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Abstract
Bayesian model selection (BMS) is a powerful method for determining the most likely among a
set of competing hypotheses about the mechanisms that generated observed data. BMS has
recently found widespread application in neuroimaging, particularly in the context of dynamic
causal modelling (DCM). However, so far, combining BMS results from several subjects has
relied on simple (fixed effects) metrics, e.g. the group Bayes factor (GBF), that do not account for
group heterogeneity or outliers. In this paper, we compare the GBF with two random effects
methods for BMS at the between-subject or group level. These methods provide inference on
model-space using a classical and Bayesian perspective respectively. First, a classical (frequentist)
approach uses the log model evidence as a subject-specific summary statistic. This enables one to
use analysis of variance to test for differences in log-evidences over models, relative to inter-
subject differences. We then consider the same problem in Bayesian terms and describe a novel
hierarchical model, which is optimised to furnish a probability density on the models themselves.
This new variational Bayes method rests on treating the model as a random variable and
estimating the parameters of a Dirichlet distribution which describes the probabilities for all
models considered. These probabilities then define a multinomial distribution over model space,
allowing one to compute how likely it is that a specific model generated the data of a randomly
chosen subject as well as the exceedance probability of one model being more likely than any
other model. Using empirical and synthetic data, we show that optimising a conditional density of
the model probabilities, given the log-evidences for each model over subjects, is more informative
and appropriate than both the GBF and frequentist tests of the log-evidences. In particular, we
found that the hierarchical Bayesian approach is considerably more robust than either of the other
approaches in the presence of outliers. We expect that this new random effects method will prove
useful for a wide range of group studies, not only in the context of DCM, but also for other
modelling endeavours, e.g. comparing different source reconstruction methods for EEG/MEG or
selecting among competing computational models of learning and decision-making.
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Introduction
Model comparison and selection is central to the scientific process, in that it allows one to
evaluate different hypotheses about the way data are caused (Pitt & Myung 2002). Nearly all
scientific reporting rests upon some form of model comparison, which represents a
probabilistic statement about the beliefs in one hypothesis relative to some other(s), given
observations or data. The fundamental Neyman-Pearson lemma states that the best statistic
upon which to base model selection is simply the probability of observing the data under one
model, divided by the probability under another model (Neyman & Pearson 1933). This is
known as a log-likelihood ratio. In a classical (frequentist) setting, the distribution of the
log-likelihood ratio, under the null hypothesis that there is no difference between models,
can be computed relatively easily for some models. Common examples include Wilk’s
Lambda for linear multivariate models and the F- and t-statistics for univariate models. In a
Bayesian setting, the equivalent to the log-likelihood ratio is the log-evidence ratio, which is
commonly known as a Bayes factor (Kass & Raftery 1995). An important property of Bayes
factors are that they can deal both with nested and non-nested models. In contrast,
frequentist model comparison can be seen as a special case of Bayes factors where, under
certain hierarchical restrictions on the models, their null distribution is readily available.

In this paper, we will consider the general case of how to use the model evidence for
analyses at the group level, without putting any constraints on the models compared. These
models can be nonlinear, possibly dynamic and, critically, do not necessarily bear a
hierarchical relationship to each other, i.e. they are not necessarily nested. The application
domain we have in mind is the comparison of dynamic causal models (DCMs) for fMRI or
electrophysiological data (Friston et al. 2003; Stephan et al. 2007a) that have been inverted
for each subject. However, the theoretical framework described in this paper can be applied
to any model, for example when comparing different source reconstruction methods for
EEG/MEG or selecting among competing computational models of learning and decision-
making.

This paper is structured as follows. First, to ensure this paper is self-contained, particularly
for readers without an in-depth knowledge of Bayesian statistics, we summarise the concept
of log-evidence as a measure of model goodness and review commonly used approximations
to it, i.e. the Akaike Information Criterion (AIC; Akaike 1974), the Bayesian Information
Criterion (BIC; Schwarz 1978), and the negative free-energy (F). These approximations
differ in how they trade-off model fit against model complexity. Given any of these
approximations to the log-evidence, we then consider model comparison at the group level.
We address this issue both from a classical and Bayesian perspective. First, in a frequentist
setting, we consider classical inference on the log-evidences themselves by treating them as
summary statistics that reflect the evidence for each model for a given subject.
Subsequently, using a hierarchical model and variational Bayes (VB), we describe a novel
technique for inference on the conditional density of the models per se, given data (or log-
evidences) from all subjects. This rests on treating the model as a random variable and
estimating the parameters of a Dirichlet distribution, which describes the probabilities for all
models considered. These probabilities then define a multinomial distribution over model
space, allowing one to compute how likely it is that a specific model generated the data of a
subject chosen at random.

We compare and contrast these random effects approaches to the conventional use of the
group Bayes factor (GBF), an approach for model comparison at the between-subject level
that has been used extensively in previous group studies in neuroimaging. For example, the
GBF has been used frequently to decide between competing dynamic causal models fitted to
fMRI (Acs & Greenlee 2008; Allen et al. 2008; Grol et al. 2007; Heim et al. 2008; Kumar et
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al. 2007; Leff et al. 2008; Smith et al. 2006; Stephan et al. 2007b, 2007c; Summerfield &
Koechlin 2008) and EEG data (Garrido et al. 2007, 2008). While the GBF is a simple and
straightforward index for model comparison at the group level, it assumes that all subjects’
data are generated by the same model (i.e. a fixed effects approach) and can be influenced
adversely by violations of this assumption.

The novel Bayesian framework presented in this paper does not suffer from these
shortcomings: it can quantify the probability that a particular model generated the data for
any randomly selected subject, relative to other models, and it is robust to the presence of
outliers. In the analyses below, we illustrate the advantages of this new approach using
synthetic and empirical data. We show that computing a conditional density of the model
probabilities, given the log-evidences for all subjects, can be superior to both the GBF and
frequentist tests applied to the log-evidences. In particular, we found that our Bayesian
approach is markedly more robust than either of the other approaches in the presence of
outlying subjects.

Methods
THE MODEL EVIDENCE AND ITS APPROXIMATIONS

The model evidence p(y | m) is the probability of obtaining observed data y given a
particular model m. It can be considered the holy grail of any model inversion and is
necessary to compare different models or hypotheses. The evidence for some models can be
computed relatively easily (e.g., for linear models); however, in general, computing the
model evidence entails integrating out any dependency on the model parameters ϑ:

(1)

In many cases, this integration is analytically intractable and numerically difficult to
compute. Usually, it is therefore necessary to use computationally tractable approximations
to the model evidence (or the log-evidence1). A detailed description of some of the most
common approximations is contained by Appendix A.

A systematic evaluation of the relative usefulness of different approximations to the log-
evidence is not at the focus of this paper and will be presented in forthcoming work. This
article deals with a different question, namely: Given a particular approximation to the log-
evidence and a number of inverted models, how can we infer which of several competing
models is most likely to have generated the data from a group of subjects? In other words,
how can we make inference on model space at the group level, taking into account potential
heterogeneity across the group?

INFERENCE ON MODEL SPACE
In this section, we consider inference at the group level, using subject-specific model-
evidences obtained by inverting a generative model for each subject. We will first describe a
classical approach, testing the null hypothesis that there are no differences among the
relative log-evidences for various models over subjects. We then move on to more formal
Bayesian inference on model space per se. In contrast to the GBF, which, as described
above, represents a fixed effects analysis, both the classical and Bayesian approaches are
random effects procedures and thus consider inter-subject heterogeneity explicitly.

1Due to the monotonic nature of the logarithmic function, model comparisons yield equivalent results regardless whether one
maximises the model evidence or the log-evidence. Since the latter is numerically easier, it is usually the preferred metric.
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Classical (frequentist) inference—A straightforward random effects procedure to
evaluate the between-subject consistency of evidence for one model relative to others is to
use the log-evidences across subjects as the basis for a classical log-likelihood ratio statistic,
testing the null hypothesis that no single model is better (in terms of their log-evidences)
than any other. This essentially involves performing an ANOVA, using the log-evidence as
a summary statistic of model adequacy for each subject. This ANOVA then compares the
differences among models to the differences among subjects with a classical F-statistic. If
this statistic is significant one can then compare the best model with the second best using a
post hoc t-test. Effectively, this tests for differences between models that are consistent and
large in relation to differences within models over subjects. The most general
implementation would be a repeated-measures ANOVA, where the log-evidences for the
different models represent the repeated measure. At its simplest, the comparison of just two
models over subjects reduces to a simple paired t-test on the log-evidences (or a one-sample
t-test on the log-evidence differences). Log-evidences tend to be fairly well behaved, and the
residuals of a simple ANOVA model, or tests of normality like Kolmogorov-Smirnoff,
usually indicate that parametric assumptions are appropriate. In those cases when they are
not, e.g. due to outlier subjects, one can use robust regression methods that are less sensitive
to violations of normality (Diedrichsen et al. 2005; Wager et al. 2005) or non-parametric
tests that do not make any distributional assumptions (e.g. a Wilcoxon signed rank test; see
one of our examples below).

This classical random effects approach is simple to implement, straightforward and easily
interpreted. In this sense, there seems little reason not to use it. However, as shown in the
empirical examples below, this type of inference can be affected markedly by group
heterogeneity, even when the distribution of log-evidence differences is normal. A more
robust analysis obtains by quantifying the density on model space itself, using a Bayesian
approach as described in the next section.

Bayesian inference on model space—Previously, we have suggested the use of a
group Bayes factor (GBF) that is simply the product of Bayes factors over N subjects
(Stephan et al. 2007b). This is equivalent to a fixed effects analysis that rests on multiplying
the likelihoods over subjects to furnish the probability of the multi-subject data, conditioned
on each model:

(2)

Here, the subscripts i,j refer to the models being compared, and the bracketed superscript
refers to the n-th subject. The reason one can simply multiply the probabilities (or add the
log-evidences) is that the measured data can be regarded as conditionally independent
samples over subjects. However, this does not represent a formal evaluation of the
conditional density of a particular model given data from all subjects. Furthermore, it rests
upon a very particular generative model for group data: first, select one of K models from a
multinomial distribution and then generates data, under this model, for each of the N
subjects. This is fundamentally different from a generative model which treats subjects as
random effects: here we would select a model for each subject by sampling from a
multinomial distribution, and then generate data under that subject-specific model. The
distinction between these two generative models is illustrated graphically in Figure 1.

In short, the GBF encodes the relative probability that the data were generated by one model
relative to another, assuming the data were generated by the same model for all subjects.
What we often want, however, is the density from which models are sampled to generate
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subject-specific data. In other words, we seek the conditional estimates of the multinomial
parameters, i.e. the model probabilities r=[r1,...,rK], that generate switches or indicator
variables, mn=[mn1,...,mnK], where mnk {0,1} for any given subject n {1,..., N}, and only

one of these switches is equal to one; i.e., . These indicator variables prescribe the
model for the n-th subject; where p(mnk=1)=rk. In the following, we describe a hierarchical
Bayesian model that can be inverted to obtain an estimate of the posterior density over r.

A variational Bayesian approach for inferring model probabilities—We will deal
with K models with probabilities r=[r1,...,rK] that are described by a Dirichlet distribution

(3)

Here, α=[α1,...,αK] are related to the unobserved “occurrences” of models in the population;
i.e. αk -1 can be thought of as the effective number of subjects in which model k generated
the observed data. Given the probabilities r, the distribution of the multinomial variable mn
describes the probability that model k generated the data of subject n:

(4)

For any given subject n, we can sample from this multinomial distribution to obtain a
particular model k. The marginal likelihood of the data in the n-th subject, given this model
k, is then obtained by integrating over the parameters of the model selected

(5)

The graphical model summarising the dependencies among r, m and y as described by
Equations 3-5 is shown in Figure 1B and 1C. Our goal is to invert this hierarchical model
and estimate the posterior distribution over r.

Given the structure of the hierarchical model in Figure 1, the joint probability of the
parameters and the data y can be written as:

(6)

The log joint probability is therefore given by

(7)

The inversion of our hierarchical model relies on the following variational Bayesian (VB)
approach in which we assume that an approximate posterior density q can be described by
the following mean-field factorisation:
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(8)

Here, I(r) and I(r) are variational energies for the mean-field partition. The mean-field
assumption in Equation 8 means that the VB posterior will only be approximate but, as we
shall see, it provides a particularly simple and intuitive algorithm (c.f. Equation 14). This
algorithm provides precise estimates of the parameters α defining the approximate Dirichlet
posterior q(r) ≈ p(r | y); this was verified by comparisons with a sampling method which is
described in Appendix B.

To obtain the approximate posterior q(m) ≈ p(m | y), we have to do two things: first,
compute I(m) and second, determine the normalising constant or partition function for
exp(I(m)), which renders q(m) a probability density. Making use of the log joint probability
in Equation 7 and omitting terms that do not depend on m, the variational energy is:

(9)

Here  and Ψ is the digamma function2

(10)

The next step is to obtain the approximate posterior, q(m): If gnk is our (normalized)
posterior belief that model k generated the data from subject n, i.e. gnk=q(mnk=1), then
Equation 9 tells us that

(11)

where unk is the equivalent (non-normalized) belief and un is the partition function for
exp(I(m)) that ensures that the posterior probabilities sum to one.

We now repeat the above procedure but this time for the approximate posterior over r. By
substituting in the log joint probability from Equation 7 and omitting terms that do not
depend on r, we have

(12)

2See Appendix B in Bishop (2006) concerning the use of the digamma function in Equation 10.
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Here,  is the expected number of subjects whose data we believe were generated
by model k. Now, from Equation 8 we have log q(r)=I(r)+... and from Equation 3 we see

that the log of a Dirichlet density is given by  Hence, by
comparing terms we see that the approximate posterior q(r)=Dir(r;α) where:

(13)

In short, Equation 13 simply adds the ‘data counts’, β, to the ‘prior counts’, α0. This is an
example of a free-form VB approximation, where the optimal form of the approximate
posterior (in this case a Dirichlet), has been derived rather than assumed before-hand (c.f.
fixed-form VB approximations; Friston et al. 2007). It should be stressed, however, that due
to the mean-field assumption used by our VB approach (see Equation 8), q(r) is only an
approximate posterior and the true posterior distribution p(r | y) does not have the exact form
of a Dirichlet distribution.

The above equations can be implemented as an optimisation algorithm which updates
estimates of α iteratively until convergence. By combining Equations 11, 12 and 13 we get
the following pseudo-code of a simple algorithm that gives us the parameters of the
conditional density we seek, i.e. q(r)=Dir(r;α)

Until convergence

(14)

end

We make the usual assumption that, a priori, no models have been “seen” (i.e. the Dirichlet
prior is α0 = [1,...,1]).3 Critically, this scheme requires only the log-evidences over models
and subjects (c.f. Equation 11):

Using the Dirichlet density p(r | y;α) for model comparison—After the above
optimization of the Dirichlet parameters, α, the Dirichlet density p(r | y;α) can be used for
model comparisons at the group level. There are several ways to report this comparison that
result in equivalent model rankings. The simplest option is to report the estimates of the
Dirichlet parameter estimates α. Another possibility is to use those estimates to compute the

expected multinomial parameters rk  and thus the expected likelihood of obtaining the k-
th model, i.e. p(mnk=1|r)=Mult(m;1,r), for any randomly selected subject: 4

(15)

3Note that this choice of Dirichlet prior is a “flat” prior, assigning uniform probabilities to all models. In contrast, a Dirichlet prior
with elements below unity results in a highly concave probability density that concentrates the probability mass around zero and one,
respectively.
4For the special case of “drawing” a single “sample” (model), the multinomial distribution of models reduces to p(mnk=1 | r)=rk.

Therefore, for any given subject, rk  represents the conditional expectation that the k-th model generated the subject’s data.
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A third option is to use the conditional model probability p(r | y;α) to quantify an
exceedance probability, i.e. our belief that a particular model k is more likely than any other
model (of the K models tested), given the group data:

(16)

The exceedance probabilities k sum to one over all models tested. They are particularly
intuitive when comparing two models (or model subsets, see below). In this case, because

the conditional probabilities of the models rk  also sum to one, the exceedance probability
of one model, compared to another, can be written as

(17)

The analyses of empirical data below include several examples where two models are
compared; the associated exceedance probabilities are shown in Figures 3, 6, 9 and 13.

Either the Dirichlet parameter estimates α, the conditional expectations of model

probabilities rk  or the exceedance probabilities k can be used to rank models at the
group level. In the next section, we present several practical examples of our method,
applying it to both synthetic and empirical data. In this paper, we focus on comparing two
models (or two model subsets) and largely rely on exceedance probabilities when discussing
the results of our analyses. However, for each analysis we also report the estimates of α and

the conditional expectations of model probabilities, rk ; these are shown in the figures.

Model space partitioning—A particular strength of the approach presented in this paper
is that it can not only be used to compare specific models, but also to compare particular
classes or subsets of models, resulting from a partition of model space. For example, one
may want to compute the probability that a specific model attribute, say the presence vs.
absence of a particular connection in a DCM, improves or reduces model performance,
regardless of any other differences among the models considered. This type of inference
rests on comparing two (or more) subsets of model space, pooling information over all
models in these subsets. This effectively removes uncertainty about any aspect of model
structure, other than the attribute of interest (which defines the partition). Heuristically, this
sort of analysis can be considered a Bayesian analogue of tests for “main effects” in classical
ANOVA.

Within our framework this type of analysis can be performed by exploiting the
agglomerative property of the Dirichlet distribution. Generally, for any partition of model
space into J disjoint subsets, N1,N2,...,NJ, this property ensures that

(18)

In other words, once we have estimates of the Dirichlet parameters αk for all K models, it is
easy to evaluate the relative importance of different model subspaces: For any given
partition of model space, a new Dirichlet density reflecting this partition can be defined by
simply adding αk for all models k belonging to the same subset. The resulting Dirichlet can
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then be used to compare different subsets of model space in exactly the same way as one
compares individual models, e.g. using exceedance probabilities. An example of this
application is shown in Figures 12 and 13.

Results
In what follows, we compare classical inference, the GBF (fixed effects) and inference on
model space (random effects) using both synthetic and real data. These data have been
previously published and have been analysed in various ways, including group level model
inference using GBFs (Stephan et al. 2007b, 2007c; Stephan et al. 2008).

Synthetic data: nonlinear vs. bilinear modulation
To demonstrate the face validity of our method, we used simulated data, where the true
model was known. Specifically, we used one of the synthetic data sets described by Stephan
et al. (2008), consisting of twenty synthetic BOLD time-series that were generated using a
three-area nonlinear DCM with fixed parameters and adding Gaussian observation noise to
achieve a signal-to-noise ratio (SNR) of two. Each time-series consisted of 100 data points
that were obtained by sampling the model output at a frequency of 1 Hz over a period of 100
seconds. For each time-series, we fitted (i) a nonlinear DCM with the same model structure
as the model that generated the data (“correct model” in Fig. 2, model m1), and (ii) a second
DCM that was similar in structure but included a bilinear (instead of a nonlinear)
modulatory influence (“incorrect model” in Fig. 2, model m2). Using the negative free-
energy approximation to the log-evidence, the differences in log-evidences for all twenty
time-series are plotted in the lower part of Fig. 2. It can be seen that in 17 out of 20 cases the
nonlinear model was correctly identified as the more likely model. The overall GBF (9 ×
1014) was also clearly in favour of the correct model.

Here, we revisit this synthetic data set using random effects BMS procedures. We first used
classical inference, applying a paired t-test to the log-evidences of the two models. This test
rejected the null hypothesis of no difference in model goodness (t = 4.615, df = 19, p <
10-4). Applying the novel hierarchical BMS approach gave an even clearer (and arguably

also more useful) answer: the exceedance probability 1, i.e. the probability of m1 being a
more likely model than m2, was 100% (Figure 3). In other words, using the exceedance

probability  as a criterion, the correct model was identified perfectly, given all twenty data
sets and the chosen level of noise. To further corroborate this result, we compared the result
from our VB algorithm to an independent method which estimates the parameters α by
sampling from the approximate Dirichlet posterior q(r) ≈ p(r | y) . This comparison showed
that the VB estimate of α resulted in an estimate of the negative free-energy F(y,α) ≤ ln p(y
| α) that was consistent with the results from the sampling approach (Figure 4). This
provides an additional validation of our VB technique. We used this sampling approach to
verify the correctness of our VB estimates in all subsequent analyses.

It should be noted that this simulation study concerned the extreme case that only one model
had generated all data, i.e. r1=100% and r2=0%, making it easy to intuitively understand the
performance of the proposed model selection procedure. However, this simulation did not
probe the robustness of our method when randomly sampling from a heterogeneous
population of subjects whose data had been generated by different models. We will revisit
this scenario in a later section of this paper once we have introduced and compared two
alternative DCMs of inter-hemispheric interactions using empirical data.
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Comparing different six-area DCMs of the ventral visual stream
As a first empirical application, we investigated a case we had encountered in our previous
research (Stephan et al. 2007b) and which had actually triggered our interest in developing
more powerful group level inference about models. This model comparison concerned
DCMs describing alternative mechanisms of inter-hemispheric integration in terms of
context-dependent modulation of connections. In one of the analyses of the original report
(Stephan et al. 2007b), competing DCMs had been constructed for the ventral stream of the
visual system by systematically changing which of the experimentally controlled conditions
modulated the intra- and/or the inter-hemispheric connections.

First, we focused on the six-area model of the ventral stream, comprising the lingual gyrus
(LG), middle occipital gyrus (MOG) and fusiform gyrus (FG) in both hemispheres, and
revisit the comparison of the best two models as indexed by the GBF. In the first model, m1,
inter-hemispheric connections were modulated by a letter decision task, but conditional on
the visual field of stimulus presentation (LD|VF); intra-hemispheric connections were
modulated by LD alone (see right side of Figure 5). In the second model, m2, these
modulations were reversed: inter-hemispheric connections were modulated by LD and intra-
hemispheric connections were modulated by LD|VF (see left side of Figure 5). The
distribution of log-evidence differences (approximated by AIC/BIC, following the procedure
suggested by Penny et al. 2004) is shown in the centre of Figure 5: Although m1 was
robustly superior in 11 of the 12 subjects, a single outlier was so extreme that the GBF
indicated an overall superiority of m2 (GBF=15 in favour of m2). In contrast, model
comparison using our novel Bayesian method was not affected by this outlier: the

exceedance probability in favour of m1 was very high ( 1 = 99.7%), and the conditional

expectation r1  that m1 generated the data of any randomly selected subject was 84.3%
(Figure 6). The estimates of our VB method were confirmed by the sampling approach
(Figure 7).

For comparison, we also applied frequentist statistics to the log-evidences as described
above. The single outlier subject made the distribution of the log-evidence differences non-
normal (Kolmogorov-Smirnov test: p < 10-7, DN = 0.822), and thus prevented detection of a
significant difference between the two models by a one-tailed paired t-test (t = 0.073, df =
11, p = 0.471). Given this deviation from normality, we applied a nonparametric Wilcoxon
signed rank test which makes no distributional assumptions; this test was indeed able to find
a significant difference between the models (p = 0.034).

Comparing different four-area DCMs of the ventral visual stream
Next, we investigated a variant of the previous case where the distribution of log-evidences
across subjects was more heterogeneous. This model comparison was essentially identical to
the previous one, except that the models in question only contained four areas (LG and FG
in both hemispheres), instead of six. Visual inspection of the distribution of log-evidence
differences (Figure 8) shows that the same subject as in the previous example favoured m2,
albeit far less strongly; in addition three more subjects showed evidence in favour of m2,
albeit only weakly. Given this constellation, the original analysis by Stephan et al. (2007b)
only found a relatively weak superiority of m1 (GBF = 8). In contrast, the VB method gave a

exceedance probability of 1 = 92.8% in favour of m1, indicating more clearly that m1 is a
superior model (Figure 9). As above, the estimates of our VB method were confirmed by
sampling (Figure 10).

When comparing this result to the frequentist random effects approach, a one-tailed paired t-
test was unable to detect a significant difference between the two models (t = 0.165, df = 11,
p = 0.436). In contrast to the previous example, this failure was not due to outlier-induced
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deviations from normality: a Kolmogorov-Smirnov test applied to the log-evidences was
unable to reject the null hypothesis that they were normally distributed (p = 0.743). Here, the
between-subject variability, while in accordance with normality assumptions, was simply
too large to reject the null hypothesis with the classical t-test. A nonparametric Wilcoxon
signed rank test did not fare any better (p = 0.266).

Synthetic data: randomly sampling from a heterogeneous population
In a second simulation study, we examined the robustness of our method when randomly
sampling from a heterogeneous population of subjects. Specifically, we dealt with a
population in which 70% of subjects showed brain responses as generated by model m1
shown in Figure 8, whereas brain activity in the remaining 30% of the population was
generated by model m2. We randomly sampled 20 subjects from this population and
generated synthetic fMRI data by integrating the state equations of the associated models
with fixed parameters and inputs5 and adding Gaussian observation noise to achieve an SNR
of two. Each synthetic data set had exactly the same structure as the empirical data described
in the previous section (700 data points, TR = 3 s). Both m1 and m2 were then fitted to all 20
synthetic data sets, and the resulting log-evidences were used to perform both fixed effects
BMS and random effects BMS, using the VB method described in this paper. This sampling
and data generation procedure was repeated 20 times, resulting in a total of 400 generated
data sets and 800 fitted models. For each of the 20 sets of 20 subjects, we computed the

different indices provided by random effects BMS (i.e., α, r , ) and fixed effects BMS
(log GBF). The means of these indices are plotted in Figure 11, together with 95%
confidence intervals (CI). If our random effects BMS method were perfect in uncovering the
underlying structure of the population we sampled from, one would expect to find the
following average estimates: (i) α1=22×0.7=15.4,α2=22×0.3=6.6 for the Dirichlet

parameters, (ii) r1 =0.7, r2 =0.3 for the posterior expectations of model probabilities,

and (iii) 1=1, 2=0 as exceedance probabilities (note that the exceedance probability is not
the posterior model probability itself, but a statement of belief about the posterior
probability of one model being higher than the posterior probability of any other model).
The actual estimates of the BMS indices for the simulated data were (i) α1 = 15.4 (CI: 14.1 -

16.7) and α2 = 6.6 (CI: 5.3 - 7.9), (ii) r1 =0.7 (CI: 0.64 - 0.76) and r2 =0.3 (CI: 0.24 -

0.36), and (iii) 1=0.89 (CI: 0.83 - 0.96) and 1=0.11 (CI: 0.04 - 0.17). For comparison, the
average log GBF in favour of model m1 was 548.9 (CI: 446.2 - 651.6).

In conclusion, while our random effects BMS method provides a slightly overconservative
estimate of exceedance probabilities for the chosen sample size, it shows very good
performance overall, providing BMS indices that accurately reflect the structure of the
population we sampled from. In particular, the Dirichlet parameters and posterior
expectations of model probabilities (which represent the expected probability of obtaining
the k-th model when randomly selecting a subject) were estimated very precisely. This result
not only validates the results obtained for the empirical data set described above, but
demonstrates more generally that our BMS procedure is robust when randomly sampling
from a heterogeneous population of subjects.

5The coupling parameters of all endogenous connections were set to 0.1 s-1, except for the inhibitory self-connections whose
strengths were set to -1 s-1. Furthermore, the strengths of all modulatory and driving inputs were set to 0.3 s-1. The input functions
were the same as in the empirical dataset described above.
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Comparing different hemodynamic models by model space partitioning
Finally, we revisited a comparison of DCMs, which were identical in network architecture
(the same as m1 in Figure 8) but differed in the hemodynamic forward model employed
(Stephan et al. 2007c). A three-factor design was used to construct 8 different models: (i)
nonlinear vs. linear BOLD equations, (ii) classical vs. revised coefficients of the BOLD
equation, and (iii) free vs. fixed parameter (ε) for the ratio of intra- and extravascular signal
changes. In the original analysis by Stephan et al. (2007c), the GBF (based on the negative
free-energy approximation) was used to establish the best among the eight models. The best
model, abbreviated as RBMN(ε) in Figure 12, was characterised by (i) a nonlinear BOLD
equation, (ii) revised coefficients of the BOLD equation, and (iii) free ε. The difference of
its summed log-evidence compared to the second-best model, its linear counterpart
RBML(ε), was 5.26, corresponding to a GBF of 192 in favour of the nonlinear model. The
summed log-evidences for all 8 models are shown in Figure 12A.

Here, we demonstrate how one can use the agglomerative property of the Dirichlet
distribution (Equation 18) to go beyond selective comparisons of specific models and
instead examine the relative importance of particular model attributes or model subspaces.
Given the three factors above, we focussed on the importance of nonlinearities: what is the
posterior probability that nonlinear BOLD equations improve the model compared to linear
BOLD equations, regardless of any other dimensions of model space (i.e., classical vs.
revised coefficients and free vs. fixed ε)?

Following Equation 18, this question is addressed easily. In a first step, the VB procedure
was applied to the entire set of eight models, yielding posterior estimates of the Dirichlet
parameters α1,...,α8 (see Figure 12B). Subsequently, a new Dirichlet density reflecting the
partition of model space into nonlinear and linear subspaces was computed by summing αk
separately for the nonlinear and linear models (Figure 12C; for simplicity the ordering of the
models in Figure 12 has been chosen such that the first four models are nonlinear [left of the
dashed line], whereas the last four models are linear [right of the dashed line]) The resulting
Dirichlet can then be used to compare nonlinear and linear models in exactly the same way
as one compares two models; e.g. using exceedance probabilities. Figure 13 shows the result
of this comparison: the probability that nonlinear hemodynamic models are better than linear

models, regardless of other model attributes, was 1 = 98.6%.

For comparison, we also used classical inference, applying a repeated-measure ANOVA
(with Greenhouse-Geisser correction for non-sphericity) to the log-evidences of the eight
models. The result of this test was compatible with the above analysis, rejecting the null
hypothesis that linear and nonlinear models were equal in log-evidence (F = 24.330, df =
1,11, p < 0.0004).

Discussion
In this paper, we have introduced a novel approach for model selection at the group level.
Provisional experience suggests that this approach represents a more powerful way of
quantifying one’s belief that a particular model is more likely than any other at the group
level, relative to the conventional GBF. Critically, this variational Bayesian approach rests
on treating the model switches mi as a random variable, within a full hierarchical model for
multi-subject data (see Figure 1), and thus accommodates random effects at the between-
subject level. Notably, this inference procedure needs only the log-evidences for each model
and subject.

In the empirical examples above, we showed two cases where frequentist tests failed to
indicate clear differences between models, while the novel Bayesian approach succeeded. In
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one case (the six-area ventral stream model), a strong outlier subject made the distribution of
log-evidences non-normal and thus rendered the t-test (but not a non-parametric test) unable
to find a significant difference between models. In another case (the four-area ventral stream
model), the distribution of log-evidences was normal, but with a between-subject variance
that was big enough to prevent significant results by frequentist tests (parametric or non-
parametric). It should be noted, however, that the frequentist and Bayesian approaches do
not test the same thing. The frequentist approach tries to reject the null hypothesis that there
are no differences in log-evidence across models. In contrast, the Bayesian approach
estimates the models’ probabilities, given the data, and enables inference in terms of

exceedance probabilities: the exceedance probability k is the probability that a given
model k is more likely than any other model (of the K models tested). Furthermore, we can

compute the posterior probabilities of the models themselves: rk  is the expected
probability that the k-th model generated the data for a randomly selected subject.

The exceedance probability of a model differs in a subtle but important way from the
conventional posterior probability of a model in Bayesian model comparison: Because we
have a hierarchical model, the posterior probability that any particular model caused the data
from a subject chosen at random, is itself a random variable (r in the derivations above).
This means that the exceedance probability is a statement of belief about the posterior
probability, not the posterior probability itself. So, for example, when we say that the
exceedance probability is 98%, we mean that we can be 98% confident that the favoured
model has a greater posterior probability than any other model tested. This is not the same as
saying that the posterior probability of the favoured model is 98%. The advantage of using
exceedance probabilities is that they are sensitive to the confidence in the posterior
probability and easily interpretable (since they sum to unity over all models tested).

As can be seen from Equations 9 and 11, our method is sensitive to both the distribution and
the magnitude of log-evidence differences. The same is true for frequentist tests applied to
log-evidence differences, e.g. t-tests. However, a critical difference between these
frequentist approaches and the VB method is that for the latter the influence of outliers has a
natural bound. There is a simple and intuitive reason for this nice property of the VB
method: if we keep increasing the log-evidence of model k for a particular subject n, our
posterior belief that k generated the data of subject n (that is, gnk=q(mnk=1); see Eq. 11) will
asymptote to one. Once it has reached unity (which corresponds to complete certainty), any
further increase in the log-evidence of model k for subject n has no further influence. This is
because the model probabilities are distributed according to the approximate posterior
Dirichlet Dir(r;α0+β)=q(r), where βk represents the conditional expectation of the number of
subjects whose data we believe were generated by model k and is simply the sum of the
subject-specific posterior probabilities that model k generated their individual data. In
contrast, frequentist tests like t-tests do not show this bounded behaviour with regard to
outliers. This is because the sample variance increases monotonically with the magnitude of
the outlier, leading to a monotonic decrease of the t-statistic. We demonstrated this
difference between frequentist approaches and our VB method by two empirical examples
with outliers.

Another important advantage of the method proposed here is that it can go beyond the
selective comparison of specific models and enables one to assess the importance of changes
along any specific dimension of model space. This type of inference, which could be seen as
a Bayesian analogue of testing for “main effects” in classical ANOVA, rests on comparing
two (or more) subsets of models (i.e., model subspaces). These partitions would typically
reflect those components of model structure that one seeks inference about; e.g. whether a
specific connection should be included in the model or not, whether a particular connection
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is modulated by one experimental condition or another, or whether certain effects are linear
or nonlinear. We used this approach to demonstrate that hemodynamic models with
nonlinear BOLD equations are superior to those with linear ones. This result is in
accordance with previous studies that highlight the importance of nonlinearities in the
BOLD signal (Deneux & Faugeras 2006; Friston et al. 2000; Miller et al. 2001; Stephan et
al. 2007c; Vazquez & Noll 1998; Wager et al. 2005). However, in these earlier studies, this
conclusion was based on comparisons of specific and single instances of linear and
nonlinear hemodynamic models.

The inferential advance achieved by the present method is that arbitrarily large set of models
can be considered together, allowing one to integrate out uncertainty over any aspect of
model structure, other than the one of interest.

At first glance, it may appear surprising that the hierarchical model described above has
been introduced as a generative model for the data y, given its inversion does not need the
data but the model evidence, p(y | m). This apparent contradiction could be resolved by
noting that the log-evidence is a function of the data and represents a sufficient ‘summary
statistic’. To generate data, one would need to introduce the model parameters ϑk to the
graphical model shown in Figure 1B,C. In the context of DCM, for example, once one has
drawn a model k from the multinomial distribution for a specific subject n (i.e., generated a
label mnk = 1), one could generate fMRI time-series by drawing model parameters ϑk from
their prior distributions and adding some observation error. However, because the model
evidence p(y | m) results from integrating out the influence of the parameters ϑk on the data
y (see Equation 1), this component is unnecessary during inversion of the generative model.

One property of the method proposed in this paper is that for each subject n our posterior
beliefs about model k having generated their data sum to one over all models that are

considered, that is  (c.f. Equation 11). In other words, our posterior belief about
which model k is most likely to have generated the data for a given subject n is a function of
the entire set of models considered. This means that reducing or extending model space can
change our inference about which model is most likely at the group level. Although this is a
fairly trivial corollary, it should not be forgotten when using this method in practice. In
short, one should infer the most likely model by comparing the entire set of plausible models
at once, instead of selectively analysing subparts of model space.

To our knowledge, there has been relatively little work on group level methods for Bayesian
model comparison so far. In addition to the GBF (Stephan et al. 2007b), we had previously
suggested a metric called the “positive evidence ratio” (PER; Stephan et al. 2007b, 2007c).
Based on the conventional definition of “positive evidence” as a Bayes factor larger than
three (Kass & Raftery 1995), the PER is simply the number of subjects where there is
positive (or stronger) evidence for model 1 divided by the number of subjects with positive
(or stronger) evidence for model 2. While the PER is insensitive to outliers, it is also
insensitive to the magnitude of the differences across subjects. More importantly, however,
it is only a descriptive index that does not allow for probabilistic inference in a
straightforward manner. In the approach described in this paper, the sufficient statistics for
the model frequencies are the posterior estimates of the Dirichlet parameters (α). When the
differences in model evidences are very strong, these simply boil down to the number of
subjects with positive (and more) evidence in favour of a particular model. In that case
where for each subject there is one highly superior model, the expected model frequencies
become identical to the PER. From this perspective, the present approach can be considered
a (probabilistic) generalisation of the PER.
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The only other work on group level methods for Bayesian model comparison that we are
aware of is a recent paper by Li et al. (2008) who suggested a “group-level BIC score”. This
score is derived by summing the BIC for each model across subjects. As explained earlier in
this paper, the BIC is a well-known approximation to the log-evidence (Schwarz 1978). The
group-level BIC score by Li et al. (2008) thus approximates the sum of log-evidences and
simply corresponds to the log GBF. Effectively, the analysis by Li et al. (2008) thus used a
fixed effects analysis across models that is formally identical to that used in reports of DCM
studies (e.g. Acs & Greenlee 2008; Allen et al. 2008; Grol et al. 2007; Heim et al. 2008;
Kumar et al. 2007; Smith et al. 2006; Stephan et al. 2007a,b; Summerfield & Koechlin
2008).

Finally, it should be noted that a random effects model selection approach is not necessarily
preferable to a fixed effects approach. The choice between fixed and random effects BMS
depends on the specific scientific question addressed. In the context of basic mechanisms
that are unlikely to differ across subjects, the conventional GBF is both sufficient and
appropriate. For example, it is unlikely that subjects differ with regard to basic physiological
mechanisms such as the involvement of sodium ion channels in action potential generation
or the presence of certain types of connections in the brain. In this context, it is perfectly
tenable to assume that all subjects generate data under the same model; and the data from all
subjects can be pooled to select this model in the usual way. In contrast, whenever subjects
can exhibit different models or functional architectures, the random effects BMS technique
presented in this paper is a more appropriate method. For example, there is evidence that
many higher cognitive functions can rely on more than one neurobiological system (Price &
Friston 2002). Also, it is likely that in some mental diseases, e.g. schizophrenia, patients
with identical symptoms show heterogeneity with regard to the pathophysiological processes
involved (Stephan et al. 2006).

In summary, in contrast to the GBF and other established approaches for group-level model
comparison, the approach suggested in this paper rests on a hierarchical model for multi-
subject data that accommodates random effects at the between-subject level (Figure 1) and
thus provides a generic framework for hypothesis testing. We expect this method to be a
useful tool for group studies, not only in the context of dynamic causal modelling, but also
for a range of other modelling endeavours; for example, comparing different source
reconstruction methods for EEG/MEG at the group level (Henson et al. 2007; Litvak &
Friston 2008; Mattout et al. 2007), or selecting among competing computational models of
learning and decision-making, given data from a group of subjects (Brodersen et al. 2008;
Hampton et al. 2006).
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Appendix A: Approximations to the log model evidence
With the exception of some special cases (e.g., linear models), the integral expression for the
model evidence (Equation 1) is analytically intractable and numerically difficult to compute.
Under these circumstances, people generally adopt a bound approach where, instead of
evaluating the integral above, one optimises a bound on the integral using iterative sampling
or analytic techniques. The most common approach of the latter kind is variational Bayes. In
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this framework, one posits an approximating conditional or posterior density on the
unknown parameters, q(ϑ), and optimises this density with respect to a free-energy bound,
F, on the log-evidence:6

A.1

Because of its relation to variational calculus and Gibb’s free-energy in statistical physics,
this free-energy bound F is often referred to as the “negative free-energy” or “variational
free-energy” (Friston et al. 2007; MacKay 2003; Neal & Hinton 1998). Its second term is the
Kullback-Leibler (KL) divergence (Kullback & Leibler 1951) between the approximating
posterior density q(ϑ) and the true posterior p(ϑ | y,m), which is always positive (or zero
when q(ϑ) becomes identical to p(ϑ | y,m)). By iterative optimisation, the negative free-
energy F is made an increasingly tighter lower bound on the desired log-evidence, ln p(y |
m); as a consequence, the KL divergence between the approximating and true posterior is
minimised. There are a number of approximations that are used when specifying the form of
q(ϑ). These include the ubiquitous mean-field approximation, where various sets of
unknown parameters are assumed to be independent, so that the conditional density can be
factorised. A common example here would be a bipartition into the regression coefficients
of a general linear model and the parameters controlling random effects or error variance.
Another common approximation within the mean-field framework is to assume that the
conditional density is multivariate Gaussian. This is also known as the Laplace
approximation, a full treatment of which can be found in Friston et al. (2007).

For any approximation to the conditional density, the free-energy bound on the log-evidence
can be re-written as a mixture of accuracy and complexity:

A.2

The accuracy (first term) is simply the log-likelihood of the data expected under the
conditional density. The complexity (second term) is the Kullback-Leibler divergence
between the approximating posterior and prior density. In other words, it reflects the amount
of information obtained about the model parameters, from the data. Clearly, model
complexity will increase with the number of parameters (provided that they can be estimated
precisely and that they diverge from their prior values). However, model complexity
depends on factors other than the mere number of parameters, e.g. how much these
parameters are dependent on each other, both a priori and a posteriori. This is seen easily
under the Laplace approximation, i.e. assuming that the conditional density is multivariate
Gaussian. In this case, the complexity can be written as follows (see the Appendix of Penny
et al. 2004):

A.3

Here, |Cϑ| and |Cϑ|y| are the determinants of the prior and posterior covariance matrices and
μϑ|y and μϑ are the prior and posterior means, respectively. The first term shows that the
penalty conveyed by model complexity increases the more independent the parameters are a
priori;7 this is equivalent to saying that the penalty increases with the effective degrees of
freedom of the model. Conversely, additional parameters whose effects are redundant in

6Because of the monotonic nature of the logarithm, one can maximise the model evidence or the log-evidence; the latter, however, is
numerically more convenient to deal with. Please note that for simplicity and clarity we have removed constant terms from the
definition of all approximations to the log-evidence discussed in this paper.
7It is helpful to note that the determinant of a covariance matrix can be treated as a measure of the volume spanned by a set of vectors
(Woodruff 2005). This volume increases with the degree of independence amongst the vectors.
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relation to existing parameters do not increase model complexity. The second term says that
complexity decreases with the degree of independence that the parameters have a posteriori.
This accords with the general notion that the parameter estimates of a good model should be
as precise and uncorrelated as possible. The final term shows that the complexity increases
with the distance between the prior and posterior means. In other words, model goodness
decreases if one makes bad assumptions about the parameter values a priori (i.e., using
suboptimal priors), thus forcing the posterior estimates to diverge markedly from the prior
means.

In addition to the free-energy bound approximation, there are two other commonly used
approximations to the log-evidence, which appeal to the behaviour of the complexity term as
the number of observations becomes infinite. We will call these limit-approximations. These
include the AIC and BIC (see Penny et al. 2004). The key difference between the free-
energy bound and these limit approximations is that the latter assume a much simpler
approximation to the complexity. Under Gaussian assumptions about the error:

A.4

It can be seen that the AIC and BIC approximate the complexity with the number of
parameters or the number of parameters p, scaled by the log of the number of observations,
n. These can be useful approximations when it is difficult to invert the model or optimise the
free-energy bound, because one only needs to compute the accuracy or fit of the model to
provide an estimate of the log-evidence. However, comparing the complexity terms in these
expressions to Equation A.3, shows that both the AIC and BIC will fail in various situations.
An obvious example is redundant parameterisation; the true complexity will not change
when we add a parameter whose effect is identical to another parameter in measurement
space. While the free-energy bound would take this redundancy into account, retaining the
same complexity, the AIC and BIC approximations would indicate that complexity has
increased. In practice, many models show partial dependencies amongst parameters,
meaning that AIC and BIC routinely over-estimate the effect that adding or removing
parameters has on model complexity.

Appendix B: Sampling approach to estimating the Dirichlet Parameters
In this appendix, we introduce a sampling procedure that provides an approximation to the
negative free energy F(y,α) ≤ ln p(y | α) which is independent from the VB approach
described in the main text. This sampling procedure can be used to demonstrate the
correctness of the proposed VB procedure by verifying that the algorithm described by
Equation 14 provides an accurate solution for the variational energies in the mean-field
approximation of Equation 8. In this context, it should be noted that we are assuming that
the exact posterior p(r | y) can be adequately approximated by a Dirichlet density q(r);
therefore, the procedure proposed in this appendix samples from the approximate posterior
q(r), not from the exact posterior p(r | y).

We seek the posterior density on the multinomial parameters r=[r1,...,rK] that generate
switches or indicator variables, mnk {0,1}, prescribing the n-th subject’s model; i.e.,
p(mnk=1)=rk. To simplify things, we will assume an approximating form, q(r;α) for this
density, with sufficient statistics α. Specifically, we assume a Dirichlet density

B.1
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where the expected multinomial parameters (i.e., conditional expectation that the k-th model
will be selected at random) are

B.2

Note that a Dirichlet form ensures that . The normalising or partition coefficient in B.
1 is

B.3

We can now construct a free-energy bound in the usual way, assuming Dirichlet priors α0
(which would usually be α0=[1,...,1] unless one had prior beliefs about which model is more
likely to be selected):

B.4

This can be decomposed into three terms:

B.5

The last two terms only depend on the priors α0k and the parameters α of the Dirichlet and
can thus be computed directly. The first term can be computed numerically by drawing a
large number of samples from q(r;α) . In this paper, we gridded the possible range for values
of αk, i.e. [1 ... K+1], using a bin size of 0.1, and then drew 1,000 samples per bin,
exploiting a relationship between Gamma and Dirichlet distributions described by Ferguson
(1973). Given those samples, the Dirichlet parameters are those that maximise F:

B.6

As a final note, we would like to point out that one could also use Jensen’s inequality to
simplify the first term in B.5:

B.7

This effectively provides a lower-bound on a lower-bound, which can be simplified to give

B.8
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Given the priors, α0, and the log-evidences ln p(yn | mnk=1) for each subject and model, F̃
could be used as an alternative method to estimate the Dirichlet parameters α using
conventional nonlinear optimisation. In practice, however, we have found the VB method
described in the main text to be superior.
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Figure 1.
Bayesian dependency graphs for fixed effects (A) and random effects generative models for
multi-subject data (B, C). The graphical model in Figures 1B and 1C are equivalent; we
show both because 1B is more intuitive for readers unfamiliar with graphical models
whereas 1C uses a more compact notation where rectangles denote deterministic parameters
and shaded circles represent observed values. α = parameters of the Dirichlet distribution
(number of model “occurrences”); r = parameters of the multinomial distribution
(probabilities of the models); m = model labels; y = observed data; k = model index; K =
number of models; n = subject index; N = number of subjects.
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Figure 2.
Synthetic data consisting of twenty time-series that were generated using a three-area
nonlinear DCM and adding random observation noise (see Stephan et al. 2008 for details).
To each of these time-series, two models were fitted and compared: (i) a nonlinear DCM
with the same structure as the model that generated the data (“correct model” m1), and a
bilinear model (“incorrect model” m2). The difference in log-evidences for all twenty data
sets is plotted as a bar chart.
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Figure 3.
The Dirichlet density describing the probability of the nonlinear model m1 in Figure 2 given
the synthetic data across the 20 realisations. The shaded area represents the exceedance

probability 1 of m1 being a more likely model than the (incorrect) bilinear model m2

(compare Figure 2). α = VB estimates of the Dirichlet parameters; r1 , r2  = conditional
expectations of the probabilities of the two models.

Stephan et al. Page 23

Neuroimage. Author manuscript; available in PMC 2009 July 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4.
Confirmation of our VB estimate for α1 (vertical dotted line) in Figure 3 by comparing it
against the result obtained by a sampling approach (solid line); see main text for details.
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Figure 5.
Comparison of DCMs describing alternative mechanisms of inter-hemispheric integration in
terms of context-dependent modulation of connections (Stephan et al. 2007b). Two variants
of a six-area model of the ventral stream, comprising the lingual gyrus (LG), middle
occipital gyrus (MOG) and fusiform gyrus (FG) in both hemispheres were compared. In the
first model, m1, inter-hemispheric connections were modulated by a letter decision (LD)
task, but conditional on the visual field of stimulus presentation (LD|VF); intra-hemispheric
connections were modulated by LD alone. In the second model, m2, these modulations were
reversed: inter-hemispheric connections were modulated by LD and intra-hemispheric
connections were modulated by LD|VF alone. The distribution of log-evidence differences
across the 12 subjects is shown at the bottom: Although m1 was superior in 11 of the 12
subjects, a single outlier was so extreme that model comparison based on the GBF favoured
m2 (GBF = 15 in favour of m2).
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Figure 6.
The Dirichlet density describing the probability of model m1 in Figure 5 given the measured

data across the group. The shaded area represents the exceedance probability 1=p(r1>0.5 |
y;α) of m1 being a more likely model than the alternative model m2 (compare Figure 5). In
contrast to the conventional GBF or inference based on frequentist statistics, our variational
Bayesian method was not affected by the strong outlier subject shown by Figure 5: the

exceedance probability in favour of m1 was 1 = 99.7%.

Stephan et al. Page 26

Neuroimage. Author manuscript; available in PMC 2009 July 15.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 7.
Confirmation of our VB estimate for α1 (vertical dotted line) in Figure 6 by comparing it
against the result obtained by a sampling approach (solid line); see main text for details.
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Figure 8.
A variant of the model comparison shown by Figure 5; here the models in question
contained four areas (LG and FG in both hemispheres). The distribution of log-evidence
differences shows that the same subject as in Figure 5 constituted an outlier; in addition
three more subjects showed weak evidence in favour of m2.
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Figure 9.
The Dirichlet density describing the probability of model m1 in Figure 8 given the measured

data across the group. The shaded area represents the exceedance probability 1=p(r1 > 0.5 |
y;α) of m1 being a more likely model than the alternative model m2 (compare Figure 8).

Despite the strong outlier subject shown by Figure 8, the exceedance probability of 1 =
92.8% was favouring m1 as a more likely model than m2.
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Figure 10.
Confirmation of our VB estimate for α1 (vertical dotted line) in Figure 9 by comparing it
against the result obtained by a sampling approach (solid line); see main text for details.
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Figure 11.
Summary of the results from a simulation study in which we examined the robustness of our
method when randomly sampling from a heterogeneous population of subjects. Specifically,
we dealt with a population in which 70% of subjects showed brain responses as generated by
model m1 shown in Figure 8, whereas brain activity in the remaining 30% of the population
was generated by model m2. We randomly sampled 20 subjects from this population and
generated synthetic fMRI data by integrating the state equations of the associated models
with fixed parameters and inputs and adding Gaussian observation noise to achieve an SNR
of two. Both m1 and m2 were then fitted to all 20 synthetic data sets. This sampling and data
generation procedure was repeated 20 times, resulting in a total of 400 generated data sets
and 800 fitted models. For each of the 20 sets of 20 subjects, we computed the different

indices provided by random effects BMS (i.e., α, r , ) and fixed effects BMS (log
GBF). This figure shows the mean of these indices together with their 95% confidence
intervals (CI).
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Figure 12.
An example of model space partitioning applied to the case of DCMs which were identical
in network architecture (the same as m1 in Figure 8) but differed in the hemodynamic
forward model employed (for details, see Stephan et al. 2007c).

a. Eight different models were constructed by means of a three-factorial process: (i)
nonlinear vs. linear BOLD equations (subscript N), (ii) classical (CBM) vs. revised
(RBM) coefficients of the BOLD equation, and (iii) free vs. fixed parameter (ε) for
the ratio of intra- and extravascular signal changes. The bar plot shows the summed
log-evidences for all eight models, relative to the worst model (RBML). The dashed
line separates the nonlinear models (on the left) from the linear models (on the
right).

b. VB estimates of the Dirichlet parameters for all eight models.

c. VB estimates of the Dirichlet parameters for nonlinear and linear partitions of
model space.
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Figure 13.
The Dirichlet density for the nonlinear partition of model space, defined by the parameter

estimates shown by Figure 12C. The exceedance probability of 1 = 98.6% (shaded area)
indicates the probability that nonlinear hemodynamic models were better than linear models,
regardless of any other aspect of model structure.
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