
Biophysical Modeling of Phase Changes in BOLD fMRI

Zhaomei Feng1,2, Arvind Caprihan1, Krastan B. Blagoev3, and Vince D Calhoun1,2

1The Mind Research Network, Albuquerque, New Mexico

2Dept. of ECE, University of New Mexico, Albuquerque, New Mexico

3Division of Physics, National Science Foundation, Arlington, Virginia

Abstract

In BOLD fMRI, stimulus related phase changes have been repeatedly observed in humans. 

However, virtually all fMRI processing utilizes the magnitude information only, while ignoring 

the phase. This results in an unnecessary loss of physiological information and signal-to-noise 

efficiency. A widely held view is that the BOLD phase change is zero for a voxel containing 

randomly orientated blood vessels and that phase changes are only due to the presence of large 

vessels. Based on a previously developed theoretical model, we show through simulations and 

experimental human BOLD fMRI data that a non-zero phase change can be present in a region 

with randomly oriented vessels. Using simulations of the model, we first demonstrate that a 

spatially distributed susceptibility results in a non-zero phase distribution. Next, experimental data 

in a finger-tapping experiment show consistent bipolar phase distribution across multiple subjects. 

This model is then used to show that in theory a bipolar phase distribution can also be produced by 

the model. Finally, we show that the model can produce a bipolar phase pattern consistent with 

that observed in the experimental data. Understanding of the mechanisms behind the 

experimentally observed phase changes in BOLD fMRI would be an important step forward and 

will enable biophysical model based methods for integrating the phase and magnitude information 

in BOLD fMRI experiments.
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INTRODUCTION

Blood oxygenation-level dependent (BOLD) fMRI has been a popular tool for studying the 

brain noninvasively. A change in blood oxygenation level in response to local activation 

changes the T2* relaxation time, and subsequently changes the MRI signal. The complex-
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valued BOLD fMRI signal (Hoogenraad et al., 2001) contains physiologic information. 

However, so far, virtually all fMRI studies have analyzed only the magnitude changes. A 

standard approach of analysis is to correlate the time-series of the magnitude fMRI data with 

an assumed reference signal (Bandettini et al., 1993). This procedure completely discards 

the phase information in the images. If indeed useful information is being discarded, it 

would be quite important and interesting to utilize this information in the phase of the signal.

Due to the susceptibility difference between the intravascular (IV) blood and tissue, there is 

a shift in the resonance frequency of the water protons. A zero phase change from the 

extravascular (EV) signal contribution was predicted for a model using cylinders to 

represent blood vessels (Bandettini and Wong, 1995; Ogawa et al., 1993; Yablonskiy and 

Haacke, 1994). This result depends on the spatial symmetry of the induced magnetic field. 

IV signal contribution has also been considered in (Boxerman et al., 1995; Hoogenraad et 

al., 1998; Menon, 2002, 2003). Boxerman pointed out that the IV spins account for the 

majority of fMRI signal change on T2*-weighted images at 1.5 T (Boxerman et al., 1995). 

When the IV and EV signal contributions are considered together it was concluded that the 

phase changes only come from large vessels (Klassen and Menon, 2005; Menon, 2002, 

2003).

Phase changes during BOLD imaging studies have been repeatedly observed. A number of 

these reports are concerned with voxels with larger venous to arterial blood volume fraction 

(Hoogenraad et al., 1998; Lee et al., 1995; Menon, 2002). There have also been a number of 

different post-processing approaches to utilize the phase data. For example, phase sensitive 

fMRI methods have been used to reduce contaminations from oriented draining veins 

(Klassen and Menon, 2007; Menon, 2002; Nencka and Rowe, 2007; Tomasi and Caparelli, 

2007) although Tomasi and Caparelli’s model neglected to consider the sphere of Lorentz 

which should be considered in such vascular models (Chu, et al. 1990). All of these methods 

did not consider whether task related phase changes can be observed in regions absent of 

macro vessels. Instead, they were interested in filtering out voxels with macro-vascular 

contribution. We show that the proposed model predicts a task related phase change in 

regions absent of macro vessels. Our approach and Menon’s model (Klassen and Menon, 

2005; Menon, 2002, 2003) are complementary, thus in future work we will explore the 

combination of those two approaches. Rowe provides a general complex fMRI model 

(Rowe, 2005a), and considers a number of cases of modeling the phase. A task-related phase 

was considered (Rowe, 2005a, b) and the phase is modeled as an arbitrary value by Rowe 

and Logan (Rowe and Logan, 2005) as well as using a constant value (Rowe and Logan, 

2004). Furthermore, the analysis of phase-only fMRI data has been improved by adopting an 

angular regression model (Rowe et al., 2007). Methods, such as a complex correlation 

coefficient (Lai and Glover, 1997), a complex generalized likelihood ratio test (CGLRT) 

(Nan and Nowak, 1999; Rowe and Logan, 2004), and independent component analysis 

(Calhoun et al., 2002), have also been utilized to process complex-valued fMRI data. 

However, most of these papers focus on data processing and do not address the underlying 

mechanism for the phase change.

Recently, a new model for the phase change in BOLD and cerebral blood volume (CBV)-

weighted fMRI was investigated by Zhao et al in (Zhao et al., 2007). CBV-weighted fMRI 
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was performed by injecting a superparamagnetic IV contrast agent into the brain of a cat. In 

a related paper (Zhao et al., 2006), simulations were performed using the CBV-weighted 

fMRI phase change data to validate the proposed model with experimental CBV data. 

However, this model has not been tested in BOLD fMRI. The magnetic susceptibility effect 

in BOLD contrast is much smaller than that produced by exogenous intravascular contrast 

agents, making it more difficult to validate the model with experimental BOLD fMRI data. 

In addition, the results in (Zhao et al., 2007) were obtained in cats, because the CBV-

weighted fMRI (as implemented in the paper (Zhao et al., 2007) with MION) can not be 

performed on humans due to its invasive nature. We apply Zhao’s model (Zhao et al., 2007) 

to BOLD fMRI experimental data for the first time. Here the signal change depends on the 

variation in local magnetic field inhomogeneity caused by the blood oxygenation level 

change.

The approaches used in most of previous literature, which model blood vessels as long 

cylinders, provide good insights into susceptibility contrast mechanisms. However, as 

pointed out in (Pathak et al., 2008), their inherent assumptions limit their applicability and 

cylinders may not adequately represent the micro-vessel architecture being studied. The 

model (Zhao et al., 2007) used in this paper calculates the magnetic field for arbitrary 

geometries and spatially distributed susceptibility change inside volume of activation (VOA) 

during the activation. We demonstrate that even for a voxel with randomly oriented micro-

vessels the phase change is small, of the order of a degree, but not necessarily zero. This 

does not preclude the possibility that a single or more macro-vessels in a voxel can also 

cause similar phase changes. In addition with experimental data we demonstrate that this 

small phase is measurable in the presence of noise and can be used to define task related 

phase changes. Our intent is to better understand the observed magnitude and phase changes. 

The goal of our paper is to investigate this model through simulations and by comparison 

with experimental BOLD fMRI data in humans.

In this paper, we first present the theory for calculating the local magnetic field seen by a 

water proton for arbitrary geometries and inhomogeneous susceptibility changes in the 

VOA. Computer simulations in both frequency domain (Deville et al., 1979; Koch et al., 

2006; Salomir et al., 2003) and spatial domain of the phase change caused by a series of 

different 3-D Gaussian volume-averaged magnetization changes provide us with insight into 

the properties and applicability of the theoretical model. This is done by simulation results 

from a simple Gaussian model showing typical quadrupolar phase effects. Here we define 

the term “quadrupolar” pattern as the field distribution with four lobes, two with positive 

and two with negative values. Next, we show a slightly more complicated simulation which 

produces bipolar patterns. Finally, we directly compare BOLD fMRI data with simulations 

and demonstrate that the model is capable of producing phase patterns quite similar to those 

observed in a finger tapping fMRI experiment in humans. Our expectation is that with better 

understanding of the observed fMRI signal phase change we will improve methods for 

combining phase and magnitude data in BOLD fMRI experiments.

THEORY

The phase change at a position r is given by
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where γ is the gyromagnetic ratio, TE is the echo time, and Δ B is the change in magnetic 

field along B0 at position r and MKS units are used.

Blood vessels and surrounding EV tissue can be described by a two-component model 

(Durrant et al., 2003; Wolber et al., 2000; Ye and Allen, 1995; Zhao et al., 2007). In each 

voxel, the volume-averaged magnetic susceptibility χ can be calculated from the volume-

weighted average of magnetic susceptibilities of the EV tissue χt and the IV blood χb:

where f is the relative blood volume fraction. Subsequently, the volume averaged 

magnetization for a voxel at position r can be written as

Where χ(r) is volume averaged magnetic susceptibility at this position, B0 is the external 

magnetic field, and μ0 is a constant, representing the vacuum permittivity.

We now discuss the phase change model proposed in (Zhao et al., 2007), which used the 

Lorentz sphere concept for its derivation. The Lorentz sphere concept was originally 

introduced in the electrostatic and magnetostatic treatment of microscopic fields (Feynman, 

1975; Lorentz, 1915). It can be used to calculate nuclear magnetic resonance (NMR) shifts 

induced by magnetic susceptibility changes (Chu et al., 1990; Dickinson, 1951; Haacke et 

al., 1999; Levitt, 1996; Springer, 1994); and in the case of a heterogeneous system like 

blood (Durrant et al., 2003; Wolber et al., 2000; Ye and Allen, 1995) extended the sphere of 

Lorentz to the size of ∼20 μm to include a number of the blood cells and tissue molecules, 

much larger than the classic sphere of Lorentz size (on the order of several intermolecular 

distances). Furthermore, this conceptual device has been adapted to the system consisting of 

magnetic susceptible blood vessels and EV tissue (Zhao et al., 2007; Zhao et al., 2006). The 

size of the sphere, in this case, is at the sub-millimeter to millimeter scale (Zhao et al., 2007; 

Zhao et al., 2006). In a BOLD fMRI experiment, the blood susceptibility during activation is 

modulated by a decrease in paramagnetic deoxyhemoglobin concentration. The magnetic 

field change at position r can be written as (Zhao et al., 2007)

where the first term is change of the demagnetizing field (Bd (r)) caused by vessels inside 

the VOA but outside the Lorentz cavity. And the demagnetizing field is given by (Reitz et 

al., 1979)
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where χ in and χ out are the volume-averaged susceptibility inside and outside the VOA 

surface, respectively. S0 and V indicate the surface and volume of the VOA, respectively; r’ 
is the position on the surface for the surface integration term (the first integration) or within 

the VOA (excluding the Lorentz sphere) for the volume integration term (the second 

integration); χin(r’) and χout(r’) are the volume-averaged susceptibility inside and outside 

the surface at position r’, respectively; n is the unit normal vector of surface at position r’; 
▽ is the divergence operator.

The second term of Eq. is the change of the Lorentz cavity field  from the 

magnetization distribution on the Lorentz sphere surface, and the last term of Eq. is the 

change of field caused by vessels inside the Lorentz cavity (Bb (r)). The sum of the 

contributions from those local blood vessels to the fMRI phase change in a voxel with large 

vessels absent is essentially zero because of the spatial symmetry of the induced magnetic 

field in EV water (Ogawa et al., 1993; Yablonskiy and Haacke, 1994) and randomly 

orientated micro-vessels (Menon, 2002, 2003). As the result, the last term of Eq. disappears. 

In addition, because effectively only the component of the field change along B0 contributes 

to phase change, then we have . Denote Δ Bdz as the z component of Δ 

Bd. Finally, Eq. becomes,

If we know Δ M z (r) or, equivalently χ (r), then the above equation can be used to calculate 

Δ Bz (r), and subsequently from Eq. the phase change.

Next, we show the approximations made to evaluate Eq. in the spatial domain for this 

specific application. In fMRI experiments, by definition, the activation is negligible at the 

surface of the VOA denoted by S0; subsequently, the susceptibility change at the surface S0 

is negligible, which implies that

Thus, the first term in the demagnetizing field expressed in Eq. disappears. Now let us focus 

on the second term of the demagnetizing field. In our model, M(r) is parallel to z axis (Eq.), 

which implies that M x = M y = 0. Thus we have
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and the demagnetizing field becomes

Finally, the magnetic field change at r in Eq. can be simplified as,

Equation (10) is expressed in the spatial domain but it can be calculated in a simpler manner 

in the frequency domain. The frequency domain method (Deville et al., 1979; Koch et al., 

2006; Salomir et al., 2003) shows that given a susceptibility distribution, the resultant 

magnetic field perturbations can be calculated by

where FT and FT-1 indicate the Fourier transform and inverse Fourier transform, Kz is the z 

component of k-space and K2 = Kx
2 + Ky

2 + Kz
2.

METHODS

fMRI Experiments

All experiments were performed on a 3T Siemens TIM Trio system with a 12-channel radio 

frequency (RF) coil. The data is combined from the multiple channels using coil sensitivity 

maps obtained automatically in a separate low resolution calibration experiment. The fMRI 

experiment used a standard Siemens gradient-echo EPI sequence modified to store real and 

imaginary data separately. We used a Field-of-View (FOV) = 240 mm, Slice Thickness = 

3.5 mm, Slice Gap = 1 mm, Number of slices = 32, Matrix size = 64×64, TE = 29ms, and 

TR = 2s. The fMRI experiment used a block design with periods of 30 s off and 30 s on. 

Nine healthy subjects participated in the experiment. The subjects tapped the fingers of their 

right hand during the on period. There were five and a half cycles, starting with off and 

ending with the off period. We collected 15 whole head fMRI images during each ‘on’ or 

‘off’ period. The total experiment time was 5.5 minutes.

Preprocessing

Data were preprocessed using the SPM5 software package (http://

www.fil.ion.ucl.ac.uk/spm/software/spm5/). The phase images were unwrapped by creating 

a time series of complex images (real and imaginary) and dividing each time point by the 

first time point, and then recalculating the phase images. Further phase unwrapping was not 

required. Data were motion corrected using INRIalign - a motion correction algorithm 

unbiased by local signal changes (Freire et al., 2002). The transformation obtained by 

motion correcting the magnitude image was then applied to the phase images. Both 
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magnitude and phase images were then spatially smoothed with a 10×10×10 mm3 full width 

at half-maximum Gaussian kernel, and spatially normalized into the standard Montreal 

Neurological Institute space. Following spatial normalization, the data (originally acquired 

at 3.75×3.75×4.5 mm) were slightly up-sampled to 3×3×3 mm, resulting in 53×63×46 

voxels. Motion correction and spatial normalization parameters were computed from the 

magnitude data and then applied to the phase data. Activation maps were computed using 

the multiple regression framework within SPM5 in which regressors are created from the 

stimulus onset times and convolved with the standard SPM hemodynamic response function 

(HRF) which is a sum of two gamma functions, one to model the activation, the other to 

model a small post stimulus undershoot (Friston et al., 1995). One regressor for tapping 

versus rest was used in addition to a constant regressor modeling the mean. A contrast was 

created for each individual subject for finger tapping versus rest. To compute the group 

maps a second level analysis was performed using the activation maps from each individual 

subjects and entering them into a one-sample t-test.

Simulations

We performed a computer simulation in both frequency domain and spatial domain of the 

phase change in order to better understand the theory described above. For our example, we 

assume that in the VOA the volume-averaged susceptibility or magnetization change along 

the direction of B0 is 3D Gaussian. Then, the unitless volume-averaged susceptibility change 

is written as,

where Ck is a scaling constant. We choose the value of Ck based on parameter values from 

the literature. We define Δχ’ as the susceptibility difference between completely 

deoxygenated and completely oxygenated red blood cells (0.264 ppm in CGS units (Spees et 

al., 2001)) with a hematocrit level of 0.4 (Guyton and Hall, 1996), and oxygenation level Y 

is the fractional oxygenation in the red cells with ΔYcap = 0.08 (Hoogenraad et al., 2001; 

Hoogenraad et al., 1998). Then for a blood volume fraction f of 0.05 and ignoring the 

cerebral blood volume change, Ck = -f · Δ Ycap · 4π · Δχ ’ · Hct, as the result, C is 

approximately -5.3×10-9.

However, for real fMRI experiments, we usually do not have information about the volume-

averaged susceptibility Δχ(r) or magnetization change ΔM(r), which poses a difficulty for 

us to simulate the phase change based on Eqs. and. In order to test our phase model, we 

make the following assumptions to approximately calculate the change in magnetization 

from the relative change in BOLD signal. We define S as the magnitude of the signal, and 

define R *2 as the relaxation rate. Assuming the change in R *2 is small and the proton spin 

density remains constant, for a fixed TE we have (Hoogenraad et al., 2001)

Feng et al. Page 7

Neuroimage. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Under the condition that TE is greater than the characteristic time (1/δω), R2 * is a linear 

function of f (χ b - χ t) (Yablonskiy and Haacke, 1994),

From Eqs.,, and, we conclude that the magnitude change is approximately linearly 

proportional to ΔM(r) and can write

where A is a scaling constant.

Three simulations were performed as follows. 1) First we investigate the properties of phase 

change resulting from the theoretical model and understand the dependence of the phase 

change patterns on the spatial distribution and orientation of the susceptibility distribution. 

We take 3D Gaussian as an example of susceptibility distribution and show expected phase 

change patterns for a 3D Gaussian susceptibility distribution. Note that magnetization and 

susceptibility distributions are proportional. 2) However, in our fMRI BOLD experimental 

results the patterns tend to be bipolar. Next simulation shows how a Gaussian susceptibility 

distribution can be combined and modified to convert a quadrupolar to approximately a 

bipolar pattern. We do not claim that the chosen distribution is the only case that will 

produce the bipolar phase change; rather we wanted to use any simple model to test whether 

it was possible to produce a bipolar phase (which is not intuitive). 3) Finally, we directly 

compare experimental fMRI phase and magnitude data to simulation results and demonstrate 

that the model is capable of producing patterns quite similar to those observed in a motor 

finger tapping fMRI data set.

RESULTS

In Figure 1 we show expected phase change patterns for a 3D Gaussian volume-averaged 

susceptibility distribution from computer simulations. This is used to understand the 

dependence of the phase change patterns on the spatial distribution and orientation of the 

susceptibility distribution. These simulations show the distribution of the phase change to be 

typically quadrupolar, with the intensity of the positive and negative variations being 

dependent on the spatial distribution, shape and the orientation of the Gaussian distribution. 

However, in our BOLD fMRI experimental results the patterns tend to be bipolar (examples 

are shown in Figure 3 and Figure 4). Hence next we wanted to evaluate whether our model 

was capable of producing bipolar patterns. In Figure 2 we show that a quadrupolar phase 

pattern can look like a bipolar pattern by combining parts of two Gaussian distributions and 

thresholding the results to suppress low signal intensity noisy regions. Finally, we directly 

compared our simulated results to the patterns observed in real fMRI data by first 

approximating the phase pattern observed in the fMRI data and inverting through our model 

to produce the corresponding susceptibility pattern. These results are shown in Figure 3. 

Detailed results are as follows.
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Figure 1 shows the simulation results of phase change corresponding to 3D Gaussian 

volume-averaged susceptibility change for the cases of σx:σy:σz = 1:1:1, 1:1:2, 2:2:1 and 

2:2:1 (Eq.) rotated counter-clockwise around the x-axis by π/3, respectively. Both the 

frequency domain and spatial domain give approximately the same results. For the value of 

Ck selected above, the resulting maximum simulated phase change for all of these 

configurations is in the order of 1°. Depending on the spatial distribution of the 

susceptibility changes in the VOA and the angle of the cut plane of the magnetic field 

change, the resulting phase shows patterns of dominantly positive, dominantly negative, or 

combinations of positive and negative phase changes due to the volume-averaged 

magnetization and demagnetization effects. More specifically, when the susceptibility 

change is a sphere, the resulting phase is quadrupolar, which coincides with (Haacke et al., 

1999); when the long axis of the susceptibility change is parallel to the external magnetic 

field B0, the volume-averaged magnetization effect dominates and the resulting phase 

change tends to be dominantly positive, which agrees with the results in (Wolber et al., 

2000; Zhao et al., 2007); when the long axis of the susceptibility change is perpendicular to 

the external magnetic field B0, the demagnetization effect plays a big role, the resulting 

phase change becomes more negative; in fact, the absolute value of the negative lobe of the 

phase is greater than the positive lobe of the phase. For the case of σx:σy:σz = 2:2:1 and the 

distribution of susceptibility change is rotated counter-clockwise around the x-axis by π/3, 

the resulting phase change is rotated and twisted. The positive and negative lobes are no 

longer 90° from each other. The resulting phase change varies according to the spatially 

distributed volume-averaged susceptibility change.

Figure 2 shows in the left panel that given an asymmetric 3D distribution of susceptibility 

change constructed by taking a part from a Gaussian distribution with σx:σy:σz = 6:6:8 and 

amplitude 0.5 and another part with σx:σy:σz = 6:6:1 and amplitude 1. The total 

susceptibility change is rotated counter-clockwise around the x-axis by π/5. For this 

example, the resulting phase has a pattern of asymmetric quadrupoles. Considering the real 

fMRI data are noisy, we threshold both susceptibility change and phase change at 0.45 and 

0.4, respectively. Here the thresholds are chosen in the way that ratio of threshold over the 

maximum is closer to that of the real fMRI data. After the threshold is applied, the 

asymmetric quadrupolar phase appears bipolar.

In Figure 3, the first three panels show the magnitude and phase change of the results (t 

value) for subject A, subject B and subject C, respectively. The panel in the lower right 

corner of the figure shows the scaled susceptibility change and phase change of simulated 

results. Here, we assume the magnitude change is approximately linear to the volume-

averaged susceptibility change. For the three subjects, the thresholds were all greater than t 

= 8 (p<1×10-13), which is highly significant. The highest magnitude change was observed in 

the motor cortex. The phase changes all show the bipolar patterns. Further observation of 

Figure 3 indicates the peak of the magnitude change is not located where the phase change 

peaks; instead, it is closer to the sign change of the phase change. The observations above 

also hold true for the other subjects shown in Figure 4. The simulations to match the 

observed fMRI phase/magnitude changes were conducted by modeling the phase change due 

to a susceptibility distribution which resembles the experimentally observed BOLD fMRI 
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magnitude change pattern, and the resulting phase change matches the experimentally 

observed bipolar phase patterns of fMRI after thresholding. The simulation results in the 

lower right corner of Figure 3 show that our model can closely match phase and magnitude 

change patterns observed experimentally.

Figure 5 shows the spatially unsmoothed and smoothed phase and magnitude change time 

courses from a single voxel (the one showing maximal phase change) for subject D, who is 

representative. The time evolutions of the phase and magnitude change are similar to each 

other, suggesting that both changes originate from the same source, the deoxyhemoglobin-

induced susceptibility change. The measured voxel phase change (unsmoothed) is around 1° 

(0.017 radians), on the same order of 1° in the simulation results as shown in Figure 1 and 

Figure 2. They are both on the same order of a measured voxel phase change (no large 

vessel present) 0.028 radians or 1.6° in (Menon, 2002). While in the voxels with large 

vessels present, the phase change is relatively larger (for example, 0.085 radians in (Menon, 

2002)). The spatially smoothed phase change for the same voxel is more reduced than the 

spatially smoothed magnitude change since the adjacent negative and positive phase changes 

can cancel. In this paper, we focus on modeling the phase change, in the future, a ‘smart 

smoothing’ approach would appear to be more important for phase change. For 

completeness, we present unprocessed data (no smoothing and no spatial normalization) in 

Figure 6 in Appendix.

Although, the principal cause of magnitude and phase change in the BOLD experiment is 

the susceptibility change, both magnitude and phase also depend on other factors, which 

includes diffusion, presence of large vessels, and physiological noise. In addition these 

factors affect the phase and magnitude signal in different ways. We are collecting data from 

a 12 channel RF coil and combining them (internally by Siemens) in an optimal manner 

based on coil sensitivity profiles. Under these conditions, the measurement noise in the real 

and imaginary channels can be correlated. Thus methods of properly combining magnitude 

and phase change in the presence of noise and their dependence on other previously 

discussed factors will prove to be useful to further improve estimates of the susceptibility 

change.

DISCUSSION

We begin with Zhao’s model (Zhao et al., 2007) and calculate the magnetic field change 

seen by a water proton at position r based on the frequency domain method (Deville et al., 

1979; Koch et al., 2006; Salomir et al., 2003) and the spatial domain method described 

above. Zhao’s model shows that for a random distribution of micro-vessels we can do the 

analysis in terms of volume averaged magnetization or susceptibility. Under these 

assumptions we can do an analysis without the details of intra-voxel susceptibility 

distribution. Equation suggests that calculation of the magnetic field from magnetization 

depends on the demagnetizing field given by the volume integral and a Lorentz cavity field. 

This interpretation gives additional insight on the dependence of magnetic field change on 

the susceptibility distribution. The change in the Lorentz cavity field is due to the change in 

the volume-averaged magnetization at the measured point, while the derivatives of this 

volume-averaged magnetization at all other points in the direction of B0 contribute to the 
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change in the demagnetizing field. Depending on the relative strengths of these two fields, 

the net phase change will bear a dominantly positive, dominantly negative or the 

combination of positive and negative sign.

We next calculate susceptibility distributions that can predict the phase patterns observed 

experimentally in BOLD fMRI. We begin with a Gaussian spatial distribution for 

susceptibility and show that the phase pattern it generates can be quadrupolar. The phase is 

zero at the centre of the Gaussian distribution, where the susceptibility distribution is 

symmetric, and not zero in surrounding regions, where the susceptibility distribution is not 

symmetric. After combining more than one Gaussian distribution and suitable thresholding 

we can convert a quadrupolar phase pattern to approximately a bipolar pattern. Finally, we 

simulate the phase change due to a susceptibility distribution which approximates the real 

fMRI magnitude change pattern, and the resulting phase change matches the experimentally 

observed bipolar phase patterns of fMRI after thresholding. This result shows that even 

though the spatial patterns of the magnitude and phase change in an fMRI experiment are 

not similar, they can be analyzed jointly if a model is used to link a change in susceptibility 

to a change in the phase and magnitude of the fMRI signal. Also, in the presence of noise 

there can be voxels where a phase change is detectable and a magnitude change signal is not. 

This is a potential benefit of using the phase. Besides, the measurement noise in the phase 

and magnitude being statistically independent for small SNR and approximately 

independent for moderate to large SNR (Lei and Wehrli, 2007) is another reason for their 

joint analysis. Thus the joint analysis will not only improve spatial localization of activation 

but may also potentially let us infer intra-voxel properties, such as the presence of large 

vessels in a voxel. In future research, we will develop methods to infer the activation 

information of Δχ(r) by fitting both the magnitude and phase data to the proper magnitude 

model and phase model.

In the simulations discussed here we have ignored details of intra-voxel susceptibility 

distribution and diffusion effects. The analysis was done in terms of volume averaged 

magnetization, which is accurate for a random distribution of micro-vessels. In the general 

case, such as the presence of large vessels, the large vessels’ orientation and position will 

play a role in the phase change. As mentioned earlier in the paper, phase sensitive fMRI 

methods have been used to reduce contaminations from oriented large veins (Klassen and 

Menon, 2007; Menon, 2002; Nencka and Rowe, 2007; Tomasi and Caparelli, 2007). Those 

methods state that during the activation only the large oriented vessels produce phase 

changes and for randomly oriented micro-vessels, the phase change is zero. However, the 

approach used in our paper predicts that a voxel with randomly oriented micro-vessels can 

produce a non-zero phase change of the order of a degree (0.017 radians). Those methods 

can be used to reduce activation contributions from well oriented draining vessels. In 

contrast, the phase model we utilize can be used to extract useful physiologic information 

such as task-related activation (susceptibility change) from phase change data. Our approach 

and those methods are complementary, thus in future work we will explore the combination 

of them together. On the other hand, in order to test the phase model in the real BOLD fMRI 

experiments, we draw upon Yablonskiy’s result showing that, in the absence of diffusion, 

the magnitude change is approximately linearly proportional to the change in volume-

averaged magnetization ΔM(r) so that we can approximately calculate the change in 
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volume-averaged magnetization from the relative change in BOLD magnitude signal. The 

conditions when diffusion can be neglected have been discussed by Yablonskiy and Haacke 

(Yablonskiy and Haacke, 1994) and the simulation can follow Martindale’s method 

(Martindale et al., 2008), where the frequency domain method is used to calculate the 

magnetic field distribution from a susceptibility distribution.

Venograms will be collected in the future to detect presence of large vessels and incorporate 

their effect in simulations. In addition we will collect physiologic data to determine the 

relationship between the phase signal and physiological signals; similar to what is done for 

magnitude imaging (Glover et al., 2000; Kruger and Glover, 2001).

In this paper, we have demonstrated that the Lorentz sphere model for BOLD fMRI data 

from human subjects predicts phase change patterns observed in these experiments. At this 

stage we have qualitatively shown that the model is capable of producing the observed 

patterns. Quantitative fitting to predict change in blood susceptibility will be pursued in 

future work. Our approach provides strong motivation for the development of additional 

methods for utilizing the phase information in fMRI BOLD data.
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APPENDIX

In Figure 6, we present unprocessed data (no smoothing and no spatial normalization). Here 

we use the first timepoint of the EPI data for the anatomical underlay.
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Figure 1. 
Simulation of phase change corresponding to 3D Gaussian volume-averaged susceptibility 

change for the cases of σx:σy:σz = 1:1:1, 1:1:2, 2:2:1 and 2:2:1 rotated counter-clockwise 

around the x-axis by π/3, respectively.
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Figure 2. 
Considering the noise, the phase of quadrupolar pattern becomes bipolar for an example of 

asymmetric 3D Gaussian volume-averaged susceptibility change. Half of the susceptibility 

change has σx:σy:σz = 6:6:8 with the amplitude of 0.5 and another half has σx:σy:σz = 6:6:1 

with the amplitude of 1. The total susceptibility change is rotated counter-clockwise around 

the x-axis by π/5.
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Figure 3. 
Magnitude (M) and phase (P) changes (t-values) for single subject A, B, and C together with 

the susceptibility and phase change of simulated results. The colorbars for the subjects show 

the t-value ranges. The colorbar for the simulated results indicate the relative strength of 

susceptibility and phase change.

Feng et al. Page 17

Neuroimage. Author manuscript; available in PMC 2015 February 21.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
The axial slices of magnitude and phase change (t-value) for single subject D-I.
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Figure 5. 
Spatially unsmoothed and smoothed phase and magnitude change time courses for subject 

D.
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Figure 6. 
Unprocessed magnitude and phase data (no smoothing and no spatial normalization) for nine 

subjects A-I.
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