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Abstract

A typical fMRI data analysis proceeds via the generalized linear model (GLM) with Gaussian noise
using a model based on the experimental paradigm. This analysis ultimately results in the production
of z-statistic images corresponding to the contrasts of interest. Thresholding such z-statistic images
at uncorrected thresholds suitable for testing activation at a single voxel results in the problem of
multiple comparisons. A number of methods which account for the problem of multiple comparisons
have been proposed including Gaussian random field theory, mixture modeling and false discovery
rate (FDR). The focus of this paper is on the development of a generalized version of FDR (GFDR)
in an empirical Bayesian framework, specially adapted for fMRI thresholding, that is more robust to
modeling violations as compared to traditional FDR. We show theoretically as well as by simulation
that for real fMRI data various factors lead to a mixture of Gaussians (MOG) density for the “null”
distribution. Artificial data was used to systematically study the bias of FDR and GFDR under varying
intensity of modeling violations, signal to noise ratios and activation fractions for a range of g-values.
GFDR was able to handle modeling violations and produce good results when FDR failed. Real fMRI
data was also used to confirm GFDR capabilities. Our results indicate that it is very important to
account for the form and fraction of the “null” hypothesis adaptively from the data in order to obtain
valid inference.
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2 Introduction

Most fMRI analyses base their results on thresholded statistical maps that take into account
the problem of multiple comparisons. The correction for multiple comparisons is a long
standing one that tries to balance the number of false positives as well as the number of false
negatives. Several approaches, some very rigorous, some heuristics in nature, have been used
over the years.

In the early years of fMRI, Bonferroni type corrections [Simes, 1986] were common in part to
impose high rigurosity in the results [Kwong et al., 1992; Weisskoff et al., 1993], yet, as the
field grew it was evident that strong correction for false positives came at the cost of a high
false negative rate [Worsley et al., 1996]. New approaches were implemented including
Gaussian random field theory [Worsley et al., 1996], mixture modeling [Everitt and Bullmore,
1999], [Woolrich et al., 2005], permutation testing [Nichols, 2002] and false discovery rate
(FDR) analysis [Genovese et al., 2002]. A comparative review of many techniques is presented
in [Nichols and Hayasaka, 2003].

FDR has gained popularity due to its simplicity in implementation and reasonable results
obtained with it. Conventional application of FDR technique to fMRI makes several
simplifying assumptions including the form and fraction of “null” distribution in the data
(section 3.1.1 - 3.1.2). It is not unusual to find in fMRI experiments, situations in which, such
assumptions are not satisfied and the use of FDR is compromised. In this article we develop a
generalized form of FDR (GFDR) for fMRI in an empirical Bayesian framework inspired by
the work of Efron et al. [2001] that adaptively estimates the form and fraction of “null” from
the data (section 3.2). In particular, we show that under the Gaussian noise model for massively
univariate GLM analysis (using the same design matrix) of fMRI data, various factors such as
modeling violations, signal inhomogeneities, variance in vascular flow and/or BOLD response
(onset, strength, duration, extent), presence of coherent resting state network (RSN) type
activity typically lead to a mixture of Gaussians (MOG) density for the “null” distribution
(section 3.3 and Appendix B). Failure to account for this empirical “null” could result in
misleading conclusions. Significant performance improvements are observed using GFDR as
compared to FDR in experiments on both simulated and real data sets (section 3.4.1).

This paper is laid out as follows: (1) First, we cast FDR in a mixture modeling framework to
examine its limitations as well as present prior work and motivation for the development of
GFDR (sections 3.1.1-3.1.3). (2) Next, we present the algorithm to perform inference using
GFDR (section 3.2). (3) In section 3.3.1 we examine the identifiability and separability of the
mixture model used in GFDR as well as test the MOG hypothesis of GFDR for the “null”
distribution in a simulation study with data generation in the presence of multiple confounds
at locally varying SNRs. (4) In section 3.4.1, we present a second simulation study that
compares GFDR and FDR. (5) In section 3.4.2, we describe application of GFDR to a real
fMRI data-set.

3 Materials and methods

3.1 Motivation, limitations and prior work

In this section we present some background information that is necessary for understanding
the developments in later sections. We present FDR theory in a mixture modeling framework,
followed by an examination of its limitations. We review previously suggested improvements
to FDR and present our novel contributions.

3.1.1 FDR in amixture modeling framework—FDR theory assumes existence of a fixed
mechanism to generate p-values corresponding to deviations from the null-hypothesis. Here
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we present a derivation of FDR based on a mixture modeling framework without making this
assumption. This will help us in understanding its assumptions as well as presenting its
generalization in the next section.

Consider a Z statistic image with z-stat values zj, i = 1, 2, ..., nwhich are realizations of random
variables Z;, i =1, 2, ..., n, where Z; are independent, identically distributed random variables
with probability distribution function p(z).

Assume the image is thresholded at o and all voxels with z; > « are declared “active”. Suppose
each zj is associated with a latent variable c; which indicates its membership in one of the three
classes defined by the set S = {1, 2, 3}. ¢c; = 1 means membership in the “deactivation” class,
ci = 2 means membership in the “null” class and finally ¢; = 3 indicates membership in the
“activation class”. Suppose each class is associated with a prior probability:

mx=p (c;=k) (1)

wherei=1,2,...,nand k =1, 2, 3. With these assumptions, the distribution p(z) can be
decomposed as follows:

3
p () :Zﬂ'k p (z|c:k)
=1

Let vca(a) be the number of voxels considered active at threshold a. Then

n
Vea (@) :21 (Z>a)
i=1 (3)

where I(A) is the indicator function defined as:

1 if Aistrue

! (A):{ 0 if Ais false @

If via(a) be the number of voxels falsely declared as active at threshold «, then

n 2
Vg (@)= Z Zl (Z>a) I (ci=k)

i=1 k=1 (5)

FDR was first introduced as a general method of thresholding by Benjamini and Hochberg
[Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001]. FDR is a function of the
chosen threshold « and is defined as:
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FDR (@) =E ( Ya (“))

Vea (@)

where the expectation is taken with respect to Z;.

Many equivalent but slightly different variations of the FDR procedure have been proposed
over the years. For example, Storey [2003, 2002] proposes the positive false discovery rate
(pFDR) which is defined as the expectation of the fraction of rejected nulls given that a non-
zero number of rejections occur.

pFDR (@) =E (Vf"—(“)wm (@) >o)

Vea (@) (7)

It is shown in Storey [2003] under some general conditions and under the assumption of
independent and identically distributed tests that:

E[vsa (@)]

FDR =
PEDR(@) =g @] @

They show that pFDR comes quite close to the above form even under dependence when the
number of tests is large. Efron et al. [2001] view FDR in an empirical Bayesian framework
and define the false discovery rate in terms of cumulative distribution functions (CDF) as:

Fdr (a) _pod —_Fo (@)
1-F(@) 9)

where pg, Fo and F are the fraction of null, the CDF for the null hypothesis and the empirical
overall CDF respectively. They show that Fdr(e) is biased upward (“conservative bias”
theorem in their paper) as an estimator of conventional FDR as defined by Benjamini and
Hochberg [1995]. Mathematically

FDR (o) < E [Fdr ()] (10)

Inaddition, Efron etal. [2001] also note that the independence of test statistics plays no essential
role in the empirical Bayes framework. In this paper, we will view FDR from this empirical
Bayesian viewpoint. An alternative interpretation of Fdr(a) is that it is a non-parametric
estimate of the probability P(Z; is “not active” |Zj > a) using the “empirical” CDF of the
observed data (Efron [2003]). Thus, Fdr(e) can be written as:

E[vsq (@) /n]

Fdr (o) = =
1-F(a) (11)
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n
n (@) :ZI(z,->a)
i=1 (12)
The denominator of (11) can be approximated using the standard empirical estimate:
— n(a)
1-F(a)=
(@) n (13)
and the numerator is given by:
2
Elv/q (@) /n]:anP(Zi>(Y|c'i:k)
k=1 (14)
Combining (11), (14) and (13)
—_— :nZi:lnkP(Z,-NrIc,:k)
n(a) (15)

It has been shown by Efron et al. [2001] (“equivalence theorem” in their paper) that for a given
g, choosing smallest possible « (i.e., largest rejection region possible) such that Fdr(«) < g also
implies FDR(a) < g. Thus, the goal of controlling FDR in an empirical Bayesian framework
is to bound the above by a user-defined fraction g:

Fdr (@) < ¢ (16)

Conventional FDR [Genovese et al., 2002; Benjamini and Hochberg, 1995; Benjamini and
Yekutieli, 2001] controlling procedure makes the following assumptions:

« Assumption 1: 7, » = i.e., the fraction of the null distribution is very large as
compared to the deactivation (and activation) distribution. Thus, one can use the
approximation z, ~ 1 and hence force z; = 0.

« Assumption 2: The “null” distribution has a fixed parametric form. As applies to
GLM based fMRI analysis this assumption translates to: The “null” distribution is the
standard Gaussian distribution with mean 0 and variance 1, N(0, 1), i.e., P(Zj|c; = 2)
=N(0, 1).

With these assumptions, if p(«) is the p-value associated with the z-threshold « for a standard
Gaussian N(0, 1) distribution, then Fdr(e) is bounded by q if:
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np (@) 2
n(a) (17)

In conventional FDR, one usually finds the largest value of p(«) satisfying the above equation
and thresholds the image at a. If the p-values are sorted in an increasing order, p(1), p(2), ...,
p(n) and if the kth p-value p(k) is taken as a threshold then the above equation can be
equivalently written as np(k)/k < g or p(k) < gk/n. This is illustrated graphically in Figure 1 for
the p-domain and in Figure 2 for the z-domain. From now on, we will use the acronym FDR
to mean “conventional” FDR with the above simplifying assumptions and GFDR to mean the
empirical Bayesian view in equation (15).

3.1.2 Limitations of conventional FDR—Based on the exposition of conventional FDR
in section 3.1.1, it is immediately apparent that FDR makes some strong assumptions.

Assumption 1 is invalid if:

«  There is significant amount of activation and/or deactivation i.e., when 71 and x5 are
not “small” relative to .

Assumption 2 is invalid if:

«  There is un-modeled signal not accounted for by the design matrix. See Figure 15 for
a list of factors that contribute to modeling violations.

« There is a local variability of the Haemodynamic Response Function (HRF).

Since different spatial locations in the brain have different functions, it is very likely that
timeseries at different voxels are a mixture of different basis signals, some of which may not
be stimulus driven. This invalidates modeling signals in the entire brain via a single design
matrix. Since most conventional fMRI analyses do not postulate a different design matrix at
different spatial locations, assumption (2) is very likely violated. Using a constrained basis set
[Woolrich et al., 2004] in a single design matrix provides more flexibility in fitting the fMRI
response that is stimulus driven. Performing an F-test on the fitted coefficient vector results in
aloss of directionality information meaning that we detect both the activation and deactivation
jointly. Woolrich et al. [2004] propose to use pseudo z-statistics to recover directionality but
they point out that the resulting null distribution is not N(0, 1) because of the constrained HRF
priors used in the Bayesian inference.

A combined effect of one or more of these violations is that the “null” distribution becomes
an MOG density instead of N(0O, 1). (see Appendix B for mathematical proof). Efron [2006]
show that even when the individual null voxels follow the theoretical null distribution N(0O, 1)
(perfect modeling at all voxels), the presence of correlations between the voxels can make the
ensemble null behave as N(0, 62). where ¢ is far from one. In view of these important
considerations, conventional FDR procedure must be used carefully as a method of controlling
false discoveries.

This was the motivation for developing a generalization of FDR that makes none of the
assumptions made by FDR but instead attempts to estimate all quantities adaptively from the
data that are needed to get a robust estimate of FDR given in equation (15).

3.1.3 Prior work and novel contributions—The problem of estimating the fraction of

truly null hypothesis 7, has been tackled before using a number of approaches. For example,
Allison et al. [2002] uses a mixture model comprising of a uniform distribution (to model the
null distribution) and a beta distribution (to model non-null distributions) to fit the distribution
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of p-values using maximum likelihood (ML). The fraction of truly null hypothesis is then
estimated as the ML solution. Another estimator was proposed by Storey [2003] who used the
fact that p-values above a specified threshold A are mostly draws from a uniform distribution
corresponding to the null. They propose the estimator:

Number of p—values>A

()=
72 (4) n(l-2) (18)

This estimate depends on the tuning parameter . An average estimate of , is obtained by
averaging over different values of A or via a bootstrap. Benjamini et al. [2006] propose a two
stage procedure for estimating 7. These and other approaches make the following assumptions

1. There exists a reliable mechanism of estimating the p-values based on the raw data.
This usually means that there are some strong assumptions about the null hypothesis
Hg [for example Hp = N(0, 1)]. As we show later these assumptions are not always
valid in real fMRI data sets.

2. There are two types of data points, “null” and “non-null”. In fMRI data analysis, it is
more common to have “activation”, “deactivation” and “null” data points.

The novel contributions of this article are the following:

1. Enable estimation of Hy adaptively from the data as a mixture of Gaussians (MOG)
density.

2. Enable estimation of the fraction of null and deactivation distributions {zy, k = 1, 2}.

The problem of estimating Hy is at the heart of empirical Bayesian approaches. For example,
Efron [2004] discuss a drug mutation study that was analyzed using logistic regression and
where the z-values were computed using maximum likelihood estimates for the logistic
coefficients and large sample estimates of their standard error. Here they propose to estimate
the null distribution as a Gaussian distribution fitted to the peak of the histogram of z-values.
This approach first requires the identification of a maximum Jq of the histogram via poisson
regression. Next, it involves the estimation of standard deviation og of the “null” by fitting a
quadratic model to log f(z) for z within 1.5 units of maximum dq. The “null” fraction zy is
chosen to be the fraction of z-values falling in the interval (69 — aag, dg + aag), Where a is a
user specified constant (e.g., o = 1.64). The main disadvantage of this approach is the need to
specify the “width” around the maximum for estimation of g as well as the need to specify
o. for the estimation of .

How should one choose Hg to enable its estimation from the data? The answer depends on the
type of analysis being carried out to generate the z-stat images as well as the effect of modeling
violations (see 15 for examples of modeling violations) on the analysis process i.e., estimation
of Hy from the data should be application specific. In fMRI, a massively univariate analysis
of a large number of voxels using the same design matrix X via a GLM (with Gaussian noise)
is typical. It is easy to see how, in the presence of confounding signals, this analysis results in
altered densities of the “null”, “activation” and “deactivation” distributions (see Appendix B).
A simple mathematical calculation reveals that that a mixture of Gaussians (MOG) density is
a natural model for the data histogram as well as for the “activation”, “null” and “deactivation”
distributions (see Appendix B) given this analysis scheme. We were also able to numerically
confirm this phenomenon via a large simulation study (section 3.3) for a range of “activation”
fractions and Signal to Noise Ratios (SNRs) of the multiple unmodeled confounds using a

realistic locally variable mixing process. Our approach in estimating Hy involves the MOG
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hypothesis mentioned above. One of the key strengths of this approach is that it does not require
any parameter setting by the user.

3.2 GFDR Algorithm

The GFDR algorithm has several processing steps, each of which will be explained in detail
in the following discussion. For notational convenience, let (z; 8) be the probability density
function of a Gaussian distribution with mean x and variance ¢2. Here, 8 = {u, o} is the
parameter set associated with this distribution.

5

_ew?
e 27 , where 6= {u, o}

1
\2ro (19)

e(z:0) =

We assume that the histogram of observed z-values can be well modeled as a mixture of
Gaussian (MOG) distributions-even in the presence of modeling violations. In addition, we
also assume that within the full MOG fit, the null distribution will be modeled as a mixture of
1 or more Gaussian distributions, ditto for “activation” and “deactivation” distributions. The
assumption that the MOG density remains valid even in the presence of modeling violations
is a key to the GFDR framework. For theoretical motivations of these assumptions see
Appendix B. For numerical experiments confirming these assumptions see section 3.3. In our
experience, we find that the “null” distribution is typically modeled by 1 or 2 Gaussians, while
the “activation” and “deactivation” distributions are typically modeled by a single Gaussian.
Thus for each type of category (“null”, “activation” and “deactivation”) we have:

Ji
TP @lyi=h= > yap (zish,)
J=1 (20)

wherek=1,2,3andi=1, 2, ..., n. The term on the left of equation (20) represents the
contribution of the kth class to the full MOG fit in equation (2). We have still not specified
exactly how the individual Gaussian components in the full MOG fit will be labelled as parts
of “activation”, “null” or “deactivation”. We will address this issue in section 3.3.1. For the
moment, assume that we have correctly labelled the individual subcomponents of MOG as
“activation”, “null” or “deactivation”. From equations (20) and (2), the unknown probability
density p(z) can be approximated as:

3 J

IJ(Z,‘)IZZ)’kﬂﬁ(Ziﬂk i)
k=1 j=1

- (21)

wherei=1,2,...,n Let Q={J, k=1, 2, 3} be the set containing the unknown number of
Gaussians in each class and let © = {yyj, 6kj, k=1,2,3,j=1, 2, ..., J} be the set of unknown
parameters. The log-likelihood of observing the data D = {zj,i=1, 2, ..., n} is

n Jk
(D0, €)= log [ > chp(zn%)]

1 k=123 j=1 (22)
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The first step in GFDR algorithm involves estimation of the associated parameters {Q, ®}
using a joint maximization of model evidence and data likelihood. The goal of this step is

3
not to identify J, individually but to just identify the total number of Gaussians (Zkzl J)in
the overall MOG fit. Essentially, the procedure involves:

1. Postulate an overall MOG model with only 1 Gaussian.

2. Estimate the model parameters @ using Expectation Maximization (EM).
3. Measure the model evidence using Bayes Information Critetion (BIC).
4. Add another Gaussian and go to step 2.

The procedure ends when a model with lower BIC than the previous model is found (see
Appendix).

Maximization in (22) can be accomplished via the Expectation-Maximization (EM) algorithm
[Dempster et al., 1977] with automatic initialization using the k-means algorithm. We used the
Bayes Information Criterion (BIC) because it is asymptotically consistent [Hastie et al.,

2001]. fMRI data-sets typically have on the order of 10° voxels which is quite large to justify
the choice of BIC over others. See [Lanterman, 2001] for a review on model order estimation.

With the final estimates of parameters at hand, one can proceed to develop equations for
controlling the FDR. It will be ultimately important to jointly identify the “null” and
“deactivation” distributions (J; + J;). We will return to the issue of calculating J; + Jo in the
section 3.3.1. Suppose for now that we know J; + J,. Then the subcomponent corresponding
to “deactivation” from the full MOG fit is given by:

Ji
P (z|y=l) =Z?1,‘<P(Z;gu)
=

(23)
Similarly, the subcomponent for “null” distribution from the full MOG fit is:
D _
mP (zy=2) 2272j¢ (Z;sz)
J=1 (24)
From (15), (23) and (24):
Fdr(a) "@féﬁl,‘f&ﬁ(ﬁ@ﬂ dZ+ZJJ-i 172/’[2090(2;5%) dz}  pF(a)
)= =
n(a) n(a) (25)

In terms of the p-value of a standard Gaussian distribution N(0, 1), this can be rewritten as:

n(E 71 p (D S 72y p ()

Fdr(a)=
n(@) (26)
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Controlling FDR at g means restricting:

(T (D T 72 p ()

Al

<
n(a) 4 (27)

Define the GFDR threshold as:

Yiror _mf {a'>0 F(a)= Zyljp ( )+Z7’sz ( :“2/) < an(l(x)}

J=1 (28)

Solution of equation (28) can be found graphically by plotting a vs. nF(a) — gn(a) and finding
the smallest value of « for which the curve crosses the a-axis. If there is more than one such
a, then it means that the desired false discovery rate is attained at multiple « values and in this
case one would choose the smallest « that satisfies (28). An illustration of this procedure is
shown in Figure 3. Note that (28) depends only on J; + J, since the summation can be written

J[+J7
as Dper

The GFDR algorithm has been coded as a toolbox in MATLAB (www.mathworks.com). The
average running time for the algorithm on standard fMRI images is < 5 minutes. The standard
FDR procedure on the other hand runs in only a few seconds since it does not have to estimate
a model for the empirical “null”.

3.3 Numerical validation of the MOG hypothesis under modeling violations

The goal of this section is to test the validity of the MOG hypothesis in the presence of multiple
confounds under a locally variable random mixing process. We assume data generation from
R classes such that class k occurs with prior probability z. Let Xy be the design matrix

generating class k at minimum SNR &% . and maximum SNR &% . . Suppose there are M
confounds in the data such that confound s occurs with prior probability zys. Let Wy be the

design matrix generating confound s at minimum SNR p; . and maximum SNR p? ... Suppose
observed data at an example voxel is generated using true data from class ¢ and confound data
from class cy.

—Y &C O
y=X. 0 +W(_w PV+e (29)

where & ~ N(0, Ip). Here ¢ and cyy are random variables such that P(c = k) = zx and P(cy = s)
= mw,. We are also given an analyzing matrix Z and contrast cz. We generate n, points of size
RP. Observed data at point i is generated as follows:

1. Randomly select class 1, class 2, ..., class R as per prior probabilities =1, 7, 73, ...,
TR.

2. If class k is selected, generate data Xy oK using design matrix X at SNR ¥ selected
randomly from the uniform distribution U (8% ., 6%...).

3. Randomly select a confound from Wy, ..., Wy as per probabilities myy, ..., zwy-
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4. If confound class s is selected, generate confound Wgp® using Wy at SNR pS selected
randomly from the uniform distribution U (o} ;.. Piax)-

5. Generate noise ¢ from N(0, I,) of length p and add it true data and confound to get
observed datay = X oK + W pS + &.

6. Analyze y using the given design matrix Z and contrast c; and calculate a z-statistic.

Here we try to simulate data generated from a mixture of R = 3 classes in the presence of M =
3 confounds at various SNRs and examine if an MOG density adequately captures the classes.
The data generating design matrix X and confounds Wy had p = 140 timepoints (shown in Figure
4). Confound W1 was generated from a uniform distribution U(0, 1), confound W, was
generated from a gamma distribution Ga(1, 1) and confound W3 is a real fMRI signal extracted
from a resting state network (RSN). Each confound Wy was demeaned and normalized to have
the same energy as X. The dot products of these confounds with X are as follows:

W X=-3.63, W X=-0.32and W; X=2.10. The relative class fractions of these confounds
were fixed as follows: zy, = 0.2, 7y, = 0.4, my4 = 0.4. Each simulation consists of ny = 2000
vectors generated as describe above for each combination of p¥ . and zy. The class fraction
for “activation” and “deactivation” distributions were taken to be equal in the data generation
process i.e., w1 = 3. z-statistics were generated by analyzing the generated data pointwise using
the design matrix Z = X and contrast ¢c; = [1]. Each simulation is repeated ng = 100 times to
estimate the statistics of quantities of interest. The parameters for the simulation 3.3 are shown
in Tables 1 and 2.

We first examine the accuracy of determining the number of classes using BIC as we propose
in this paper. Results are shown in Figures 5 - 8. Next, we examine the true positive rates for
Bayes aposteriori (maximum posterior probability based) classification using the estimated
MOG fit for each class. Results are shown in Figure 9 - 11. Finally we show distribution fits
for some cases when BIC identifies a 4 component fit to the data. We show that in these cases
the “null” is actually well-described by a 2-component MOG density. Using this 2-component
MOG density for “null” we get an average true positive rate for all classes > 96%. (see Figures
17 - 14).

3.3.1 Identification of class distributions (Estimation of J; + Jy)—First we review
some typical cases that arise when using MOG density modeling.

1. Figures 16(a) - 16(d) show some typical MOG fits obtained under various confound
corruption conditions using data from section 3.3. Figure 16(a) shows 3-component
MOG fit with a centered “null” component (primary corruption using W5). Figure 16
(b) shows a 3-component MOG fit with a right shifted “null” component (primary
corruption using W3). Figure 16(c) shows a 3-component MOG fit with a left shifted
“null” component (primary corruption using W1). Figure 16(d) shows a “split” null
component where the “null” itself is described by a 2-component MOG fit.

2. Figure 17(a) shows a 2-component MOG fit where the “activation” and “deactivation”
are jointly captured by a single Gaussian distribution. In such cases, it is reasonable
to force BIC to identify at least 3 classes. With this constraint, we get a 3-component
best fit for the same data set. This is shown in 17(b).

The “null” density is modeled in most cases as a 1 or 2 component MOG density. This can be
identified easily in most cases by looking for 1 or 2 “large volume” components near z = 0.
The *“activation” and “deactivation” components are usually much smaller in size and are found
to be centered near the “tails” (positive “tail” for “activation” and negative “tail” for
“deactivation”). Note that these comments are intended as “heuristic” rules that should work
in many but not all cases.

Neuroimage. Author manuscript; available in PMC 2010 August 1.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Pendse et al.

Page 12

We also describe here another strategy that is also “heuristic” in nature but more quantitative.
Calculation in (28) requires the identification of the activation and non-activation distributions.
Suppose C is the set of classes identified by EM. For each voxel v;, the posterior probability
of membership in each class c is defined as:

nP(zilvi € c)

Pyiecdz)=——F———
S PGV € D) 30

where 7 are the estimated class fractions. Suppose t; be the raw demeaned time courses
associated with voxel v;. We define a probability weighted time course for class ¢ as follows:

n
MC:ZP(V,' € clz)) I (P(v; € clzi)>0.5) 1;
Z (31)

If e is the explanatory variable used in generating the current z-stat map, we calculate the
correlation coefficient:

(e —7) (e-?)
c— — s
llue = Telllle =l (32)

where ii; and & are the means of u. and e respectively.

We assess the distribution of the correlation coefficient by bootstrapping pairs [Davison and
Hinkley, 1997] from the demeaned vectors u; and e and calculate a confidence interval {L,
U} for the true value of p.. We suggest classifying a class c as activation if L > 0, i.e. whenever
there is a statistically positive correlation. Similarly, a class c is classified as deactivation if
U <0, i.e. whenever there is a statistically significant negative correlation. For the purposes
of calculating the GFDR threshold, J; and J, can be chosen as any values that satisfy J; + J»
= Jr — J3 where Jt is the total number of classes found using BIC. Figures 30, 31, 32 and 33
(shown in the appendix) demonstrate the application of bootstrapping to a real audio visual
fMRI dataset. For the visual stimulus, class 2 was identified as “activation” (bootstrap CI
approx. [0.64, 0.83]) and class 1 was identified as “null” (bootstrap CI approx. [-0.23, 0.2]).
For the auditory stimulus, we identified classes 3 and 4 as “activation” (bootstrap Cls approx.
[0.58, 0.83], [0.77, 0.93] respectively), class 2 as “null” (bootstrap CI approx. [-0.25, 0.25])
and class 1 as “deactivation” (bootstrap CI approx. [-0.7, -0.45]).

For the simulation study, we chose J; =0, J, = 1 and J3 = 0 or J3 = 1 depending on whether
we found a mixture model with 1 component or 2 components.

3.3.2 Precautions to be taken when using GFDR—In this section, we briefly want to
review the precautions that should be taken when using GFDR.

1. Validity of the “null” model: Modeling of empirical “null” viaa MOG density relies
on the assumption that the stationary noise in fMRI data is Gaussian. If thisassumption
is invalid then the MOG hypothesis may not be valid. We want to emphasize that an
attempt should be made to derive the correct form of parametric “null” based on the
analysis under consideration. For example, if some analysis proceeds via logistic
regression, then one should attempt to derive how modeling violations affect the
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distribution of the “null” hypothesis. If such a derivation is possible, then the correct
parametric form of “null” under these violations should be used for empirical
estimation. One cannot expect one form of “null” to be valid in all analyses.

2. Gross misspecification of design matrix: Under the section titled “Identification of
class distributions” we suggested a bootstrapping approach based on the correlation
coefficients of the EV w.r.t a probability weighted time course. This strategy might
fail if the magnitude of modeling violations is so large as to disable our ability to
detect positive or negative correlations with the EV. These would typically be the
scenarios where the model is grossly misspecified. In these cases, one should consider
modifying the design matrix appropriately.

3. Being conservative: The number of voxels in fMRI data n should be large enough
for the estimated model Q to be close to the true model using BIC. This means that
the data should contain voxels from all three categories, “activation”, “deactivation”
and “null”. In fact, it was seen in numerical experiments described in section 3.3 that
when the fraction of “activation” and “deactivation” is < 0.02 and when the modeling
violations are “large” (o}, > 4.5), BIC fails to identify the correct number of classes.
However, this does not necessarily mean that GFDR will perform poorly. As shown
in 3.4.1 when the activation fraction was small 0.01, BIC often identified only 1
distribution. In this case we took this distribution to be the “null” distribution and in
these cases GFDR produced results very similar to FDR (see Figure 22). GFDR
inference is conservative so long as the “null” is chosen in a conservative fashion i.e.,
any “class” that cannot be positively identified as “activation” should be included in
the MOG for “null” hypothesis.

3.4 Performance Evaluation

3.4.1 Simulation Study—The goal of this simulation study was two fold:

1. Assess the bias of GFDR compared to FDR under varying values of ¢, degrees of
modeling violations and activation fraction.

2. Assess the robustness of GFDR based inference under varying SNRs.

To this end, we generated 4-D artificial data according to the General Linear Model (GLM) as
follows:

y=xB+wn+e (33)

wherey € RP, x € RP, w € RPand ¢ ~ N(0, 62 Ip). In the above equation, y is the observed
artificial data, x is a randomly chosen design vector with elements U(0, 1), w is a randomly
chosen unmodeled signal vector with elements U(0, 1) and # measures the strength of
unmodeled signal. Data was generated on a 64 x 41 x 64 image consisting of nearly 36854
non-zero voxels. The length of simulated timecourses was p = 74. For each voxel (i, j, k), we
chose 4 = 1 for active voxels and £ = 0 for inactive voxels such that the overall fraction of
active voxels was f (user specified). Since g = 1 for “activation” class, SNR becomes (Er:(lr
We chose ¢ = 1 to get an approximate SNR of 1. The artificial data was analyzed using only
the design vector x, ignoring the unmodeled signal wy.

y=xB+e (34)
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Artificial datasets were generated by varying the intensity of modeling violations 7 in the set
{0, £0.05, £0.1} and the fraction of true activation f in the set {0.1, 0.2}. The resulting z-statistic
images were thresholded using both FDR and GFDR for multiple values of q. For GFDR
calculation, the number of Gaussian distributions in the mixture model selected by BIC was
either 1 or 2. In the case when only one distribution was fit we took J; =0, J, =1 and J3 = 0.
In the case when two distributions were fit we took the large component near the origin as the
“non-activated” distribution and took J; = 0, Jo = 1 and J3 = 1. Since the true activation was
known in each dataset, we were able to calculate the true false discovery rate attained at
thresholds chosen by FDR and GFDR. Ideally, this value should be close to q on the average.

We also investigated the bias and true positive rate (TPR) of GFDR and FDR under different
SNRs and various combinations of f and 5. We varied SNR (1/0) in the set {0.9, 0.95, 1, 1.05,
1.1, 1.15, 1.2}, the true activation fraction f in the set {0.01, 0.05, 0.1, 0.15} and the intensity
of modeling violation # in the set {0, £0.05, +, 0.1}. For each combination of ¢, f and 7, we
generated 100 artificial datasets and for each dataset we calculated the FDR and GFDR based
thresholds for a range of g values. For each q value, we define the mean absolute bias for each
technique (GFDR and FDR) as:

m

1
B f.n.q)=— > Ja(0. f.1.4.) = )l
i=1 (35)

Here q(o, f, #, q, i) is the actual value of FDR attained at the threshold calculated by one
technique (GFDR or FDR) for given values of o, f, n and g at iteration i and m is the number
of simulations. Note the definition of B(a, f, 7, q) has small values for a tight control of the true
FDR near the chosen g value and large values otherwise. Since for each artificial dataset, we
know which voxels are truly active, we can also calculate a mean TPR (T) for each technique
as a function of f, #, o and g as follows:

1 m Di
T(o, f,n, q)=—2x
mi= A (36)

where Dj is the number of voxels declared active by one technique (GFDR or FDR) for given
values of ¢, f, # and g at iteration i and A; is the number of truly active voxels at iteration i. As
before m is the number of simulations. Ideally we would like a high TPR T at a low bias B.

3.4.2 fMRI Data—To demonstrate how GFDR performs on a real dataset, we used the “FSL
Evaluation and Example Data Suite” (FEEDS) from FMRIB Image Analysis Group, Oxford
University. The URL for this data suite is:
http://www.fmrib.ox.ac.uk/fsl/feeds/doc/index.html

One of the datasets in the example suite contains an audio visual experiment with two
explanatory variables, the visual stimulus (30s off, 30s on) and an auditory stimulus (45s off,
45s on). Analysis was carried out using FEAT (FMRI Expert Analysis Tool) Version 5.4, part
of FSL (FMRIB's Software Library). www.fmrib.ox.ac.uk/fsl

The following pre-statistics processing was applied; motion correction using MCFLIRT
[Jenkinson 2002]; non-brain removal using BET [Smith 2002]; spatial smoothing using a
Gaussian kernel of FWHM 5mm; mean-based intensity normalisation of all volumes by the
same factor; highpass temporal filtering (Gaussian-weighted LSF straight line fitting, with

Neuroimage. Author manuscript; available in PMC 2010 August 1.


http://www.fmrib.ox.ac.uk/fsl/feeds/doc/index.html
http://www.fmrib.ox.ac.uk/fsl

1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Pendse et al.

Page 15

sigma=50.0s). Time-series statistical analysis was carried out using FILM with local
autocorrelation correction [Woolrich 2001]. To study the effect on results produced by GFDR
and FDR for real fMRI data under modeling violations, we introduced an unmodeled signal
(see Figure 27) with maximum amplitude of 1% signal change into the fMRI data and
performed a second statistical analysis without any autocorrelation correction.

4 Results

4.1 Simulation Study

1.

Figure 18 depicts a comparison between FDR and GFDR in which no unmodeled data
has been included at SNR = 1, only relative fraction of activation is changed. The true
expected bound lies on the line with slope 1. FDR curves approached well the true

bound for small values of g and deviated from it the larger the q value and the larger
the fraction of activation. GFDR, on the other hand, maintained good control staying
very close to the true bound for large values of g for both small and large activation.

In Figure 19, unmodeled data was included at SNR = 1. FDR departed significantly
from the true bound by becoming overly conservative or liberal depending on the
unmodeled data (positive or negative). The departure was significant regardless of
the value of g, becoming larger with larger q values. GFDR, however, maintained
good control and resulted in g values very close to the true ones even for large values
of g.

Figures 20 and 21 show the combined effect of small and large activation in
combination with positive and negative unmodeled signals at SNR = 1. In both cases,
FDR was unable to control false discoveries satisfactorily. GFDR was able to achieve
good control even under this joint violation.

Figure 22 shows the mean absolute bias (B) attained by GFDR and FDR under varying
SNR's for the fraction of activation f = 0.01 at g = 0.1. It can be seen that GFDR and
FDR produce identical results when there are no modeling violations # = 0. The mean
absolute bias of FDR increases dramatically with SNR for all values of 5 # 0 (going
as high as B = 0.3) whereas GFDR is able to maintain almost the same mean absolute
bias (B <0.03) as in the case of = 0. As expected, the bias B decreases with increasing
SNR for GFDR. For FDR we do not see a similar trend, the bias B even increasing in
some cases with increasing SNR.

Figure 23 shows the mean true positive rate (T) attained by GFDR and FDR under
varying SNR's for the fraction of activation f = 0.01. The mean true positive rate T
produced by FDR varies a lot for the same SNR under varying 7. In comparison,
GFDR produces a much smaller variation in T for the same SNR under varying 7.
The smallest mean TPR at SNR 1 produced by FDR was close to 0.9 while that
produced by GFDR was close to 0.95. Thus GFDR was able to attain a small mean
absolute bias and a high mean true positive rate under all SNR's and # for f = 0.01.

Figure 24 shows the mean absolute bias of GFDR and FDR under varying SNR's for
no modeling violations z = 0 and various fractions of activation fand g = 0.1. It should
be noted that both GFDR and FDR produce a relative low mean absolute bias (B <
0.03). Even so, it can be seen that as f increases, the mean absolute bias B of FDR
increases whereas GFDR produces a much smaller B for all but one case (SNR = 0.9,
f=0.01, B=0.03). Figure 25 shows the mean true positive rate T for » =0 and varying
f for both techniques. Both FDR and GFDR produce almost identical mean true
positive rate (T > 0.95) at all f and SNR values.
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4.2 fMRI Data

1. Figure 28 shows the results produced by GFDR and FDR on FSL Feeds Data for the
visual and auditory stimulus before and after the introduction of 1% unmodeled signal.
We used a g-value of 0.1 for this comparison. 28(a) shows the voxels declared active
by GFDR and FDR for the visual stimulus. As can be seen there is good agreement
between the two techniques. 28(b) shows the voxels declared active by GFDR and
FDR for the visual stimulus under 1% unmodeled signal. GFDR produces results
almost identical to 28(a) whereas FDR declares many more voxels as active.

Figure 28(c) shows the voxels declared active by GFDR and FDR for the auditory
stimulus. Again, there is good agreement between the two techniques. 28(d) shows
the voxels declared active by GFDR and FDR under modeling violations. Again
GFDR produces almost identical results to 28(d). In this case, FDR also produces
almost identical results to 28(c). This can be understood by looking at the GMM fits
for the z-stat distributions with and without modeling violations.

2. Figures 29(a) and 29(b) show the distribution of z-stats for visual stimulus and the
corresponding GMM fits. It can be seen that introduction of modeling violations has
shifted the distribution away from 0. This shift causes FDR to declare many more
voxels as active as compared to the case without modeling violations. GFDR on the
other hand is able to produce identical results even under these modeling violations.

Figures 29(c) and 29(d) show the distribution of z-statistic for the auditory stimulus.
There is almost no difference between the two distributions and hence there is also
no difference in the GMM fits and the inference produced by GFDR and FDR as
compared to the case without modeling violations.

5 Discussion and Conclusions

In this paper, we investigated whether the performance of FDR can be improved in the presence
of modeling violations. Our results indicate that accounting for the empirical “null” and its
fraction in fMRI via a MOG density using the GFDR algorithm leads to much better
performance compared to traditional FDR that uses a fixed “null” of N(0, 1). We have shown
how the assumptions made by conventional FDR (section 3.1.2) are violated in a real fMRI
data analysis. Presence of modeling violations can occur due to a number of reasons (see Figure
15) including (1) using the same design matrix to perform a GLM analysis of all brain voxels
(2) physics related effects or (3) biology related effects. When modeling violations are present
the assumption of a fixed null N(0, 1) is not valid. Hence any method that performs inference
under this assumption may produce incorrect results. It is easy to show mathematically
(Appendix B) as well as via numerical simulation (section 3.3) that the density of “null” is well
described by an MOG density. We find that the MOG density describes all three classes quite
accurately (see Figure 5 - 11). This is the key to the improved performance of GFDR (Figures
18 - 25 and 28 - 29).

GFDR is a procedure for controlling false discoveries in an empirical Bayesian framework
[Efron et al., 2001] specially adapted to fMRI thresholding. It is a generalization of previously
suggested corrections to FDR [Allison et al., 2002; Storey, 2003] where we not only estimate
the fraction of the “null” distribution but also the “null” distribution itself adaptively from the
data. The problem of estimating Hy is at the heart of empirical Bayesian approaches based on
the work of Efron et al. [2001]. Ours is not the first approach to suggest accounting for an
empirical “null”. For example, Efron [2004] discuss a drug mutation study that was analyzed
using logistic regression and where the z-values were computed using maximum likelihood
estimates for the logistic coefficients and large sample estimates of their standard error. Here
they propose to estimate the “null” distribution as a Gaussian distribution fitted to the peak of
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the histogram of z-values. This approach assumes that the “null” can be well described by a
single Gaussian distribution. Morever, this approach requires specification of additional
parameters by the user (see section 3.1.3 for details) for the determination of the variance and
fraction of the “null” distribution. As we have shown here the assumption of a single Gaussian
distribution for “null” is not always true (see Figures 12(a) - 13(d)), especially for fMRI data.
In addition, the form of parametric “null” prescribed in GFDR is derived theoretically from
the underlying GLM model in the presence of modeling violations for fMRI. This is also
verified via a large simulation study as shown in section 3.3. GFDR also does not require any
parameter setting by the user.

GFDR fits the histogram of z-values using a MOG model with the number of components in
the MOG estimated using the BIC criterion. While the BIC criterion often estimates a correct
model, it might underestimate the number of classes in the data when the “activation” fraction
issmall. In these cases, GFDR becomes slightly conservative. We also found in our simulations
situations where BIC identifies a 2 component MOG fit to the data, with one component
modeling the “null” and the other component jointly capturing both the “activation” and
“deactivation” (see Figure 17(a) - 17(b)). In these cases, it is necessary to force separate
identification of “activation” and “deactivation” by fitting at least a 3 component Gaussian to
the data via BIC. In Figure 16(a) - 16(d) we show example MOG fits to the data where
identification of “null” and “activation” distributions is relatively easy. However, this is not
always the case. In situations where it is questionable as to whether certain components should
be considered “activation” or “null”, one should be conservative and consider them to make
up the “null” class. We described a correlation based heuristic approach to classify components
as members of “activation” or “null” class automatically. This approach is also a heuristic and
might fail in cases of large modeling violations. Again, we recommend being conservative in
the “definition” of “null” making it as large as possible without any ambiguities.

The artificial data results indicate that conventional FDR produces good results when model
violations are not strong, however, once activation fraction becomes relatively large or
unmodeled data is not accounted for, severe deviations from true g values are obtained.
Correcting approaches include revising and modifying EV's. In some instances this is possible,
for example by adding motion parameteres as covariates of no interest, in others, the source is
not known and hence a proper EV is not possible to be generated. One can attempt to compute
sources using a technique such as Independent Component Analysis (ICA) [Beckmann and
Smith, 2004]. In our experience, these techniques produce a very large number (typically 30 -
100) of independent components, making it difficult to pick out a meaningful source
component. The exact origin of these source signals is difficult to quantify but could be related
to physiological noise, motion artifacts, scanner noise as well as local variability of the
Haemodynamic Response Function (HRF) and drift. These un-modeled signals could have a
significant impact on standard methods of inference.

For instance, cluster-based methods such as Gaussian random field (GRF) theory approaches
(Worsley et al. [1996]) assume the z-stat image as a realization of a smooth N(0, 1) Gaussian
random field. Inference proceeds by first selecting a cluster forming threshold (e.g., z > 2.3)
followed by testing for the size of the resulting blobs. As noted before, the assumption of N
(0, 1) smooth Gaussian random field is a strong one may not be valid in the presence of
modeling violations which is typical given the nature of fMRI analysis. Other approaches such
as permutation tests (Nichols [2002]) do not make any assumptions about the “null” distribution
but instead make strong assumptions about the “exchangeability” of the data. This is again a
strong assumption that may not be valid in the presence of unknown modeling violations.
Exchangeability is also violated in the case of correlated data (e.g., temporal correlation in
timeseries). GFDR inference, on the other hand has the desirable properties of enabling
estimation of “null” from the data as well as providing a sharp control of the true FDR at a user
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specified level (“equivalence theorem” of Efron et al. [2001]) as long as the empirical “null”
is estimated correctly. In cases when the estimated “null” is larger than the true “null”, GFDR
inference becomes conservative.

The MOG fit from GFDR can also be used to perform alternative hypothesis testing via the
identified “activation” distributions. Posterior probabilities of membership in the joint MOG
“activation” class can be computed followed by a user selected “cutoff” (e.g., p> 0.5) to identify
activation. A potential drawback of this approach is that when the “activation” class fraction
is small, the “activation” class might not be identified as a separate component in the MOG fit
resulting in overly conservative inference.

To summarize, we postulated and validated the MOG density “null” model for real fMRI data.
The GFDR algorithm achieves enhanced control of FDR by adaptively accounting for the form
and fraction of the “null” from the data. In conclusion, GFDR is a useful technique capable of
handling model violations and producing robust results. Its use could significantly improve
practical fMRI studies involving massively univariate GLM analyses in which perfect
voxelwise modeling is not possible.
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A fMRI Modeling using the GLM

Consider an FMRI dataset with vectors of p dimensional signals y; obtained over the set of
voxelsi=1, 2, ..., nspanning the entire brain. Suppose that the experimental paradigm and
associated covariates of interest are modeled via a p by g design matrix X. Each column of X
is either an explanatory variable (EV) or a covariate of no interest used to model known non-
EV related signal in the brain. Assuming Gaussian noise, one can hypothesize the generation
of data at voxelsi =1, 2, ..., nvia a General Linear Model (GLM) [Friston et al., 1995] as
follows:

vi=XpB;+&; where y; € R’ X € RP* ; € R4 (A-1)
The random term in the above model ¢; is assumed to be have a Gaussian distribution;
& ~ N(0,07V) (A-2)

Each component of g; measures the strength of the corresponding column of X in the measured
response y;. Assuming V; is estimated or modified using some strategy like prewhitening or
coloring for each voxel i, equation (A-1) can be solved to yield:

- o 5 -1 e
B=X"vx)y  x"vily (A-3)

The variance o7 is estimated unbiasedly as follows:
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=i - XB) V0= XB)/(p - @) Aty

One is normally interested in testing if a particular contrast of these regression parameters f;
are zero. Let ¢ € RY be a contrast vector. Suppose the hypothesis test of interest is:

Ho:c! Bi=0,i=1,2,...,n (A-5)

One can perform, for example, the following t-test at each voxel i to assess the hypothesis
Hoi

! B;

R 1 ~ g
Tl (X! VI.‘IX) c (A-6)

Since this test is carried out at each voxel i, one has an image of the T test statistic. These T
values can be converted into equivalent Z values corresponding to the standard Gaussian
distribution by using the following T to Z transformation function:

Under Hy:

&(T)=z; if t;, z; satisfy
P(Tp—>t:)=P(N(0, 1)>2),i=1,2,...,n )

In the resulting Z statistic image, the null hypothesis Hy can be rejected and voxel i can be
declared as active if:

Zi 22 (A-8)
Similarly, voxel i can be declared as deactive if:
=7 (A-9)

Here, z, and z are the upper and lower Z thresholds. The difficulty with choosing thresholds
Z, and z) to detect activation and deactivation arises because of the problem of multiple
comparisons. Since the same tests (A-8) and (A-9) are carried out at all n voxels, and n is
typically very large, there is a significant amount of false “activation” or “deactivation” purely
by chance (Type I error). Many schemes exist to correct for multiple comparisons, such as
Bonferroni correction [Simes, 1986;Shaffer, 1995], Gaussian Random Field (GRF) theory
[Worsley et al., 1996] and False Discovery Rate (FDR) [Benjamini and Yekutieli, 2001]. See
Nichols and Hayasaka [2003] for a comparative review.

B Effect of Modeling Violations

Please refer to Appendix A for an introduction to basic GLM based fMRI modeling. This
section discusses the effect of modeling violations on the statistical maps produced by a GLM
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with Gaussian noise. It should be noted that model (A-1) assumes that we use the same design
matrix for each voxel i and that the noise is stationary at all voxels. The signal at any voxel i
can be thought of as a combination of stimulus related signal (X5;), structured noise (wp) and
stationary noise ¢j. The origins of structured noise for FMRI are not fully understood. To better
understand the effect of structured noise on FMRI analysis, consider that the true model
describing data y; is given by:

Yyi=XBi+twp+te; (A-10)

where yj, w € RP, X € RP*4, 8 € RY, p € R and ¢; is distributed according to (A-2). In the
equations below, it is assumed that the expectations, variances and distributions are conditional
given w and p.

If (A-1) is the assumed model the £ has a Gaussian distribution with mean:
E@)=A+X" VX)XV hwp (A-11)
The estimate is no longer unbiased. Define bj to be the bias of ;. Thus
bi=XT VX0 XTV g (A-12)

The variance of /5 remains unchanged at:

-~ R |
VarB)=X" V' X) o7 (A-13)

(p— )77
Also (712 has a non-central 2 distribution with p — q degrees of freedom:

(p - q)77
———— ~ X (P - qm)
o (A-14)

and with non-centrality parameter

2
= TV =W VX V0T XV )
P (A-15)

The estimate &+ is also biased:
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o2

Bl

2

Mi
p=4q (A-16)

=1+

However, if p — q is large then the estimate is approximately unbiased. One can also show that
fi and g; are independent random variables. With these facts in place, it is easy to see that:

Under Hy: B

—~ -

T cT(XTVI.]X) c
b, 1
ajyfef T vl 0 e

x2(p-quj)

= (A-17)

N

If the degrees of freedom p — q is sufficiently large then from Central Limit Theorem, one can
show that:

2
—q, U : Ayt 2
XP=qr) (P - )
pP—q p-q9 (p-q° P4 (A-18)

For large p — q this distribution is sharply peaked at its mean value. Thus when p >> g, the
following holds true:

T3,
Under Hy:——<8
Ty XTVin e
N [ i f; fZJ
o XTVix) e (A-19)

where

_ P—q
S|
Hitp—q (A-20)

CT b,ﬁ

m;=
The mean of this null distribution is o AJel (XT V,f‘ X)flc and variance s,:f,?. Equation
(A-19) proves that incorrect modeling assumptions or unmodeled signals result in a shifted
and scaled Gaussian null distribution. Locally variable effects due to signal inhomogeneities,
variance in vascular flow and/or BOLD response (onset, strength, duration, extent),
background effects due to coherent activity similar to resting state networks (Luca et al.
[2005]) etc. in general result in a mixture of Gaussians (MOG) density for the “null”
distribution. Similarly, the distribution of “activation” and “deactivation” can also be argued
to be a scaled and shifted Gaussian densities. The histogram of z-values can thus be modeled
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as a MOG density with 1 or more subcomponents representing “activation”, “deactivation”
and “null” distributions. See Figure 15 for a summary of these ideas.

C Identifiability of the Mixture Model

The parameter set © in the mixture model is estimated via the maximization of £(D; Q, ®), the
likelihood of observing the data D for a given model Q. If Q4 and Q are two nested models
with the number of unknown parameters ®, in Q, more than ®1 those in Q; then it is easy to
show using the estimated parameters that:

(D0, 0,) > UD;Q,, 01) (A-21)

i.e, the maximized likelihood of observing the data in the larger model is at least as much as
that in the smaller model. Since our model identification depends on maximizing the likelihood,
how can we be sure that our estimate is close to the true model ©y?. This is where Bayesian
model selection comes in. Model evidence for a particular model Q is the logarithm of the
probability of jointly observing the model Q and the data D. Ideally, one would want to choose
a model with the largest model evidence:

Q= arg maxplogP (Q, D) (A-22)

Of the several approximations to the model evidence [Lanterman, 2001], we chose the Bayes
Information Criterion (BIC) which has the following definition:

&

logP(Q, D)=£(D;Q, ®) — — logn

(A-23)

where @ is the maximizer of £(D; Q, ©) and n is the size of data D. The BIC criterion has the
following property:

Q- Qpasn— o (A-24)

« Itwas shown in the section titled “Effect of Modeling Violations” that the null
distribution can be represented as a mixture of scaled and shifted Gaussian
distributions. Thus the true model Qg is well defined.

« Itis well known that optimization algorithms converge to different local solutions
depending on the initialization. The maximization that we use is based on the
Expectation Maximization (EM) algorithm [Dempster et al., 1977] which guarantees
convergence to a local solution. We initialize EM using the k-means algorithm
[MacQueen, 1967]. In addition, we use the apriori knowledge about the true model,
namely that activations have the highest z-stat values and deactivations have the
lowest z-stat values. The initial centers for k-means are chosen uniformly distributed
between (Zmin, Zmax), SO that the center with highest z-value corresponds to activation
and that with the lowest z-value corresponds to deactivation.
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fMRI data sets have on the order of n ~ 10° voxels. Combining this with the fact that Qg is
well defined, maximization of likelihood is well initialized and convergence to true model
guaranteed by BIC (A-24), we can be confident that the estimated model is € is identified
correctly. Figure 26 shows the application of this logic to a real audio-visual fMRI dataset
(described later). The optimal number of mixtures was identified as 4 at which the BIC attained
a maximum.

Appendix: D Description of EM/BIC procedure used in GFDR

L - 0 Ak
Initialize, @~ < {Jk,k—1,2,3.zk:llk—l},m —0

2. At step m, estimate the full parameter set ®™ by maximizing the likelihood of
observing the data D:

0" =argmax g {(D;QY", ©) (A-25)

3. Estimate model evidence log P(Q™, D), i.e., the joint probability of observing the
model QM and the data D using the Bayes Information Criterion (BIC) [Lanterman,

2001]:
logP(Q", D)=£(D;Q", @) — @logn
2 (A-26)
where |®M] is the number of unknown parameters in the model Q™:
[©"=Card(@") (A-27)
4. Form>1,if log P(QM, D) > log P(Q™1, D), update
3 3
Q" (S k=1,2,3:) T D )
k=1 k=1 (A-28)
m «— m+1 (A-29)
and go to step 2. Otherwise estimate:
Q,6)={Q", " (A-30)

Appendix: E Bootstrap figures for fMRI data set
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Figure 1.
Graphical depiction of FDR controlling procedure in the p-domain. The figure shows a plot of

Page 26

k
k versus the sorted p-values p(k) and the quantity FDR (k) =q;. The maximum p-value at which
p(k) crosses FDR(k) becomes the threshold. The scale on the k-axis in the above figure is

x104,
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Figure 2.

Graphical depiction of FDR controlling procedure in the z-domain. This is equivalent to Figure
1 except that it is in the z-domain. The figure shows a plot of a versus np(a) — gn(e). The
threshold is determined as the smallest « for which np(a) — gn(a) <0
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Figure 3.

Graphical comparison of GFDR and FDR in the z-domain. The figure shows a plot of a versus
np(a) — gn(e) for FDR (blue) and nF(a) — gn(a) for GFDR (green). The thresholds for both
methods are determined as the smallest values of « such that the corresponding curves cross
the zero line (red) from positive to negative values.
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Figure 4.

Top left: “activation”, “deactivation” and “null” data was generated using a block design EV
with 140 timepoints (X). Top right and bottom row: Confounds generated from a uniform
distribution U (0, 1) (top right), a Gamma distribution Ga(1, 1) (bottom left) and signal from
a resting state network in real fMRI data (bottom right). All confounds were demeaned and
normalized to have the same energy as the data generating EV X. For each combination of
mcand pd 100 simulated data-sets were generated. Each simulated data-set consisted of 2000
vectors simulated as described in 3.3. Each data-set was then analyzed using only the block
design EV X (i.e., ignoring the point-wise variable confounds) to calculate z-statistics at the
2000 points corresponding to the parameter estimate of the only column in X. For each data-
set a Gaussian mixture model was fit to the full data. When GMM identified R = 3 classes via
BIC we also calculated the true positive rates of each simulated class using Bayes aposteriori
classification.
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Figure 5.

Figure showing the fraction of times that GMM identified R = 1 classes using the BIC criterion
over 100 simulated datasets of 2000 vectors each as per section 3.3. BIC did not selectR = 1
in any of the simulations.
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Figure 6.

5 3 35
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45

Figure showing the fraction of times that GMM identified R = 2 classes using the BIC criterion
over 100 simulated datasets of 2000 vectors each as per section 3.3. It is seen that an increase

in maximum SNR of unmodeled signal (o},,,) results in more frequent misidentification. It is

also seen the BIC misidentification increases when the fraction of “activation” and

“deactivation” decreases.
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Figure 7.

Figure showing the fraction of times that GMM correctly identified R = 3 classes using the
BIC criterion over 100 simulated datasets of 2000 vectors each as per section 3.3. It is seen
that when the fraction of “activation” and “deactivation” zact, geact > 0-02 and maximum SNR

of unmodeled signal p} . < 2.5, BIC achieves a correct identification accuracy of > 85%. Also
When magt, Tgeact > 0.04 and p? . < 4, BIC achieves a correct identification accuracy of > 90%.
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Figure 8.

Figure showing the fraction of times that GMM identified R = 4 classes using the BIC criterion
over 100 simulated datasets of 2000 vectors each as per section 3.3. It is seen that when the
fraction of “activation” and “deactivation” mat, geact > 0.04, BIC identifies 4-classes with
increasing probability as maximum SNR of unmodeled signal p; . increases reaching a value
of around 0.2 for o}, =5. BIC also misidentifies the number of classes when m,¢t, 7geact < 0.02
reaching a maximum probability of around 0.12 for p} .. =1.
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Figure 9.
Figure showing the true positive rate (maximum posterior probability based) for the
“activation” class when BIC correctly identified R = 3 as a function of maximum SNR of

unmodeled signal p? . and the “activation” fraction. It is seen that for zact = mgeact > 0.04 @
TPR rate of > 90% is obtained for all p .. FOr mact = mgeact > 0.02 a TPR rate of > 92% is

obtained for p .. < 3.5. The values for wa¢t = 7geact < 0.02 and p,, > 4 are not reliable because
of the small fraction of correct identification by BIC in these cases.
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Figure 10.

Figure showing the true positive rate (maximum posterior probability based) for the “null”
class when BIC correctly identified R = 3 as a function of maximum SNR of unmodeled signal
Ohax @nd the “null” fraction. It is seen that for ¢t = 7geact > 0.04 a TPR rate of > 98% is
obtained for all o} .. FOr mact = mgeact > 0.02 a TPR rate of > 99% is obtained for p} . < 3.5.

The values for maet = mgeact < 0.02 and p) .. > 4 are not reliable because of the small fraction
of correct identification by BIC in these cases.
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Figure 11.

Figure showing the true positive rate (maximum posterior probability based) for the
“deactivation” class when BIC correctly identified R = 3 as a function of maximum SNR of
unmodeled signal p? .. and the “deactivation” fraction. It is seen that for zact = 7geact > 0.04 a
TPR rate of > 90% is obtained for all p .. FOr mact = mgeact > 0.02 a TPR rate of > 92% is

obtained for p .. < 3.5. The values for wact = 7geact < 0.02 and pj,, > 4 are not reliable because
of the small fraction of correct identification by BIC in these cases.
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Figure 12.

Figures 12(a) - 12(d) show the MOG density fit to the histogram of z-values for data from
simulation study described in section 3.3. Each figure shows an example of a “split null” for
multiple simulation runs with za¢t = mgeact = 0.08, 7y = 0.84 and o}, =4.5. For example, in
Figure 12(a), subcomponents 2 and 4 are taken to be “activation” and “deactivation”
respectively while the “null” distribution is taken to be well-described by an MOG density with
subcomponents labelled 1 and 3. Similar comments apply to other Figures 12(b) - 12(d). When
the “null” is assumed to be an MOG density as described above then we obtain an average true
positive rate (TPR) for all classes > 96% using Bayes aposteriori classification.
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Figure 13.

Figures 13(a) - 13(d) show the MOG density fit to the histogram of z-values for data from
simulation study described in section 3.3. Each figure shows an example of a “split null” for
multiple simulation runs with zact = mgeact = 0.06, 7ny = 0.88 and pj , =5. For example, in
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Figure 13(a), subcomponents 1 and 3 are taken to be “activation” and “deactivation”
respectively while the “null” distribution is taken to be well-described by an MOG density with
subcomponents labelled 2 and 4. Similar comments apply to other Figures 13(b) - 13(d). When
the “null” is assumed to be an MOG density as described above then we obtain an average true
positive rate (TPR) for all classes > 95% using Bayes aposteriori classification.

Neuroimage. Author manuscript; available in PMC 2010 August 1.

= A H’ |35, V-
,‘__EA.\wz?’.’.'l.Vi\_.'_“_'.X?«_._._ P T o T

]



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Pendse et al.

Page 39

Ryt~ Mguger = 0087, = 0

1
on
alk - activation
i
eat [ I deactivation
ez

Run wun‘ber

True positive rate (TPR) for each class

-006.x - 088,p%

o8
B activation
> I
ol deactivation
ez

L

True pesitive rate (TPR) for each class

Run -un-ner

Figure 14.

Figure showing the true positive rates (TPR) (maximum posterior probability based) attained
for examples shown in Figures 17-13 when using a 2 component MOG density for the “null”
distribution. Results for 12(a) - 12(d) are shown from left to right in the top figure when 7wy
= mgeact = 0.08, 7y = 0.84 and o, =4.5 while results for 13(a) - 13(d) are shown from left
to right in the bottom figure when ma¢t = 7geact = 0.06, ny = 0.88 and p? . =5 It was found
that in both cases a high TPR was obtained for all classes. For the top figure, the average TPR
over all classes and runs was > 96% while for the bottom figure it was > 95%.

Neuroimage. Author manuscript; available in PMC 2010 August 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnue\ Joyiny Vd-HIN

Pendse et al. Page 40

GLM with Gaussian noise

[ fMRI data ]|:> ;
y=Xp+e¢

p \
Massively univariate GLM analysis
using the same design matrix X
at all voxels in the brain

h

iy 4

Possible sources of model misspecification in fMRI:
1. Signal inhomogeneities

2, Variance in vascular How and/or BOLD response
(onset, strength, duration, extent)

3. Unmodeled signals due to resting state networks (RSNs)

4. Locally variable haemodynamic response function (HRF)
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Figure 15.
Figure explaining that the empirical “null” distribution for GLM (with Gaussian noise) based
analysis of fMRI data is a MOG density.
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Figure 16.

Figures illustrating commonly observed MOG fits. Figures 16(a) - 16(b) show data from
simulation scheme of section 3.3. 16(a) shows the case of a “centered” 3 component MOG fit
for mpy) = 0.92, maet = mgeact = 0.04, pf,.=3 and primary corruption via confound 2 (zy1 = 0.1,
w2 = 0.8, my3 = 0.1). 16(b) shows the case of a “right shifted” 3 component MOG fit for
Tnull = 0.92, mact = Tdeact = 0.04, pf,=3 and primary corruption via confound 3 (my = 0,
mw2 = 0.2, my3 = 0.8). 16(c) shows the case of a “left shifted” 3 component MOG fit for 7
=0.92, mact = mdeact = 0.04, pf,,=3 and primary corruption via confound 1 (my1 = 0.8, oy, =
0.2, my3 = 0). 16(d) shows the case of a “split null” MOG fit where the “null” distribution is
well-modeled by a 2 component MOG distribution for 7 = 0.88, 7act = 7geact = 0.06 and

pfnaxzs'
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Figure 17(a) shows the case when BIC identifies 2 classes for ) = 0.88, mact = Tgeact = 0.06
and p} . =5. Here the “activation” and “deactivation” have been jointly identified by 1 Gaussian
subcomponent. In these cases, we find it reasonable to force BIC to fit at least 3 classes.
Refitting starting from 3 classes we find BIC determines the optimal number of classes to be
3. The MOG fit using this 3 component fit is shown in 17(b). Now the “activation” and

“deactivation” have been identified correctly as separate classes.
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Figure 18.

n =0, no unmodeled signal (see text) at SNR = 1. FDR and GFDR perform similarly for small
q values (q < 0.1). For larger values of g, FDR becomes more conservative while GFDR
maintains tight control.
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Figure 19.

|7] = 0.1, f=0.1 (see text). In the presence of unmodeled effects, FDR is significantly affected,
becoming overly liberal for = 0.1 and overly conservative for = —0.1. This effect becomes
more pronounced at higher g-values. On the other hand, GFDR maintains good control for both
n =0.1and n = 0.1 even for large values of q.
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Figure 20.

n =0.05, f=0.1, 0.2 (see text). This figure shows the combined effect of positive unmodeled
signals and strength of activation. For positive unmodeled effect (# = 0.05), FDR becomes
overly liberal at all values of g for both small and large activation (f = 0.1 and f = 0.2). The
degree of liberality is higher for smaller activation than larger activation. GFDR maintains a
tight control for both small and large activation at all values of g.
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Figure 21.

n=-0.05,f=0.1, 0.2 (see text). This figure shows the combined effect of negative unmodeled
signals and strength of activation. For negative unmodeled effect (5 = —0.05), FDR becomes
overly conservative at all values of ¢ for both small and large activation (f = 0.1 and f = 0.2).
The degree of conservativeness is larger for larger activation. GFDR is able to maintain good
control for both small and large activation at all values of q.
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Figure 22.

Simulation Results for CASE I: g = 0.1, f = 0.01. Figure shows the mean absolute bias

introduced by GFDR and FDR for various SNRs at various values of unmodeled signal

intensity #
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Figure 23.
Simulation Results for CASE I: g = 0.1, f = 0.01. Figure shows the mean true positive rate
attained by GFDR and FDR for various SNRs at various values of unmodeled signal intensity

n
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Figure 24.
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Page 49

Simulation Results for CASE 11: g = 0.1, # = 0. Figure shows the mean absolute bias introduced

by GFDR and FDR for various SNRs at various values of activation fraction f
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Figure 25.

Simulation Results for CASE I1: q = 0.1, n = 0. Figure shows the mean true positive rate attained
by GFDR and FDR for various SNRs at various values of activation fraction f
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Page 51

An example of Model Selection using Bayes Information Criterion (BIC) for the real fMRI
dataset (zstat 2). Here, BIC attains a maximum for a mixture density with 4 Gaussians.
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Figure 27.
Artificially introduced unmodeled random signal 1™% signal change

Neuroimage. Author manuscript; available in PMC 2010 August 1.

Page 52



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Pendse et al.

Page 53

Figure 28.

Figures 28(a)-28(d) show the activation maps for visual and auditory stimuli thresholded using
FDR and GFDR. The purple color shows the voxels declared “active” by GFDR and FDR
whereas the blue color shows the voxels declared active by “FDR” but not declared active by
GFDR. Figures 28(a)-28(b) show the thresholded activation map for visual stimulus using FDR
and GFDR before and after the introduction of the artificial unmodeled signal shown in Figure
27. Figures 28(c)-28(d) show the thresholded activation map for the auditory stimulus using
FDR and GFDR before and after the introduction of the artificial unmodeled signal shown in
Figure 27.
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Figure 29.

Figures 29(a) - 29(d) show the GMM maximum likelihood (ML) fits to the distribution of z-
values for visual and auditory stimulus. Figures 29(a) - 29(b) show the GMM ML fits for the
visual stimulus without the unmodeled signal and with the unmodeled signal respectively.
Figures 29(c) - 29(d) show the GMM ML fits for the auditory stimulus without the unmodeled
signal and with the unmodeled signal respectively.
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(d)

Bootstrap simulations for the correlation coefficient between the EV for auditory stimulus and
probability weighted time courses for each of the four maps without the unmodeled signal.
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Figure 31.
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Bootstrap simulations for the correlation coefficient between the EV for auditory stimulus and
probability weighted time courses for each of the four maps with the unmodeled signal.
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Figure 32.
Bootstrap simulations for the correlation coefficient between the EV for visual stimulus and
probability weighted time courses for each of the two maps without the unmodeled signal.
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Figure 33.
Bootstrap simulations for the correlation coefficient between the EV for visual stimulus and
probability weighted time courses for each of the two maps with the unmodeled signal.
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Table 1
Parameters selected for generating “activation”, “null” and “deactivation” classes.
activation null deactivation
1 0 -15
k
6min
15 0 -1
k
5max
i 001to1 |0.8t00.98| 0.01t00.1
Data from X X X
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Table 2
Parameters selected for generating one of the three confounds.
Confound 1 | Confound 2 | Confound 3

s 0.5 -0.5 -0.5
Pmin

s 05t05 05t05 05t05
Pmax

Ts 0.2 04 0.4

Data from W, W, W,
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