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Abstract
Diffusion tensor imaging (DTI) can reveal detailed white matter anatomy and has the potential to
detect abnormalities in specific white matter structures. Such detection and quantification are,
however, not straightforward. The voxel-based analysis after image normalization is one of the
most widely used methods for quantitative image analyses. To apply this approach to DTI, it is
important to examine if structures in the white matter are well registered among subjects, which
would be highly dependent on employed algorithms for normalization. In this paper, we evaluate
the accuracy of normalization of DTI data using a highly elastic transformation algorithm, called
large deformation diffeomorphic metric mapping. After simulation-based validation of the
algorithm, DTI data from normal subjects were used to measure the registration accuracy. To
examine the impact of morphological abnormalities on the accuracy, the algorithm was also tested
using data from Alzheimer’s disease (AD) patients with severe brain atrophy. The accuracy level
was measured by using manual landmark-based white matter matching and surface-based brain
and ventricle matching as gold standard. To improve the accuracy level, cascading and multi-
contrast approaches were developed. The accuracy level for the white matter was 1.88 ± 0.55 and
2.19 ± 0.84 mm for the measured locations in the controls and patients, respectively.
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Introduction
Diffusion tensor imaging (DTI) can reveal the detailed anatomy of white matter tracts, based
on diffusion anisotropy and fiber orientation information (Basser et al., 1994; Pierpaoli et
al., 1996; Makris et al., 1997; Pajevic and Pierpaoli, 1999; Catani et al., 2002; Wakana et al.,
2004; Mori et al., 2005). Theoretically, this enables us to study the effects of diseases on
specific white matter tracts. However, quantification of the delineated white matter anatomy
is not always straightforward, especially not for group studies when using population-based
maps.

The image analysis based on image normalization is one of the most widely used methods
for automated quantification of anatomical features revealed in MR images. The
normalization method has been applied to morphological analyses of T1-weighted images
(for review, see, e.g., Ashburner and Friston, 2000) and, more recently, to DTI studies
(Alexander et al., 2001; Jones et al., 2002; Park et al., 2003; Xu et al., 2003; Zhang et al.,
2006; Muller et al., 2007; Yushkevich et al., 2008). In this approach, acquired images are
transformed (normalized) to a template, which makes it possible to perform subsequent
voxel-by-voxel analyses. In this process, the normalization accuracy significantly influences
the result (Bookstein, 2001). In our previous paper, we estimated the accuracy level for
normalization-based analyses of DTI data using a simple linear transformation (Mori et al.,
2008). By using a population-averaged template (ICBM-DTI-81), most of the core white
matter regions could be registered within 3 mm for the normal adult population. However,
this registration quality cannot be guaranteed for patient populations in which there are
substantial anatomical abnormalities. Registration errors complicate the interpretation of
population analyses. For example, any detected FA abnormality could be due to real FA
differences caused by microstructural changes such as axonal loss or myelin abnormalities
or due to regional morphological differences (e.g., enlarged ventricles) causing registration
errors. To separate out the effects of contrast (such as FA) from those of morphological
changes, the use of nonlinear transformation is the next logical step.

In this paper, we tested the a highly non-linear transformation method, called large
deformation diffeomorphic metric mapping (LDDMM) (Miller et al., 1993a,b; Miller et al.,
1997) to normalize DTI data. The LDDMM algorithm calculates diffeomorphic
transformations between images of anatomical configurations by computing the geodesic
flow in the space of diffeomorphisms between these images. This allows the study of
anatomical structures as a metric space. The diffeomorphic transformations are invertible
and are smooth functions with a smooth inverse. In these transformations, the disjoint shapes
remain disjoint and there is no fusion of points because of the one-to-one property of
diffeomorphisms. Connected shapes also remain connected because of the continuity
property, and the smoothness of the object boundaries are preserved because of the
smoothness property of the diffeomorphisms.

There are several unique steps required to apply a non-linear transformation method to DTI
data. First, DTI can produce various types of image contrasts, so the first step is to choose
which contrasts will be used to drive the registration. Second, to apply the resultant
transformation to the tensor field, tensor reorientation must be performed. In this study, we
first tested our tensor transformation algorithm using a simulated DTI phantom. The method
was then tested on a normal elderly population and Alzheimer’s disease (AD) patients with
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severe brain atrophy. To ensure excellent registration accuracy for the entire brain, multi-
contrast LDDMM was developed.

Methods and Materials
Subjects

Institutional Review Board approval was obtained for the study and written, informed
consent, including HIPAA compliance, was obtained from all subjects. DTI data from 13
AD patients (75.4 ± 7.0 years old) and age-matched 18 normal adult control subjects (73.8 ±
7.6 years old) were used in this study.

MRI scans
The 3.0 T MR scanners (Gyroscan NT, Philips Medical Systems) were used. DTI data were
acquired with a single-shot, echo-planar imaging (EPI) sequence with sensitivity encoding
(SENSE), using a parallel-imaging factor of 2.5 (Pruessmann et al., 1999). The imaging
matrix was 96 × 96 and zero-filled to 256 × 256 pixels. The field-of-view was 211 × 211
mm. Transverse sections of 2.2 mm thickness were acquired parallel to the anterior
commissure–posterior commissure line. A total of 55–60 sections covered the entire
hemisphere and the brainstem without gaps. Diffusion weighting was encoded along 32
independent orientations, and the b-value was 700 mm2/s. Five additional images with
minimal diffusion weighting (b≈33 mm2/s) were also acquired (called b0 images hereafter).
The scanning time per dataset was approximately 4 min, which was repeated twice to
improve the SNR.

DTI data processing
The DTI datasets were transferred to a personal computer running a Windows platform and
were processed using DtiStudio (www.MriStudio.org) (Jiang et al., 2006). Images were first
realigned for co-registration and eddy current distortion correction, using the affine
transformation of the Automatic Image Registration (AIR) package (Woods et al., 1998), in
which the first minimally diffusion-weighted image was used as a template. The six
elements of the diffusion tensor were calculated for each pixel using multivariate linear
fitting. After diagonalization, three eigenvalues and eigenvectors were obtained. For the
anisotropy map, fractional anisotropy (FA) was used (Pierpaoli and Basser, 1996). The
eigenvector associated with the largest eigenvalue was used as an indicator of fiber
orientation.

Normalization process
All normalization procedures, including linear and LDDMM transformation, were
performed using an in-house program called Landmarker (www.MriStudio.org, Kennedy
Krieger Institute and Johns Hopkins University, X. Li, H. Jiang, and S. Mori). As a target for
brain normalization, we used a single-subject white matter atlas called JHU-DTI-MNI atlas
(also known as the “Eve atlas”), which is built in into the Landmarker and contains T1, T2,
and DTI-derived contrasts. The atlas is in the ICBM-152 coordinate system and has a matrix
size of 181 × 217 × 181 (1 mm isotropic resolution).

For the initial atlas-subject registration, affine transformation was used using the least
diffusion-weighted images (b0 images). The transformation matrix was then applied to the
calculated diffusion tensor field, based on the method described by Alexander et al. (2001)
and Xu et al. (2003). This process took less than 1 min with 2–3 GHz Xeon processors.

After the linear normalization, the images were submitted for LDDMM. In this study, we
tested several registration approaches in terms of choices of images that drive the
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registration. These were: b0 image only; FA map only; and b0 + FA dual-contrast
registration. Because of the substantial computer resources required by the multi-contrast
LDDMM, the data were resampled to 96 × 128 × 96 (2 × 2 × 2 mm) before the calculation
and the computational time was approximately 5 h using one of the 32 CPUs in a cluster
computer. Because of this extensive computational requirement, the Landmarker adopts a
centralized “remote” strategy. Namely, the software creates a data packet that is
automatically transferred to a designated centralized computational resource with enough
computational power. Once the computation is completed, the users can activate the data
retrieval function of Landmarker, through which the results can be automatically retrieved.
This remote approach can be implemented on local Linuxor Unix servers with proper
configurations. The computation time is typically 6 h with a 3 MHz Zeon processor.

Details of LDDMM-based image registration
Single-contrast—The deformable template model of Granander (Granander and Miller,
1996) models the observed anatomical images, I, as an orbit under the group of
transformations, G, acting on a template image, I0.

(1)

Utilizing this model, for any given two images, I0, I1: Ω⊂R3→R, the LDDMM algorithm
(Beg, 2003; Beg et al., 2005) calculates the diffeomorphic transformation, φ: Ω→Ω,
registering the images such that I1=I0 ° φ−1. Ω R3 is the 3D cube on which the data is
defined. The optimal transformation, φ, is generated as the end point, , of the flow of
smooth time-dependent vector field, νt∈V, t∈ [0,1], with the ordinary differential equation,

(2)

where ϕ0 is the identity transformation such that ϕ0 (x) = x,x∈Ω. Then, the optimal
transformation, φ ̂, is calculated by integrating the vector field that is found by minimizing
the following equation.

(3)

The solution of Eq. (3) is ensured to be in the space of diffeomorphisms, by enforcing
smoothness on the vector fields, ν∈V. The required smoothness is enforced by defining the
norm on V as | f | V = | Lf |L2. L is a differential operator defined as L=−α∇2 + γ I3 × 3, where
I3 × 3 is the identity operator and ∇2 is the Laplacian operator. | · | L2 is the L2 norm for the
square integrable functions defined on Ω. The gradient of the cost in Eq. (3) is:

(4)

where the notation  is used. In Eq. (4),  and . |Df| is the
determinant of the Jacobian matrix. K:L2(Ω,R3)→V is a compact self-adjoint operator,
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defined by , which satisfies K(L†L)g=g for any smooth vector field g∈V. The
parameter σ provides weighting between data matching and smoothness regularization
terms. In the LDDMM algorithm, Eq. (3) is solved with a gradient descent algorithm using
Eq. (4). In Eq. (4), the effect of the operator, K=(L†L)−1, is low-pass filtering. The
parameters α and γ define the magnitude and frequency response of this filter. Fig. 1
demonstrates the effects of these parameters on the LDDMM-based image transformation.
In this simulation, a simple circle object with a radius of 30 pixels (r=30) is transformed to a
larger circle (r=40). The low α/γ ratio leads to less elastic transformation, similar to the
linear normalization. As the ratio decreases, the transformation is more localized to the edge
of the circle where the contrast difference between the two circles is concentrated. Fig. 1B
shows the deformed rectangular grid for different α/γ ratios. Fig. 1C shows the norm of the
displacement vector as a function of distance from the center of the circle for deformations
with different α/γ ratios. As the ratio decreases, it can be seen that the transformation
becomes more nonlinear and localized at the peripheral where the contrast difference
resides.

Multi-contrast—For any given two vector valued images, I0 = [I01, I02,…,I0C] and I1 =
[I11, I12,…,I1C] with I0c, I1c: Ω⊂R3→R,c=1,…,C, the diffeomorphic transformation,φ,
registering these two images, such that I1 = I0 ° φ−1 or [I11, I12,…,I1C]=[I01 °φ−1, I02 °φ−1,
…,I0C °φ−1], is assumed to be generated as the end point of the flow of the smooth time-
dependent vector field, νt∊V, with the ordinary differential equation, .
The optimal transformation, φ ̂ is calculated by integrating the vector field, which is found by
minimizing the following equation.

(5)

Here the index c denotes the contrast images. Again, the solution for this equation is ensured
to be in the space of diffeomorphisms, by enforcing smoothness on the vector fields ν∈V.
The gradient descent algorithm can be used to solve this equation. The gradient of the cost in
Eq. (5) is

(6)

In this equation, the parameters, σc, control the weighting of contrast-matching terms and
smoothness regularization terms. In this study, we used equal weighting for FA and b0
images.

Tensor transformation—The LDDMM algorithm is a powerful technique to calculate
diffeomorphic transformations between scalar-valued images. However, in its original form,
the LDDMM cannot be directly used to register DTI images. With the extension of the
LDDMM as a multi-contrast image-matching algorithm, we can seed various scalar-valued
isotropy or anisotropy images obtained from DTI data as contrasts to the multi-contrast
LDDMM algorithm, and we can calculate diffeomorphisms between tensor images.
Deformation of DTI images using the calculated transformations also requires the
reorientation of the tensor at each voxel. Let M: Ω⊂ R3 → R3 × 3 be a tensor image and let φ
be a diffeomorphism registering the tensor image, M, to another tensor image calculated
using multi-contrast LDDMM. To transform the tensor image, M, with the diffeomorphism,

Ceritoglu et al. Page 5

Neuroimage. Author manuscript; available in PMC 2010 August 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



φ, we use the method in Alexander et al. (2001), which is based on the Gram-Schmidt
orthonormalization. At each point x∈Ω of the tensor image, the tensor, M (x), can be
decomposed as, , where λ1, λ2, λ3 with λ1 ≥ λ2 ≥ λ3 are
eigenvalues and ν1, ν2, and ν3 are the corresponding unit eigenvectors. The transformation
on M(x) with φ can be defined as:

In these equations, Dφ is the Jacobian matrix of φ. This tensor transformation strategy
depends on the assumption that the tissue microstructure does not change during the
transformation, which means that the tensor shape (3D ellipsoid shape) in each voxel does
not change during deformation, i.e., the eigenvalues do not change, but the principal
eigenvector changes according to the Jacobian matrix, Dφ. The plane generated by the
eigenvectors, ν1, ν2, changes to the plane generated by Dφv1, Dφv2.

Application of the multi-contrast LDDMM to human brains
For all 13 AD subjects and 18 control subjects, we mapped each subject to the template
using one of the following approaches:

1. Only b0 images were used with the single-contrast LDDMM and the
transformations, , i = 1,…,31, were calculated (b0-LDDMM).

2. Only FA images were used with the single-contrast LDDMM and the
transformations, , i = 1,…,31, were calculated (FA-LDDMM).

3. Both b0 and FA images were used with the multi-contrast LDDMM and the
transformations, , i = 1,…,31, were calculated (b0 + FA-LDDMM).

In these transformations, the subscripts indicate the subject number (13 AD and 18 control
subjects) and the superscripts denote the type of contrast images used in mappings.

Measurement of registration quality
Landmark-based measurements—We used manual landmarks as the gold standard for
the degree of matching of various white matter structures between the atlas and subject data
after normalization. For the landmarks, we used a so-called “standard landmark set,” which
consists of 237 landmarks at easy-to-identify white matter structures in the JHU-DTI-MNI
atlas, as previously described (Mori et al., 2008). These landmarks were transferred to the
normalized patient images and manually moved to corresponding structures. The average
distance between the positions of the 237 landmarks in the template and the normalized
images represents the normalization quality of the white matter.
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To compare the registration results with different approaches (affine, b0-LDDMM, FA-
LDDMM, and b0 + FA-LDDMM), we performed a one-sided Kolmogorov–Smirnov (KS)
test on cumulative distributions of the pair-wise landmark distances, in which the number of
landmarks (Y axis) within a given distance (X axis) is plotted. For the calculation of the
cumulative distributions, the averaged distance function d:{1,2,…,M}→[0,G]⊂R is defined
on the set of M landmark points of the template image and this function has the maximum
value G. The ECDF (empirical cumulative distribution function) of d is

where n(i) is the number of elements or the cardinality of the set S = {x: d (x) ≤d (i)}.

We hypothesized that there was no significant difference between two distributions against
the alternative that the two distributions were significantly different. The empirical
distribution estimate of KS statistics was obtained using the permutation-based resampling.
The entire 237 landmarks were resampled as a whole without replacement for each
distribution. Then the KS statistic was computed for each resampled dataset. By repeating
this process ten thousand times, an empirical null distribution of the KS statistic was
constructed, and the P-value was calculated as a percentage of the KS statistics greater than
the KS value of the original dataset at 5% significance level.

Surface-based measurement—Landmark-based matching is effective for measuring
the registration quality of the white matter. However, it is difficult to apply to cortical and
ventricular matching because of the paucity of easy-to-identify landmarks, especially in the
cortex. We defined the outer brain surfaces and the ventricle surface of the b0 images in the
template and in each subject and created triangulated meshes. For the surface generation, the
image voxels were regarded as values defined as points in a rectangular lattice and eight
neighboring voxels formed the eight vertices of a cube. Each cube was decomposed into five
tetrahedra. Then the intensity values in the image were used to find whether a given
tetrahedron intersected the isosurface. These intersections formed a triangular mesh that
presents the surface. Each surface can be represented as a set of vertex coordinates of these
triangulated meshes (Fig. 2). The Euclidian distances of the closest vertices between the
template and the normalized subject images were calculated. Then, the empirical cumulative
distribution curves were calculated similar to the landmark-based measurement. To compare
the results with different registration approaches, we again performed a one-sided
Kolmogorov–Smirnov (KS) test on the distance cumulative distributions. Note that this
surface-to-surface matching measurement does not necessarily measure cortex-to-cortex
registration quality, which is beyond the scope of this paper.

Results
Analysis of the impact of the α/γ ratio

The impact of the α/γ ratio on the transformation is demonstrated in Fig. 1. In Fig. 3, we
tested the effect of the ratio using circular objects with a varying degree of sinusoidal waves
(amplitude=5 pixels) as a template. The total number of the sinusoidal waves around the
perimeter (r=40 pixels) is changed to 10, 20, 30, and 40, in which the wavelength is 25.13,
12.57, 8.38, and 6.28 pixels, respectively. A circle object with the same diameter was
transformed to these targets with different α/γ ratios and the mismatch was measured by
counting the number of pixels that were not aligned to the template before and after the
transformation. This simulation provides an idea about the relationship between the
elasticity of the transformation controlled by the α/γ ratio and the complexity of the target
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structures. The results indicate that the transformation provided by a ratio larger than 0.01 is
not elastic enough and no improvement (=1) was observed for this type of highly non-linear
shape difference. The matching quality improves rapidly as the ratio decreases. For the low-
frequency modulation (f=10), no improvement is observed below 0.001, but as the frequency
increases (f>10), higher elasticity (α/γ<0.001) is required.

Fig. 4 demonstrates the impact of the α/γ ratio on the transformation of human brains; a
control subject and an AD patient with severe anatomical deformation are depicted. The
color images are Jacobian maps of the transformation from template to subject showing how
much change in local tissue volume was introduced by the transformation. For the control
subject, the gross mis-registration is appreciable after affine transformation, which is mostly
removed by LDDMM with α/γ = 0.01. The Jacobian map at α/γ = 0.01 clearly shows the
degree of local (non-linear) expansion (Jacobian>1) or shrinkage (Jacobian<1) to match the
brain shape of the atlas to that of the subject. As the α/γ ratio decreases, the more local and
larger transformation is exerted, especially in cortical areas, as evidenced by the Jacobian
maps, even though matching improvement is not immediately obvious visually. The
difference between an α/γ of 0.0025 and 0.001 is minimum and is confined to the cortex. For
the AD patient, the improvement is visually appreciable up to α/γ =0.005 (please notice how
the ventricle shrinks and the corpus callosum enlarges, approaching those of the template).

In Fig. 4, the α/γ ratio is gradually decreased (called a “cascading” ratio, hereafter). This
ensures that there is only a small amount of required transformation at each step up to 0.001.
If such a highly elastic transformation is applied directly to linearly normalized images
without proper initialization, the registration may converge to an apparently wrong solution,
as demonstrated in Fig. 5, especially when the patient anatomy is dramatically different from
the template. The cascading approach is more computationally expensive, but ensures more
robust results. Based on these results, we adopted a three-step LDDMM with a decreasing α/
γ of 0.01–0.005–0.0025 for all further experiments.

Qualitative examination of the improvement by multi-contrast LDDMM
In Fig. 6, an example of LDDMM normalization is shown for an AD patient with severe
brain atrophy. In this figure, results from the four different transformation approaches are
compared: affine (before LDDMM); b0-LDDMM; FA-LDDMM; and b0 + FA-LDDMM.
From visual inspection, the following points can be immediately appreciated. First, the
affine transformation (Fig. 6E) is capable of matching the overall outer brain shape, but fails
to register inner structures. Second, when the b0 image is used for LDDMM (Fig. 6C), not
only the brain surface, but also the ventricle surface, is well registered. However, the white
matter structures revealed by the FA map are not well-matched. The opposite results are
obtained when an FA map is used (Fig. 6D), which carries rich anatomical information
about the white matter, but the gray matter–CSF boundary is not well depicted. As a result,
while the white matter matching looks excellent, there is a gross mismatch at the brain and
ventricle surfaces. The entire brain has noticeably better registration accuracy when the FA
and b0 images are used simultaneously to drive the registration (Fig. 6B).

Quantitative measurements of transformation accuracy
To measure the registration accuracy, we performed two types of the measurements using
control and AD populations. First, we measured the registration accuracy of the white matter
by placing 237 landmarks on major white matter structures in both the template and the
patient image. Second, the brain and ventricle surfaces were defined using the b0 images and
surface matching was measured.
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The results of the landmark-based white matter measurements are shown in Fig. 7. After
affine transformation, registration accuracy measured by average landmark distance was
3.51 ± 1.16 and 4.40 ± 1.67 mm for the normal and AD populations, respectively. When FA
maps were used to drive the LDDMM, the registration was improved to 1.65 ± 0.47 and
1.84 ± 0.65 mm for the normal and AD populations, respectively. The test–retest reliability
of the landmark placement was 1.58 ± 0.60, indicating that the matching quality approached
the accuracy of this measurement. The b0 + FA-LDDMM achieved registration accuracy
similar to the FA-LDDMM (1.88 ± 0.55 and 2.19 ± 0.84 mm for the control and AD groups,
respectively), but b0-LDDMM showed hardly any improvement over the affine registration
(3.12 ± 0.54 and 3.99 ± 0.84 mm). A statistically significant improvement in the registration
accuracy was observed by using FA (P-value=0.01) or b0+ FA (P-value = 0.001) mappings
for 5% significance level.

In Figs. 8A and B, results of the brain surface matching are shown. The FA-driven LDDMM
leads to poor normalization quality. The b0 image with high contrast for the brain boundary
leads to significant improvement in normalization compared to the affine transformation.
The same trend is observed for the ventricle shape matching (Figs. 8C and D). Although
significant improvement is found by the FA-LDDMM, the b0 contrast is necessary for better
registration accuracy.

Discussion
Choice of template

Several studies have measured registration accuracy for white matter structures (Grachev et
al.,1999; Ardekani et al., 2005) using T1-weighted images for brain normalization. These
approaches, in which there is only limited contrast within white matter, have shown that
most white matter structures can be accurately registered within 3 mm by using linear and
non-linear registration tools that are widely available, such as AIR and SPM. In our previous
report using DTI data, the young adult population was normalized to a population-averaged
DTI template (ICBM-DTI-81) (Mori et al., 2008), and we also found that 90% of the
landmarks were within 3 mm. In the present study, we measured approximately 5 mm/90%
as the normalization quality by affine transformation (Fig. 7A). This discrepancy is most
likely due to the choice of the template. The choice of a population-averaged atlas, such as
ICBM-DTI-81 as a template, ensures maximum matching between the template and linearly
normalized subject data. Therefore, if linear transformation is used, the population-averaged
atlas is a preferable choice as a template.

In this study, we employed a single-subject “Eve” atlas (JHU-DTI-MNI). There are several
important points we would like to make regarding the choice of this template. First, highly
non-linear transformation methods may not work properly with a population-averaged
template, such as ICBM-DTI-81, in which the anatomical definition is blurred due to
averaging. This is not a substantial issue for linear normalization, which is mostly driven by
a large contrast change at the outside boundary of the brain, but the blurred internal
structures could easily confuse highly non-linear transformation. Our initial testing of
LDDMM led to overly inflated white matter when a population-averaged map is used as a
template. Second, if a single subject is used as a template, the choice of the template could
be an important issue. If the normalization algorithm is perfect, the template simply serves
as the origin of coordinates to measure anatomical variability and the location of the origin
may not be important as long as we are interested in differences among groups. However, in
reality, it is preferable that the template image is similar to subject images so that the
algorithm is not trapped by improper local minima during the transformation process. This
issue is also related to the question of whether we should use an age-matched template. Our
present study cannot address this issue completely. However, it is encouraging that the white
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matter of both the normal adult and AD patients were registered to the single-subject JHU-
DTI-MNI atlas with excellent accuracy.

Choice of non-linear transformation parameters
Unlike linear transformation, non-linear transformation results are strongly dependent on
transformation parameters. For LDDMM, the α/γ ratio determines the elasticity. The higher
the elasticity, the more complicated shape differences could be matched (Fig. 4). However,
the elasticity also has a higher probability of being trapped to a biologically wrong solution
(Fig. 5).

In LDDMM, the α/γ ratio determines the amount of elasticity. It is not straightforward to
determine which ratio is correct. The simulations in Figs. 1, 3, 4 and 5 should provide some
ideas about the impact of this ratio on the image transformation and the ability of LDDMM
to match the fine detail of the anatomy. Our empirical observation is as follows: 1) a ratio
larger than 0.01 leads to conservative transformation; 2) for normal brain anatomy, for
which affine transformation can match most deep white matter structures within 5 mm,
single LDDMM transformation with a ratio=0.005 should provide the registration accuracy
reported in this paper; and 3) for severely abnormal anatomy, it is important to employ
cascading LDDMM transformation with a decreasing α/γ ratio, as reported in this paper. The
downside of the cascading approach is the longer computation time.

Normalization accuracy by LDDMM
As expected, the affine transformation led to poor registration for both white matter and the
ventricle of AD patients. To improve the normalization quality, non-linear transformation is
needed. The results of LDDMM normalization are strongly dependent on image contrasts
(Fig. 6). When b0 images are used to drive LDDMM, it has little impact on white matter
registration because of the lack of contrasts within the white matter. b0 images, on the other
hand, can match the brain and ventricle surfaces much more precisely. The opposite is true
when FA maps are used for LDDMM. Namely, white matter structures are better registered
while the brain surfaces are poorly matched. By combining these two contrasts using the
two-contrast approach, the registration quality improves within the measurement errors both
for the young adult and AD patient groups. Because these two images have strong contrasts
in mutually complementary locations, the equal weighting factor, σc, for FA and b0 maps,
seem a reasonable choice. In the future, if more contrasts are added, non-equal weighting
may need to be examined.

Even if the normalization is accurately performed, it is always advised to exercise careful
interpretation of image analysis results after normalization, especially when the data contain
severe atrophy and a large amount of deformation is necessary (and therefore more pixel
interpolation and partial volume effects). For example, excessive pixel interpolation may
lead to loss of FA which reflects tissue atrophy, but not axonal or myelin damage.

In this paper, we did not perform a comparison with other widely used normalization
methods such as SPM. In a recent publication by Klein et al. (2009), highly elastic
registration tools were compared with the default setting of SPM and as expected, the former
tools in general delivered improved registration accuracy. In this paper, we demonstrated the
impact of the parameters that control the transformation elasticity. Also demonstrated is the
potential pitfall of employing too elastic parameters and importance of gradual increase of
elasticity during the transformation (Fig. 5). These points exemplify difficulties of
comparing different registration tools because the results may vary depending on employed
parameters and how the tools are used. It is therefore important to know how each
registration tool works and carefully evaluate the impact of parameters. The multi-contrast
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approach and the cascading elasticity control could be combined with other registration tools
to improve their accuracy.

Scalar- and tensor-based normalization
There are two unique issues for DTI normalization. First, when we choose contrasts to drive
LDDMM, it is possible to use tensor orientation information. The second issue is the
transformation of the tensor field, which requires the reorientation of the first eigenvector.
The former issue has not been discussed in this study, where we used scalar images (b0 and
FA images) to drive LDDMM. By inspecting DTI-derived images, it becomes immediately
apparent that off-diagonal tensor element and eigenvector maps carry far stronger contrasts
for intra-white matter structures, and thus, they could be more effective to drive
normalization. It would be interesting in future work to see further improvement of
normalization quality by adding these contrasts to the multi-contrast LDDMM. In the past,
several methods have been postulated to use these contrasts for the normalization of DTI
(Park et al., 2003; Cao et al., 2005; Zhang et al., 2006). However, these contrasts are
rotationally variant, and therefore, require constant re-calculation during deformation. As a
result, the method by Cao et al. (2005), while it may further improve the registration
accuracy, requires far longer computational time. It is, therefore, important to carefully
evaluate the added benefit with respect to increased computational loads.

In conclusion, we evaluated an LDDMM-based normalization method by testing single- and
two-contrast approaches using b0 and FA contrasts, and these were applied to young adults
and AD patients. Based on manual landmark-based measurements as gold standard, we
found that the two-contrast (FA+b0) approaches can register the entire brain with higher
spatial accuracy. The impact of a parameter that controls the elasticity of the transformation
(α/γ) was also demonstrated. Using our brain atlas with 1 mm spatial resolution, the α/γ ratio
of 0.01 provides conservative non-linear transformation. For brains with normal anatomy, an
α/γ = 0.005 should achieve a high degree of matching for the white matter structures. For
brains with severe anatomical changes, the cascading approach, in a range of 0.01–0.001, is
recommended.
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Fig. 1.
Simple simulations to demonstrate the effect of the α/γ ratio, in which a circle of the 30-
pixel radius is transformed to the 40-pixel radius, (A) with varying α/γ ratios (B and C). In
(B), transformations of a grid are shown to demonstrate the transformation effect. Note that
with the low ratio, a large transformation is localized at the boundary of the circle where the
contrast difference locates. In (C), the amount of pixel shift (as much as the radius
difference=10 pixels) at each location across the diameter.
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Fig. 2.
A flowchart for the surface-based measurement of registration accuracy. The brain and
ventricle surfaces were defined by triangular meshes for the template and the normalized
subject brains. Then distances between the closest triangle vertices of the two meshes were
measured.
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Fig. 3.
Simulation of transformation accuracy of LDDMM with a varying α/γ ratio. Circular objects
with different degrees of sinusoidal perimeter modulation (frequency=10, 20, 30, and 40) are
created from a circle. All objects have a radius of 40 pixels and the amplitude of the sinusoid
is 5 pixels. After the LDDMM, the number of the mismatched pixels are counted and
normalized by the mismatch before the LDDMM, which is shown in the graph.
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Fig. 4.
Transformation of a normal adult and a severely abnormal case (AD patient) with gradually
decreasing α/γ ratios. For a visual clue, the outline of the white matter of the template is
superimposed on the data. The color maps are Jacobian maps of the calculated LDDMM
transformation from template to the subject. Voxel value in Jacobian map less than 1 (blue)
indicates shrinkage and a value larger than 1 (red) indicates expansion. For example, the
ventricle of the AD patient is red while the white matter is blue, indicating the enlarged
ventricles and white matter atrophy.
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Fig. 5.
Examples of transformation with small α/γ ratios (highly elastic transformation) with and
without the cascading approach. Performing the highly elastic transformation directly on
linearly registered images may lead to an inaccurate solution for severely abnormal brains,
such as the AD case used in this demonstration.
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Fig. 6.
Demonstration of LDDMM using an FA image only, a b0 image only, and an FA + b0 dual
contrast. The upper and bottom rows show b0 and FA images from the atlas (first column)
and an AD patient (2nd–4th columns). The b0 images carry a strong contrast for the tissue–
CSF boundaries and the FA image shows strong contrast for the intra-white matter
structures. These boundaries defined in the atlas (blue lines) are superimposed on the
transformed AD patient images for visual clues.
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Fig. 7.
Results of landmark-based accuracy measurements of LDDMM transformation of the white
matter. The 237 landmarks were manually placed on the template and the subjects in the
corresponding locations after three different types of LDDMM registration (FA only, b0
only, and FA + b0) and their distances were measured. Results from 13 normal subjects (A)
and 18 AD patients (B) are shown. The results are presented as the cumulative population of
landmarks as a function of distance. The red line represents the registration results after the
affine normalization and before the LDMMM.
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Fig. 8.
Measurements of surface-matching accuracy for the brain (A and B) and the ventricle (C
and D). Images (A) and (C) show 3D maps of the residual difference after affine, b0-
LDDMM, FA-LDDMM, and b0 +FA-LDDMM transformation of the brain (A) and the
ventricle (C) of AD patients (n = 13). The cumulative error histograms are also shown in (B)
and (D) for the brain and the ventricle surfaces of the normal (n = 18) and the AD patients (n
= 13).
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