or novel
computer generated sounds. The same auditory stimuli have been found to be effective in
differentiating healthy controls from schizophrenia subjects in previous fMRI studies (Kiehl
and Liddle, 2001; Kiehl et al., 2005). Standard stimuli occur with a probability of p = 0.82 and
are represented with 1 kHz tones. Target and novel stimuli are infrequent and each occurred
with a probability of p = 0.09 (Fig. 2). Target stimuli are represented with 1.2 kHz tones and
novel stimuli are computer generated, complex sounds. Each stimulus is presented with a
pseudorandom order and last for 200 ms. The interstimulus interval changes randomly in the
interval 550–2050 ms with a mean of 1200 ms. A total of four runs were acquired per session
and each run comprised 90 stimuli. The sequences for target and novel stimuli were exchanged
between runs to balance their presentation and to ensure that the activity evoked by the stimuli
were not because of the type of the stimulus used.

2.1.3 fMRI Data—All scans were acquired at the Mind Research network sites in New Mexico
and Iowa on Siemens Sonata 1.5T and Siemens 3T Trio dedicated head scanners equipped with
40mT/m gradients and standard quadrature head coils, respectively. Complementary imaging
parameters were employed at both sites to ensure standardization of data collection. The
functional scans were acquired using gradient-echo echoplanar-imaging with the parameters:
repeat time (TR)= 2s, echo time (TE)= 40ms ((TE)= 30ms for Iowa), field of view= 22cm,
acquisition matrix= 64 × 64, flip angle= 90°, voxel size= 3.44 × 3.44 × 4 mm3, gap= 1 mm,
27 slices, interleaved acquisition.
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FMRI data were preprocessed using the software package SPM5 (SPM5, 2008). Images were
realigned using INRIalign - a motion correction algorithm unbiased by local signal changes
(Freire et al., 2002). Data were spatially normalized into the standard Montreal Neurological
Institute space (Friston et al., 1995) and slightly sub-sampled to 3 × 3 × 3 mm3, resulting in
53 × 63 × 46 voxels. Next the data were spatially smoothed with a 9 × 9 × 9 mm3 full width
at half-maximum Gaussian kernel.

2.1.4 Behavioral Data—Table 1 presents behavioral data for the SIRP test. The presented
hit percentages consider all subjects from the two sites, but the reaction times were evaluated
using only the subjects from the New Mexico site due to a hardware measurement error at one
of the sites.

Table 1 lists average hit accuracies and average response times of both patients and controls
based on runs where three different block types were presented. These behavioral results also
show that patients have longer average reaction times and standard deviations compared to
controls, and hit accuracies are essentially the same, similar to those obtained in AOD
experiment.

Table 2 lists the hit accuracies of the targets and average reaction times of both patients and
controls based on four different runs included in an AOD experiment. The results indicate that
patients have longer average reactions times and standard deviations compared to controls, and
lower accuracies than controls with higher variability.

2.2 Independent Component Analysis (ICA)
Independent component analysis (ICA) has been a fruitful tool in the fMRI field by helping to
delineate the spatiotemporal structure of fMRI data. The change in the fMRI signal is factored
into a set of time courses and corresponding spatial patterns where either the spatial patterns
or the time courses are a priori independent. In spatial ICA, the non-overlapping, temporally
coherent brain activation networks are extracted without constraining the temporal domain
(McKeown et al., 1998; Calhoun et al., 2001c).

ICA has been used on fMRI data to identify networks associated with schizophrenia. Calhoun
et al. (2004) used ICA on fMRI data to identify aberrant localization of hemodynamic
coherence in schizophrenia and suggested that abnormal patterns of coherence in temporal lobe
cortical regions characterize schizophrenia. Garrity et al. (2007) also employed ICA of fMRI
data to identify the default mode component, which is thought to reflect the resting state of the
brain, and examined the differences in temporal and spatial aspects of the default mode.
Significant spatial and temporal differences were observed between healthy controls and
patients with schizophrenia in the default mode component.

We employed a group spatial ICA operation (Calhoun et al., 2001a,b; GIFT, 2008) on the data
obtained from all subjects to separate the data into maximally independent sets and identify
the networks most related to schizophrenia (Demirci et al., 2008b, 2007; Demirci and Calhoun,
2007; Demirci et al., 2008a). Time progress of voxels during the tasks were factored into 20
independent spatial aggregate components. After the application of ICA, independent spatial
components were inspected visually and labeled as the default mode network, temporal lobe
network, etc. based on the activation patterns. The time courses of the components were
regressed with the designs used in the tasks and independent components were sorted in order
of importance accordingly.

The aggregate components and results from the data reduction steps were used to generate
single-subject time courses and spatial maps. This specific step is called back-reconstruction
(Calhoun et al., 2001b). Figure 3 shows a sample set of spatial independent components with
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the corresponding time courses produced with an ICA run for a single-subject. Back-projection
was used to extract individual Granger causality representations for homologue components
across subjects and this approach cannot be used in a single-subject data set at this point,
because we develop our statistical comparison using the between-subject variation.

2.3 Granger Causality Test in Spectral Domain
A spectral method was presented to describe and investigate the causal relationships between
two or among more stationary variables for econometric purposes (Granger, 1969). It was
stated that cross spectrum between the two variables can be decomposed into two parts and
each of these parts represented a single causal direction of the relationship. Two-variable model
was described as follows,

(1)

(2)

Equations 1 and 2 provide the relationship between two stationary time series Xt and Yt
(possibly vectors) using the past “m” values of each other (Figure 4). Although the equations
present the model with instantaneous causality, we will assume that present values of Xt and
Yt will not be used in the prediction of Yt and Xt, respectively (b0 = c0 = 0). This approximation
to the model may not be valid in every application and data set that Granger causality model
is used on, but it seems valid for the application to fMRI activation networks taking into account
the speed of the blood flow in the brain. We carried out some simulations to test the validity
of this assumption and we used both original time courses and their interpolated forms (smaller
sampling rates compared to original data) with various interpolation rates to study the impact
of the zero-lag correlations. The similarity of the spectral responses for original time courses
and the interpolated forms indicated that zero-lag correlations in the fMRI data we used were
negligible, and they did not change our conclusions.

Neglecting instantaneous causality simplifies the solution of the model making it possible to
combine the two variables in a vector (Equations 12–13) and thus the equations reduce to a
simple causal model making an analytical solution possible. In the future, we are also planning
to consider the effect of instantaneous causality on fMRI data and extend the solution with a
numerical analysis. In Equations 1 and 2, ak, bk, ck, dk are best fit regressors (matrices when
Xt and Yt are vectors of time series), εt and ηt are two zero-mean uncorrelated white-noise series
with,

(3a)

(3b)
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(3c)

Granger presented a definition of causality feedback utilizing the noise terms (εt and ηt) in
Equations 1 and 2 and stated that Y (X) is causing X (Y), Y ⇒ X (X ⇒ Y), if we are better able
to predict present value of X (Y) using all available information than if the information apart
from Y (X) had been used (Granger, 1969). This can be valid if the variance of the noise term
decreases after utilization of past values of Y, Ȳ, in addition to usage of past values of X, X̄,
with the best choice of {ak, bk, ck, dk} indicating a better prediction of X. This can be
summarized as,

(4)

Feedback occurs, X ⇔ Y, if there is a mutual relationship and X is causing Y, too (X ⇒ Y).
Not only variance but other possible criteria could also be used to draw conclusions on
causality. In this study, we will be following Granger’s approach to investigate the causal
relationships between brain networks and use variance of the residuals in the approximations
as a measure of causality.

Partial directed coherence (PDC) is a similar measure used to measure the causal directed
responses in the frequency domain and is also based on the Granger causality. PDC defines
the amount of causal relationships in a similar but a different way. Considering a vector of two
variables (x and y), Granger causality determines directed causal relationships in the frequency
domain by the decomposition of the cross spectrum (Cr(w)) and normalization is done by
autocorrelation functions (fx(w) and fy(w), power spectrum densities of individual functions of
the vector variable). As it is stated by Schelter et al. (2005), PDC chooses the amount of causal
relationships based on the frequency domain picture of the cross coefficients in the
autoregressive model. Normalization is done by the sum of these mutual cross terms. We are
planning to use PDC and Granger Causality to investigate not only pairwise but also more
complex multi-channel relationships between brain networks in our future work (Kus et al.,
2004).

Power spectrum densities of stationary signals Xt and Yt are given as,

(5)

(6)

where ℱ stands for the Fourier transform, ℛ is the autocorrelation function, Δ = |(1 − a)(1 −

d) − bc|2 and , etc (Granger, 1969).

Cross spectrum, which is the Fourier transform of the cross correlation between the two signals,
can be defined as
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(7)

, and can be decomposed into two components representing the causality of Y by X (C1(w))
and causality of X by Y (C2(w)) (Granger, 1969).

Measure of the strength of the causality,  and , in the frequency spectrum can be rewritten
as,

(8)

(9)

These equations state that measure of feedback from X to Y, , and Y to X, , can be
decomposed by frequency and we can talk about causality between the two variables at different
frequency bands separately.

To obtain the frequency domain pictures indicated in Equations 8 and 9, we need to solve
Equations 1 and 2, for a specific “m” value, and find the set of vectors {ak, bk, ck, dk} that
minimize σε and ση.

When b0 = c0 = 0, Equations 1 and 2 turn into the simple causal model,

(10)

(11)

We can combine Xt and Yt into a new vector and treat the new vector as a new variable.

(12)
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(13)

Combining the two variables into a vector helps us analyze multivariate time series with
autoregressive (AR) models.

In Equation 13, “m” is the order of the AR model and Ak’s are the filter coefficients we try to
find to best approximate the data, Vt, and to minimize the noise term, γt. γt’s are uncorrelated
random vectors with mean zero and covariance matrix ,

(14)

We used a Matlab package by Schneider and Neumaier (2001a,b) to analyze the time series
corresponding to independent components. The optimal order of AR(m) model, mopt, was
selected based on an interval given, [mmin, mmax] and an order selection criterion. We used
[mmin = 1, mmax = 20] and preferred Schwartz Bayesian criterion (SBC) to determine mopt and
to obtain the smallest mean-squared prediction error of the fitted AR model. mopt was not
constant and changed between these values for every mutual relationship. A1, A2, …, Amopt
and  were evaluated using the stepwise least square algorithm. These parameters were used
in the evaluation of the spectral domain pictures given in Equations 8 and 9.

3 Results and Discussion
In Section 2, we described the fMRI data to be used in our study and presented a model to
investigate the causal relationships between signals in time domain. The proposed model
included two consecutive steps, ICA and GCT, to decompose the causal relationships between
time courses of brain networks in the frequency spectrum. In this section, we present some
results obtained with both simulated signals and also fMRI data obtained during two different
tasks on 155 subjects.

Based on Fourier’s approach that aperiodic signals can be represented as weighted integrals of
sinusoids with certain conditions, we can construct any signal as a linear combination of basic
signals. This is why we first would like to examine Granger causality test using simple sum of
sinusoids to simplify the initial findings, investigate the method’s validity and help clarify
further results. Simple analysis of the technique will help us understand the causal relationships
between time courses of the fMRI components and draw conclusions on the relationships of
the activation networks.

3.1 Simulations
In the first part of our study, we used signals that are extremely simple in their spectral nature
as input to Granger causality test. The response of the test in the spectral domain was
investigated. The time courses that we used in the simulations can be represented in the most
general form as,

(15)
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In Equation 15, S is the sinusoidal signal with amplitude A, attenuation constant k, frequency
ω, and phase φ. We assume that A = 1 for simplicity.

Representing the strength of causality in the frequency domain requires a Fourier
transformation and the response is symmetric around zero and periodic with 2π. We are
presenting the responses in the [−π, π] interval only with units of angular frequency. Regions
around zero are low-frequency components and regions closer to −π and π correspond to high-
frequency components.

Figure 5(a) shows two exponentially decaying sine waves carrying the same frequency and
attenuation constant but a different phase component, φ1. S1 follows S2 with a delay because
of the phase difference between the signals. In other words, knowing about S2 at a particular
time gives information about the future behavior of S1, and causes or drives it. Both signals
have components only at ω1 = π/32 in the spectral domain and zero everywhere else. S1 and
S2 were used as input to Granger causality test and Equations 8 and 9 were utilized. In Figure
5(b), C1=>2 (C=>1) shows the measure of causality from S1 (S2) to S2 (S1) at various frequencies.

The peak around ω1 = π/32 corresponds to the frequency value the two signals carry, and y-
axis shows the amount of feedback from one signal to the other. A higher value of C2=>1 than
C1=>2 indicates that S2 drives S1 more than S1 does S2. The amount of feedback between the
two signals are negligible at the rest of the frequency spectrum, as sinusoids carry only a specific
frequency value. The amount of decay due to the exponential terms has no effect on the spectral
behavior as these are same for the same signals.

It is important to note here that we are not able to obtain the ideal abrupt jumps in Figure 5(b)
due to the fractional nature of the Equations 8 and 9. We have extra responses at the tails around
ω1 = π/32 and these cause a nonzero response even at zero frequency. Tails of positive and
negative frequency peaks add up at zero and even exceeds the response at π/32 for C2=>1. This
effect decreases with higher frequencies and higher phase differences.

A similar test was employed increasing the phase delay between S1 and S2. These two signals
can be seen in Figure 6(a). The corresponding behavior in the spectral domain is given in Figure
6(b). Just as we observed before, we have peaks around ω1 = π/32 and there is negligible
causality in the rest of the frequency domain. As C2=>1 decreased, indicating a smaller amount
of drive from S2 to S1 (S2 gave us less information about S1 compared to Figure 5), C1=>2
increased. It can be concluded that the measure of feedback will be smaller, and almost equal
when the phase delay is π/2.

A similar example can be seen in Figures 7 where the sinusoids have higher frequencies and
phase difference φ2 = 12π/32. Figure 7(b) shows that the peaks are located at ±ω2. S2 drives
S1 at ω2 and frequencies higher than ω2, but S1 drives S2 for the lower frequencies.

We can also look at the same sinusoids in Figure 6(a) when they have different amount of
attenuations, Figure 8(a). Figure 8(b) shows that there are still peaks in the spectral domain
around ±ω1 but the amount of causality is very close to zero and negligible. This indicates that
signals decaying in different amounts do not cause each other because time frames including
constant number of time samples give varying information about the two signals at different
times.

Causal relationships between two signals that are sum of two different sinusoids with a phase
difference were also investigated employing Granger causality test. The two frequencies in
each of the signals can be observed as slow and fast ripples in Figure 9(a). These two
frequencies that sine waves carry can be observed as two different peaks at ω1 and ω2 in Figure
9(b). S2 still drives S1 at these frequencies due to the phase components added to the signals.
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We also believed that a modification that we can apply to the example in Figures 9 might be
helpful to understand the causal relationship between signals S1 and S2. We kept the first signal,
S1, as earlier and removed one of the frequency components in the second signal, S2. S1 included
two frequency components in it, and S2 had only one of these frequencies and a phase
component added. As Figure 10(b) clearly shows, the drive between the two signals exist at
only the common frequency band that S1 and S2 both have, and the drive in the rest of the
spectrum is negligible. S2 still drives S1 due to the delay caused by the phase component, φ1,
added.

Although the examples presented here are simple, we believe that they are useful in illustrating
the causal relationships between the time courses of independent components and brain
networks, comprehend the idea behind the GCT. In Section 3.2, we will be presenting results
that we obtained using the fMRI data obtained during two different tasks on a total of 155
subjects from two different sites.

3.2 Application on fMRI data
The method we propose in our study involves the application of ICA on fMRI data obtained
during two different tasks (SIRP, AOD). We first decompose the data into spatially independent
components and corresponding time courses. The time courses for each of the components
represent the progress of the brain activation for that particular network for each individual
subject.

After ICA was run separately on AOD and SIRP fMRI data sets, we sorted the twenty spatially
independent components using the regressors of the task and examined these images visually.
The components most related to the task with the most important and meaningful activation
patterns were determined, ten out of the total twenty components were picked and the remaining
ones (which showed obvious artifacts such as those with large signals on the edge of the brain
or in the ventricles) were eliminated. Table 3 lists these components for AOD and SIRP tasks
together with the one- and two-sample t-values for different conditions. The time courses
corresponding to 10 independent components were used as input to Granger causality test and
a total of 45 mutual causal relationships between pair of networks were investigated. The
analysis was repeated for each individual subject separately. Figure 11 shows the causal
relationship between 2nd (default mode) and 12th (cerebellum) independent components from
the SIRP task in two directions for one of the patients in the group. Considering the fact that
the sampling time (TR) is 2 seconds, maximum frequency in the frequency domain (π)
corresponds to 0.25 Hz. The patterns in Figure 11 indicate that default mode component drives
the cerebellum for the lower frequencies and the drive from cerebellum to default mode is
negligible in the whole spectrum.

Although causal relationships between components for different subjects were variable in the
frequency spectrum, we wanted to investigate the differences between healthy control and
schizophrenia patient groups for each pair of independent components. Our approach enables
us to study differences that are not observable using previously utilized methods, where the
frequency spectrum was not utilized.

The relationships between pairs of 10 independent components were examined and the
investigation was carried out using 45 different pairs of components separately. In Figure 12,
we can see the average causal relationship between 5th (Left dorsolateral prefrontal cortex, L
DLPFC) and 6th (Right dorsolateral prefrontal cortex, R DLPFC) components during the SIRP
task. Figure 12(a) shows the average causal responses of 98 control (μC) and 57 schizophrenia
patients (μP) in two different directions, xy (5 → 6) and yx (6 → 5). Although the difference
between the average responses of healthy controls and schizophrenia patients for 6 → 5 is
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small, the difference for 5 → 6 is high for the lower frequencies and patients show a higher
causality in this interval of the spectrum.

In order to evaluate the statistical significance of the difference between groups, a two-sample
t-test was been applied to the results obtained from individual subjects. t-value spectrum of the
two directions for the same pair of independent components and the chosen threshold of t =
±2 are depicted in Figure 12(b). We pay extra attention to regions where the t-values are smaller
than −2, or greater than 2, because these regions indicate that the two groups are significantly
apart from each other. We examined causal relationships for 45 pairs of components and kept
the component pairs that produced t-values ≪ −2 or ≫ 2 in a significant part of the spectrum,
which indicated significant separation between healthy controls and schizophrenia patients.
For example, causal relationships between 5th (L DLPFC) and 6th (R DLPFC) components
were not enough for us to consider the pair in a final evaluation based on Figure 12(b).

A similar example is presented in Figure 13 for the causal relationship between 2nd (Default)
and 12th (Cerebellum) components during the SIRP task. Although the means of the control
and patient group samples seem to be similar to each other in both directions in Figure 13(a),
the two-sample t-test results in Figure 13(b) indicate that the separation between healthy control
and schizophrenia patients is high in a band of frequencies, [π/6,4π/6]. The results indicate that
2nd (Default) component drives the 12th (Cerebellum) component in band of frequencies, which
could be the main sinusoidal frequency both time courses have. The drive from the 12th

(Cerebellum) component to the 2nd (Default) component is weaker between the groups and
lower than the threshold assigned.

Another interesting relationship between two independent components, 12nd (Cerebellum) and
18th (Temporal), during the AOD task is presented in Figure 14. As we have seen earlier in
Figure 14(a), means of the control and patient group samples seem to be similar to each other.
But Figure 14(b) shows that the two independent components drive each other equally in a
band of frequencies considering the difference between the groups. There is a mutually
powerful drive difference betwen the groups between the two independent components.

We examined each pair of independent components in both directions similarly using t-value
spectrums and generated two diagrams with pairs of higher differences between schizophrenia
patients and healthy controls. The differing relationships for schizophrenia patients and healthy
controls between brain activation networks for SIRP and AOD tasks are summarized in Figures
15 and 16, respectively.

Figure 15 shows the causal relationships between temporal, left dorsolateral prefrontal cortex
(L DLPFC), right dorsolateral prefrontal cortex (R DLPFC), primary visual, secondary visual,
motor and cerebellum activation networks during the SIRP task. These independent
components shown are among the set of components whose mutual relationships show
significant differences in causality between schizophrenia patients and healthy controls and
the diagram highlights the deficiencies in the causality pathways. The numbers written in the
lower right of the components indicate how well the time courses correlated with the regressors
of the applied task. The direction on each link between the activation networks show the
direction of drive, or which component drives the other one when a certain amount of difference
in causality exists between the two groups. For example, when 6th component causes the 2nd,
the two groups behave differently at least one interval in the spectrum with t6=>2 > 2. The links
also include the frequency where the t-values reach its maximum and maximum t-value
obtained at that frequency in parentheses. The square brackets include the frequency interval
where the t-values are higher than the assigned threshold, t = 2.
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In Figure 15, L DLPFC, R DLPFC, primary visual, default and motor networks can be
distinguished from remaining networks as the ones where the two groups differ in causal
connectivity compared to other components. In the SIRP task, cerebellum and secondary visual
components appear to operate as causal hubs during the complex interactions between activated
networks. This suggests that brain regions comprising these two components might play a
particularly important role in differentiating patients with schziophrenia from healthy controls
during the SIRP task. In particular, the cerebellum has been implicated previously in studies
of mental timekeeping, automatic control of behavior, and behavioral adjustment, in part by
firing as if in anticipation of input from other systems. This supports proposals that dysfunction
in the cerebellum itself or its neural connectivity with other systems may underlie schizophrenia
disconnection hypotheses (Andreasen et al., 1999).

Figure 16 summarizes similar relationships between the activation networks during the AOD
task. In this case, relationships are significantly different between schizophrenia patient and
healthy control groups in components dominated by activity within anterior cingulate/frontal
poles, R DLPFC, cerebellum, motor, primary visual, temporal and secondary visual
components. Similar to SIRP, the cerebellum, secondary visual and temporal components
appear to serve as hubs of causal influence. For the AOD task, there are group differences in
the mutual causal relationships between cerebellum and temporal activation networks. This
underscores the likely relevance of abnormal neural communication between these two
networks in schizophrenia. In addition, the network comprising ACC/frontopolar cortex
appears to exert modulatory control over these hubs. Anterior cingulate cortex frequently has
been described has having a role in cognitive monitoring of conflict, performance, or errors
(Botvinick et al., 2004). The abnormal connectivity of this network to the key nodes within the
system described by GCT results raises the possibility that abnormal anatomical connections
among networks brain regions engaged for performance monitoring and adjustment may be
important to schizophrenia pathophysiology.

These two complementary causal models of schizophrenia dysfunction identify networks of
functionally-integrated brain regions that might have considerable importance in explaining
with the nature of schizophrenia neurobiological impairment. Both profiles of schizophrenia
network causality dysfunction found that temporal lobe, secondary visual and cerebellum
networks showed disrupted influence by other networks engaged for task performance. The
commonalities of schizophrenia abnormality between the two tasks are striking in recognition
that they each engage markedly different cognitive demands. In previous research (Jafri et al.,
2008), we observed that functional network connectivity between networks of sensory cortex
regions were abnormally coupled with networks of prefrontal brain regions most commonly
engaged for higher-order cognition. A similar pattern was found in this study. Abnormal top-
down control from lateral prefrontal cortex over sensory cortex was observed in the SIRP
indirectly through mediation by the Cerebellum network. In the AOD task, there was disruption
of putative top-down influence from lateral prefrontal cortex directly to sensory cortex.
Furthermore, despite the SIRP being a visual task and AOD auditory, both paradigms engaged
separate auditory and visual networks during task performance and direct relationships between
these two sensory modalities was abnormal in schizophrenia. The latter was not observed in
our previous study (Jafri et al., 2008). The difference may be due to paradigm characteristics.
At rest, functionally-integrated networks likely would not exert mutual causal influences in
the same manner as during active task demands. The latter finding may reflect the same
problems in inter-regional connectivity as hypothesized for presumed top-down control.
However, its novelty raises the possibility that it could represent impairment of a different,
perhaps more basic neural mechanism of inter-regional neural communication, similar to recent
proposals of corrolary discharge dysfunction (Ford et al., 2007) which recently have been found
in both auditory and visual systems (Ford and Mathalon, 2005).
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4 Conclusion
Functional MRI technology has been fruitfully used to understand the complex functioning of
the brain during various tasks. The hypotheses that schizophrenia patients differ from healthy
controls due to the disruption of functional connectivity between distributed cerebral sites and
the improper functional integration within the brain suggest the necessity of studying causal
relationships between the activation networks utilizing fMRI data. We have demonstrated the
utility of an algorithm that employs both ICA and GCT consecutively to depict complex
system-wide causal interactions among distributed, functionally-integrated networks. FMRI
activations for 155 subjects during SIRP and AOD tasks were analyzed. The activation patterns
were first used in ICA and the data were decomposed into spatially independent components
and corresponding time courses. These time courses were then used as input to GCT and causal
relationships between independent components were investigated over a frequency spectrum
rather than with a scalar only. We reported group differences in causal relationships, which
were obtained over the whole spectrum of hemodynamic signal change frequencies, as an effort
to explain the causal relationships at various frequencies for the first time.

These causal estimates summarize the complex relationships between independent components
and might help to explain why patients with schizophrenia show neurocognitive abnormalities
during SIRP and AOD task performance. From these results, several broad conclusions can be
made. Active fMRI tasks such as the SIRP and AOD integrate complex networks of regions
that influence each other in a presumably hierarchical fashion. In addition, there also is evidence
that distributed networks are organized in a fashion suggestive of hubs of activity within
specific circuits that directly or indirectly influence other neural function. The networks that
engaged cerebellum and secondary visual cortex appeared to be important causal hubs for both
tasks, while a network of frontopolar and medial-frontal cortex regions appeared to play a key
modulatory role for the AOD task. There also is evidence for abnormal functional network
connectivity in schizophrenia between networks made up of dorsolateral prefrontal brain region
traditionally-thought of as key agents of ‘top-down’ control and networks whose structure
suggests they are engaged in primary and secondary sensory processing. Although this method
appears suitable for identifying group differences in functional network connectivity, it was
not developed to shed light on specific neural mechanisms that contribute to causal interactions.
Disruption of causal influences among distributed networks could occur for a variety of
reasons, including abnormal white matter connections, disordered organization of cellular
layers that are the targets of long-distance neural innervation, or specific problems with aspects
of cell function that disrupt a local neuronal population’s ability to achieve the synchrony of
activation that is measured by functional connectivity methods. This important line of inquiry
has yet to be explored, but the results of this and similar studies will likely serve as the basis
for selecting specific mechanisms to test.
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Fig. 1.
Representation of a block in SIRP (Sternberg Item Recognition Paradigm). Two blocks of each
of the three conditions with {1, 3, 5} digits (in a pseudorandom order) constitute a run.

Demirci et al. Page 19

Neuroimage. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
Auditory Oddball Experiment. Three different stimuli are represented with different colors and
unevenly spaced to indicate the pseudorandom generation (Demirci et al., 2008a).
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Fig. 3.
Sample ICA run: Spatial independent components represented with a slice (brain activation
networks) and corresponding time courses for a subject.

Demirci et al. Page 21

Neuroimage. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
3D representation of the signals Xt and Yt for clarification. Temporal representation of the
signals Xt and Yt. Present value of the signals are indicated with dotted lines. “m” is the order
of the model and a variable.
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Fig. 5.
5(a) Two sinusoids in time domain with an exponential decay and a phase difference. S1 =
e−at sin(ω1t) and S2 = e−atsin(ω1t + φ1) where ω1 = π/32 and φ1 = 6π/32. 5(b) Representation
of the causal relationship between sinusoids in frequency domain using Granger causality test.

Demirci et al. Page 23

Neuroimage. Author manuscript; available in PMC 2010 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
6(a) Two sinusoids in time domain with an exponential decay and a phase difference. S1 =
e−at sin(ω1t) and S2 = e−atsin(ω1t + φ2) where ω1 =π/32 and φ2 = 12π/32. 6(b) Representation
of the causal relationship between sinusoids in the frequency domain using Granger causality
test.
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Fig. 7.
7(a) Two sinusoids in time domain with an exponential decay and a phase difference. S1 =
e−atsin((ω2t) and S2 = e−atsin((ω2t + φ2) where ω2 = π/4 and φ2 = 12π/32. 7(b) Representation
of the causal relationship between sinusoids in the frequency domain using Granger causality
test.
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Fig. 8.
8(a) Sinusoids in time domain with a phase difference and different exponential decays. S1 =
e−atsin(ω1t) and S2 = e−btsin(ω1t + φ2) where a = −0.012, b = −0.015, ω1 = π/32, and φ2 =
12π/32. 8(b) Representation of the causal relationship between sinusoids of different
attenuation in the frequency domain using Granger causality test.
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Fig. 9.
9(a) Sum of two sinusoids in time domain with an exponential decay and a phase difference.
S1 = e−at(sin(ω1t) + sin(ω2t)) and S2 = e−at(sin((ω1t + φ1) + sin((ω2t + φ2))) where ω1 = π/4,
ω2 = π/32, φ1 = 12π/32 and φ2 = 4π/32. 9(b) Representation of the causal relationship between
sinusoids in the frequency domain using Granger causality test.
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Fig. 10.
10(a) Sum of two sinusoids in time domain with an exponential decay and a phase difference.
S1 = e−at(sin(ω1t) + sin(ω2t)) and S2 = e−atsin((ω1t + φ1) where ω1 = π/4, ω2 = π/32, and φ1 =
12π/32. 10(b) Representation of the causal relationship between sinusoids in frequency domain
using Granger causality test.
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Fig. 11.
Granger Causality Test results for a patient using the SIRP data. The results were obtained
between second (default) and twelfth (cerebellum) components. Numbering of the independent
components is based on the ICA run. (π) corresponds to 0.25 Hz.
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Fig. 12.
Causal relationships between 5th (L DLPFC) and 6th (R DLPFC) components during SIRP
task. 12(a) 12(b).
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Fig. 13.
Causal relationships between 2nd (Default) and 12th (Cerebellum) components during SIRP
task. 13(a) 13(b).
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Fig. 14.
Causal relationships between 12nd (Cerebellum) and 18th (Temporal) components during AOD
task. 14(a) 14(b).
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Fig. 15.
Granger Causality Test results for SIRP data. The connections and their directions between
brain networks were depicted. (ftmax, tmax) frequency where maximum t-value is obtained and
maximum t-value, [fmin fmax], frequency interval where the causal response is higher than 2,
are given.
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Fig. 16.
Granger Causality Test results for AOD data. The connections and their directions between
brain networks were depicted. (ftmax, tmax) frequency where maximum t-value is obtained and
maximum t-value, [fmin fmax], frequency interval where the causal response is higher than 2,
are given.
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Table 2
Comparison of schizophrenia patients and healthy controls in AOD test using the hit percentages in targets and average
reaction times. Both mean and standard deviations are listed.

Hits in Targets (%) Avg. Reaction time (sec.)

Petients Controls Petients Controls

mean 91.92 97.58 484.36 451.66

std 17.06 6.06 131.65 79.37
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