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Graph theory provides many metrics of complex network organization that can be applied to analysis of
brain networks derived from neuroimaging data. Here we investigated the test–retest reliability of graph
metrics of functional networks derived from magnetoencephalography (MEG) data recorded in two sessions
from 16 healthy volunteers who were studied at rest and during performance of the n-back working memory
task in each session. For each subject's data at each session, we used a wavelet filter to estimate the mutual
information (MI) between each pair of MEG sensors in each of the classical frequency intervals from γ to low
δ in the overall range 1–60 Hz. Undirected binary graphs were generated by thresholding the MI matrix and 8
global network metrics were estimated: the clustering coefficient, path length, small-worldness, efficiency,
cost-efficiency, assortativity, hierarchy, and synchronizability. Reliability of each graph metric was assessed
using the intraclass correlation (ICC). Good reliability was demonstrated for most metrics applied to the n-
back data (mean ICC=0.62). Reliability was greater for metrics in lower frequency networks. Higher
frequency γ- and β-band networks were less reliable at a global level but demonstrated high reliability of
nodal metrics in frontal and parietal regions. Performance of the n-back task was associated with greater
reliability than measurements on resting state data. Task practice was also associated with greater reliability.
Collectively these results suggest that graph metrics are sufficiently reliable to be considered for future
longitudinal studies of functional brain network changes.
Introduction

The recent application of graph theoretical analysis to human brain
time series data, e.g., functional MRI, magnetoencephalography
(MEG) and electroencephalography (EEG), provides a complex
systems approach to the study of functional brain architecture
(Bullmore and Sporns, 2009). This whole brain network approach
extends and expands upon the current reductionistic understanding
of specific regional functions. Graphs of functional connectivity in the
human brain can, for example, be derived from fMRI and MEG/EEG
time series by estimating the correlation or coherence (or some other
measure of association) between voxels/regions of interest (in fMRI)
or between sensors (in EEG/MEG) and then thresholding the resulting
association matrix to generate a binary adjacency matrix, which can
be drawn as a graph.
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Several graph theoretical metrics, such as the clustering coeffi-
cient, minimum path length or cost-efficiency, have been applied to
topological analysis of brain functional networks, and many of them
have been shown to reflect disease and state-related differences
between groups. For example, longer minimum path length has been
reported in patientswith Alzheimer's disease (Stam et al., 2007). Brain
functional network configuration changes have also been described in
relation to performance of simple tasks (Bassett et al., 2006), acute
dopamine antagonist drug challenges (Achard and Bullmore, 2007),
and normal ageing (Meunier et al., 2009). These preliminary studies
suggest that brain functional network parameters might serve as
useful biomarkers for neurocognitive disorders and therapeutics.

However, in assessing the potential utility of network measures as
markers of brain function in studies designed to test longitudinal
changes or drug treatment-related effects, it is important to consider
the reliability of the measurements on repeated testing in the same
subjects. Unreliable measures will naturally be less attractive as
endpoints in a cross-over trial of drug versus placebo, for example,
because they will reduce the statistical power of the experiment to
detect a true treatment effect. There are prior reasons to consider that
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brain functional network metrics might have acceptable reliability. In
particular, several studies have shown that topological properties of
functional networks are similar to those of underlying structural
networks, and to the extent that functional networks are anatomically
constrained they are expected to be reliably measured over the course
of several weeks.

To provide a first assessment of the test–retest reliability of graph
theoretical metrics of human brain functional networks, we used
magnetoencephalography (MEG) to record neurophysiological
dynamics at rest and during performance of the n-back working
memory test in normal volunteers, each studied in two sessions
several weeks apart.

For each MEG dataset, we constructed a set of functional networks
operating at different frequency intervals and we estimated multiple
graph theoretical metrics of the global topological organization of
each network. We then quantified the reliability of each global metric,
in each frequency interval and under each task condition, in terms of
the intraclass correlation (ICC) between measurements in different
sessions on the same subjects. In finer-grained analyses, we estimated
the reliabilities of graph theoretical metrics of network organization at
the level of individual network nodes (MEG sensors). At both global
and nodal scales, we tested the hypothesis that a number of
experimental factors, including rehearsal of working memory task
performance, might have a significant influence on the reliability of
graph theoretical metrics of brain functional networks.

Methods

Subjects, MEG data acquisition and cognitive tasks

At the Cognition and Brain Sciences Unit, Cambridge, MEG data
were recorded from 16 healthy subjects twice each while in a resting
state and while performing a n-back working memory task. The
sessions were 4–6 weeks apart. The data were recorded with a 306-
channel Vectorview system (Elekta Neuromag, Helsinki) which
combines 204 planar gradiometers and 102 magnetometers. Only
planar gradiometer data were considered in this study. Data were
sampled at 1000 Hz, then downsampled to 250 Hz. A single epoch that
lasted for the duration of the resting state or n-back working memory
task was used for analysis. The data were not corrected for eye-blinks,
muscle artefacts or cardiac artefacts, but a continuous head position
monitoring (cHPI) using signal space separation was employed to
minimise the effects of adjusting for movement within and between
visits (Taulu et al., 2005).

Resting state MEG was recorded for 2.25 min each with the
subjects' eyes being open. The participant was told to relax and try
to think of nothing in particular. The n-back task is a test of
working memory. In the version used here, it requires a continual
working memory response from the subject during continual
presentation of incoming stimuli (Winterer et al., 2004). Subjects
were presented with numbers 1, 2, 3 and 4, displayed in isolation
on a screen. Their task was to indicate via four different buttons the
integer that was (a) currently displayed (0-back), (b) displayed in
the previous run (1-back) or (c) displayed in the run before the
previous run (2-back). Stimuli were presented for 500 ms with an
inter-stimulus interval of 1800 ms. There were 6 blocks in total,
each block consisted of 14 runs of first the 0-back task, then 14
runs of the 1-back task and lastly 14 runs of the 2-back task,
thereby increasing difficulty within each block. The task lasted for
approximately 9 min.

MEG data processing

For each individual MEG dataset, the sensor time series were
analyzed with a Daubechies 4 discrete wavelet transform (Percival
and Walden, 2000). Scales 2 through 7 corresponded roughly to
standard MEG frequency bands γ (31.2–62.5 Hz), β (15.6–31.2 Hz), α
(7.8–15.6 Hz), θ (3.4–7.8 Hz), δ (1.7–3.4 Hz) and δ−1 (0.8–1.7 Hz). As
the wavelet transform requires the number of time points of the time
series input to be a power of two, 215 data points were considered for
resting state data (corresponding to 2.25 min) and 217 were
considered for the n-back data (approximately 9 min).

Frequency dependent functional connectivity was estimated by
the mutual information (MI) between wavelet coefficients at each
scale for each pair of sensors. This resulted in a {204×204}
association matrix for each MEG dataset at each wavelet scale. We
also estimated the mean MI, over all entries in the association
matrix, as a simple measure of the average strength of functional
connectivity in each dataset. Mutual information has previously
been shown to provide superior sensitivity for estimation of
functional connectivity in band-pass filtered time series (David et
al., 2004).

For graph theoretical analysis, the association matrix was
thresholded to create a binary adjacency matrix where the {i, j}th
element was either 1 (if the MI between sensors i and j was greater
than the threshold) or 0 (if it was not). The adjacency matrix can be
visualized as an undirected graph where an edge or connection is
drawn between each pair of nodes that has mutual information
greater than threshold. Threshold values were chosen so that the
total number of non-zero entries in the adjacency matrix, also
known as the cost or connection density of the graph K, was at the
lowest value consistent with all nodes being connected in all
networks at each wavelet scale. Thus all networks within the same
frequency band and task condition had the same cost or number of
edges. We decided against the use of a single common threshold for
all frequency bands and task conditions because it would either
have led to some networks being disconnected (if the cost was
chosen to be very small), which would have made the estimation of
some graph metrics impossible, or it would have led to over-densely
connected networks (if the cost was chosen so that all networks
would be fully connected). Fig. 1 provides a schematic overview of
the procedure.

For each network the following graph metrics were calculated:
clustering, path length, small-worldness, efficiency, cost-efficiency,
synchronizability, assortativity, and hierarchy (see Table 1 for an
overview). These metrics can be divided into first-order metrics,
which depend on only one graph property, and second-order
metrics, which depend on more than one property. Thus clustering
coefficient, minimum path length, global efficiency, cost-efficiency
and synchronizability were classified as first-order metrics, while
assortativity, hierarchy, and small-worldness were classified as
second-order. Each of these metrics is briefly defined in more detail
below:

Clustering, path length and small-world topology
The clustering coefficient of node v is defined as the ratio of the

connected triangles, δv to the connected triples τv, and therefore the
clustering coefficient of a graph, G, can be defined as:

C Gð Þ = 1
jV Vj

X
vaV V

δv
τv

ð1Þ

where V′ is the set of nodes with degree greater than 2 (Schank and
Wagner, 2005). In a study that compared healthy individuals with
brain tumour patients (Bartolomei et al., 2006), a reduced clustering
coefficient was found in functional networks that were derived from
MEG data. This provides a clear demonstration of how clustering
coefficient can in principle be applied to analysis of human functional
neuroimaging data, even though a slightly different estimator of the
clustering coefficient than the one described above was used.



Fig. 1. Time series data from two MEG sessions were used to determine session-specific mutual information matrices, to which a binary threshold was then applied. Based on the
binary matrices, graph metrics were calculated for each session. To determine reliability, an intraclass correlation between sessions was calculated for each metric.
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Minimum path length L was defined as the average of the shortest
paths between each node and every other node in the network (Watts
and Strogatz, 1998).
Table 1
Description of graph metrics.

Metric Description Reference

Clustering coefficient Cliquishness of a graph Watts and Strogatz (1998)
Minimum path
length

Mean of shortest paths
between all nodes

Watts and Strogatz (1998)

Small-world High clustering in the presence
of small path length

Watts and Strogatz (1998)

Synchronizability Structural property that
enables network to synchronize

Motter et al. (2005);
Barahona and Pecora (2002)

Assortativity Degree correlation between
neighbouring nodes

Newman (2002)

Hierarchy Power law relationship between
clustering and degree of
the nodes in the network

Ravasz and Barabasi (2003)

Global efficiency The inverse of path length Latora and Marchiori (2001)
Cost efficiency Global efficiency at a given

cost minus the cost
Achard and Bullmore (2007)

Overview of the 8 different graph metrics that were used to analyse the networks of
functional connectivity.
Small-world topology refers to a network structure with higher
clustering coefficient C than a comparable random network, but
equally short path length L (Watts and Strogatz, 1998). Using C and
L, the small-world value σ could then be computed as

σ =
C = CRan

L= LRan
ð2Þ

(Humphries et al., 2006), where CRan and LRan denote the clustering
coefficient and path length, respectively, estimated in comparable
random networks. This ratio will be greater than unity for a small-
world network. In this study, one representative random network was
created for each frequency band in order to compute the small-world
value σ. This randomnetwork did not preserve the degree distribution
of the original networks, but had the same number of edges.

Interestingly, in networks derived from aworking memory task, the
small-world coefficient has been found to be higher in healthy subjects
when compared to schizophrenic patients (Micheloyannis et al., 2006).

Hierarchy, assortativity and synchronizability
A fundamental property of any node is the number of edges

connecting it to the rest of the network, also known as the degree k of
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each node. In hierarchical networks, it has been shown that nodes
with high degree tend to have a small clustering coefficient C, while
nodes with smaller degree tend to have higher clustering (Ravasz and
Barabasi, 2003). Accordingly, the hierarchical structure of a graph can
be quantified in terms of the power law relationship between
clustering C and degree k of the nodes in the network:

Cek−β
: ð3Þ

The hierarchy coefficient βwas estimated by fitting a linear regression
line to the plot of log(C) versus log(k).

The assortativity of a network refers to the degree to which nodes
are linked to nodes with a similar degree. Assortativity can thus be
defined as the correlation r between the degree of a node and the
mean degree of its immediate neighbours (Newman, 2002). Positive
values of r indicate assortative networks, while negative values
indicate disassortative networks. Technical and biological networks
are typically disassortative while social networks tend to be
assortative. For example, networks of co-authorship in scientific
journals were found to be assortative (Newman, 2004).

Synchronizability, S, refers to structural properties of the network
that enable it to synchronize rapidly and is defined as

S =
λ2

λN
ð4Þ

where λ2 is the second smallest eigenvalue of the Laplacian L of the
adjacency matrix, and λN is the largest eigenvalue of L (Motter et al.,
2005; Barahona and Pecora, 2002). Fully synchronized systems have
been found to have S between 0.01 and 0.2, suggesting a threshold
value of 0.01 for global synchronization.

Efficiency and cost-efficiency
The efficiency of a node is defined as the inverse of the path length

L of that node (Latora and Marchiori, 2001); thus a node with high
efficiency will have short minimum path length to all other nodes in
the graph. Global efficiency Eglob is defined as the mean of the
efficiency of all nodes and global cost-efficiency is then simply the
global efficiency at a given cost minus the cost, i.e., (E–K), which will
typically have a maximum value max(E–K) greater than zero, at some
Fig. 2. Intraclass correlation (ICC) coefficients for 9 different metrics over 6 frequency band
first-order metrics and then second-order metrics. Top: During performance of a n-back tas
cost Kmax for an economical small-world network (Achard and
Bullmore, 2007).

Statistical analysis

The intraclass correlation (ICC) was estimated as a measure of
test–retest reliability for average MI and for each graph metric under
each task condition and at each frequency scale. The ICC is close to +1
if the measurements made in the two MEG recording sessions are
consistent on repeated testing for each subject in the sample. We
reported ICCs descriptively and also used analysis of variance
(ANOVA) models to test hypotheses about effects of experimental
and other factors on reliability of the various global network metrics.
Additionally, we estimated ICCs at each sensor for local or nodal
measures of network organization, mapped these local reliability
estimates on renderings of the scalp surface, and used multiple
ANOVA testing to identify significant factorial effects on reliability of
nodal network metrics.

All statistical comparisons were implemented in Statistica
(StatSoft Inc., http://www.statsoft.com/) and all other computa-
tions were performed in Matlab (MathWorks Inc., http://www.
mathworks.com/).

The scalp plotting program used in this work was adapted for the
current use fromDelorme, A. (2002) Headplot Matlab Code (CNL/Salk
Institute, La Jolla, CA).

Results

Reliability of global metrics on working memory networks

The results of the reliability analysis for global metrics on networks
derived from MEG data recorded during the n-back working task are
presented in Fig. 2 and Table 2. The intraclass correlations for the 8
different graphmetrics, plus averagemutual information, ranged from
0.02 to 0.89, with a mean of 0.62±0.20(SD).

Reliability varied considerably over different frequency bands. The
lowest mean ICC over all metrics was found in the γ band (0.40±0.10
(SD)), and the highest was found in the α band (0.75±0.07(SD)).
Accordingly, an ANOVA model that treated the different frequency
bands as repeated measures showed a highly significant effect of
frequency band (F(5,48)=8.04, P=0.00003) which is reflected in a
s. Average mutual information as a non-graph metric is presented first, followed by the
k, ∼9 min. Bottom: For resting state data, ∼2.25 min.

http://www.statsoft.com/
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Table 2
ICC values for all frequency bands.

γ β α θ δ δ−1

N-back
Average mutual
information (MI)

0.416 0.817⁎ 0.835⁎⁎ 0.714⁎⁎ 0.805⁎ 0.868⁎⁎

Clustering coefficient
(C)

0.315 0.529⁎ 0.686⁎ 0.594⁎ 0.72 0.828⁎⁎

Minimum path length
(L)

0.414 0.37 0.763⁎⁎ 0.8⁎⁎ 0.816⁎⁎ 0.891⁎⁎

Synchronizability (S) 0.467 0.267 0.755⁎⁎ 0.725⁎ 0.577⁎ 0.708⁎
Global efficiency
(Eglob)

0.439⁎ 0.419 0.795⁎⁎ 0.804⁎ 0.807⁎⁎ 0.866⁎⁎

Cost efficiency (CE) 0.501⁎ 0.646⁎ 0.779⁎⁎ 0.708⁎ 0.814⁎⁎ 0.793⁎⁎
Small-world (σ) 0.173 0.467⁎ 0.6⁎ 0.721⁎ 0.63⁎ 0.769⁎⁎
Assortativity (r) 0.454⁎ 0.254 0.687⁎ 0.433⁎ 0.609⁎ 0.475⁎
Hierarchy (β) 0.455⁎ 0.647⁎ 0.827⁎ 0.508⁎ 0.743⁎⁎ 0.027

Resting state
Average mutual
information (MI)

0.187 0.313 0.558 −0.056 0.121 0.267

Clustering coefficient
(C)

0.389 0.158 0.546 0.041 0.395 0.391

Minimum path
length (L)

0.325 0.15 0.791⁎⁎ −0.215 0.031 0.041

Synchronizability (S) 0.374 0.239 0.619⁎ 0.029 0.298 0.339
Global efficiency
(Eglob)

0.363 0.03 0.809⁎⁎ −0.231 0.035 0.049

Cost efficiency (CE) 0.491 0.391 0.531 −0.18 0.229 0.272
Small-world (σ) 0.409 0.395 0.509 0.068 0.342 0.235
Assortativity (r) −0.117 −0.005 0.239 −0.171 0.59⁎ 0.38
Hierarchy (β) 0.289 0.021 0.603⁎ 0.133 0.712⁎⁎ 0.421

The exact ICC values for all metrics and frequency bands during the 9 min of the n-back
working memory task and the 2.25 min of resting state. ⁎ designates significant values
(P=0.05, FDR corrected) and ⁎⁎ marks ICC values that additionally pass the stricter
criterion of being above 0.7 and having a coefficient of variation below 0.2.

Table 3
Connection densities.

Groups γ β α θ δ δ−1

Rest∼2.25 min 0.13 0.06 0.06 0.07 0.32 0.43
N-back∼9 min 0.06 0.06 0.07 0.06 0.21 0.4
N-back∼0–2.25 min 0.06 0.06 0.06 0.06 0.21 0.38
N-back∼3–5.25 min 0.06 0.06 0.06 0.06 0.26 0.49
N-back∼6–8.25 min 0.06 0.07 0.07 0.06 0.24 0.36
N-back within 0.06 0.06 0.06 0.06 0.22 0.42

The connection densities – or cost values – were used for thresholding for the different
frequency bands and groups. The values are the smallest cost at which all graphs for
participants and sessions would be fully connected. These cost values were set to at
least 0.06 so that random networks used for the estimation of small-world would be
fully connected.
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general trend of increasing reliability for lower frequency bands, as
shown in Fig. 2.

Reliability also varied somewhat between different metrics. We
found this most clearly whenwe compared the reliabilities of average
MI, first-order graph metrics (clustering, path length, efficiency, cost-
efficiency and synchronizability), and second-order graph metrics
(assortativity, hierarchy and small-worldness). Again using a repeated
measures ANOVA model, we found that there was a significant effect
of metric order (F(2,6)=9.91, P=0.0126). Posthoc comparisons
showed that the reliabilities of the mutual information and of the
first-order metrics were not significantly different from each other (t
(4)=1.68, P=0.14), but both first-order graph metrics (t(6)=3.57,
P=0.01) and average MI (t(2)=3.85, P=0.008) were significantly
more reliable than the second-order metrics.

All the graph metrics were initially estimated in relatively sparse
networks with low connection density: networks in frequency bands
α, β, γ, and θ had 6–7% of all possible connections (with the exception
of γ in the resting state data which had 13%). In δ and δ−1 networks,
connection densities were higher, between 20% and 42%. The exact
values can be found in Table 3.We subsequently explored the effects of
connection density or cost on reliability by estimating all metrics in
networks with connection densities 5% less and 5% greater than their
initial values. We found no significant effect of connection density on
reliability of graph metrics (F(2,12)=1.44, P=0.28); see also Fig. 3B.

In addition to these assessments of between-session reliability, we
also evaluated the within-session reliability of all metrics. The
intraclass correlations for two non-overlapping 4.5 minute segments
fromwithin a single sessionwere generally quite highwith amean ICC
of 0.77±0.25(SD) over all frequency bands and metrics. The
equivalent estimates of between-session reliability, comparing the
metrics in the first 4.5 min of n-back data in each of the two
experimental sessions, yielded a mean ICC of 0.54±0.22(SD). A two-
factor repeated measures ANOVA with frequency band as a repeated
measure andwithin versus between sessions as a group factor showed
that the within-session ICCs were significantly higher than the
between-session reliabilities (F(1, 16)=21.57, P=0.0017).

Effects of working memory task practice and performance

We were also interested to explore how reliability of network
organization might be affected by practice on the n-back working
memory task. To address this question, we estimated between-session
intraclass correlations for each of three separate 2.25 min segments of
the n-back experimental data: an early segment from 0 to 2.25min, an
intermediate segment from 3 to 5.25min, and a late segment from 6 to
8.25 min. We found that reliability monotonically increased as a
function of increasing practice on the task: the average ICC over all
metrics was 0.50±0.24(SD) for the early segment, 0.59±0.22(SD) for
the intermediate segment, and 0.63±0.23(SD) for the late segment. A
two-factor repeated measures ANOVA with task practice and
frequency band as repeated measures showed a significant main
effect of task practice (F(2, 12)=18.57, P=0.00007) and a significant
main effect of frequency band (F(5, 30)=16.83, Pb0.00001). Posthoc
comparisons showed that the reliability was higher in the second
practice session than the first (F(1, 6)=12.35, P=0.0126); the
reliability was higher in the third practice session than the second
(F(1, 6)=26.29, P=0.0021) and the first (F(1, 6)=22.13,
P=0.0033), indicating a linear increase in reliability with practice.

There was also a significant interaction between frequency band
and task practice (F(10, 80)=7.25, P=0.00000) indicating that task
practice was not associated with increasing reliability in all frequency
bands. As shown in Fig. 3A, this interaction is driven by the reduced
reliability of network metrics in the β frequency interval in the last
segment of the data. These practice-related changes in reliability of
network measures were not reflected by changes in task accuracy:
ANOVA modelling of task accuracy for the three segments with
session and task practice as repeated measures revealed no significant
main effects of session (F(1, 14)=3.46, P=0.08) or task practice (F(2,
13)=0.32, P=0.73) and no interaction of session and task practice (F
(2, 13)=0.11, P=0.89), expressing clearly that accuracy was similar
in both sessions and during different segments of the task. Similarly,
ANOVA modelling of reaction time yielded no significant effect of task
practice (F(2,13)=2.25, P=0.15), but revealed a significant effect of
session (F(2, 14)=4.58, P=0.05) as reaction time in the second
session was significantly smaller.

Additionally, we compared the reliability of global network
metrics for resting state data to an equivalent period of the n-back
working memory data. As can be seen clearly in Fig. 2, the reliability
of the resting state data was generally lower for all frequency bands
(mean ICC of 0.26±0.25(SD)) except in the α band (mean ICC for
α=0.58±17(SD)).

We used an ANOVA model to compare the ICCs for network
metrics in resting networks to those estimated for the samemetrics in
the first 2.25min of the n-back task. This comparison revealed a highly
significant effect of task (F(1,16)=29.33, P=0.000063), due to the



Fig. 3. Intraclass correlation (ICC) values for clustering coefficient, assortativity, global efficiency and the mean over all metrics over the six frequency bands considered. (A) For
varying task practice in the n-back task; analysis shows a significant effect of task practice. (B) For cost values that were plus and minus 5% of the original cost value used; no
significant effect of cost was found.

Fig. 4. Reliability (ICC) of network efficiency on a nodal (sensor) level, with sensors located on a scalp surface rendering. Results for the six different frequency bands are given from
top to bottom, and categorized according to task into either resting state (left) or n-back (right).
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Fig. 5. Reliability of nodal efficiency changes with task practice. For early, intermediate and late segments of the n-back task, ICC values for efficiency at a nodal (sensor) level were
mapped to the sensor locations on a scalp surface rendering, illustrating the effect of task practice. Results for γ-band are shown on the left side and for β-band on the right side.
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greater reliability of the metrics in the n-back data. There was also a
significant effect of frequency band (F(5, 48)=18.39, Pb0.00001) and
a significant interaction between task and frequency (F(5, 40)=8.38,
P=0.00001).

These results reflect the observation (Fig. 2) that the reliability of
the α-band network is distinctively greater than the reliabilities of all
other frequency band networks in the resting state data; whereas, in
the n-back data, the reliability of the α-band network is greater than
that of higher frequency networks but approximately equivalent to
that of lower frequency networks.

Reliability of nodal network metrics

Finally, we evaluated the reliability of selected network metrics at
the level of individual network nodes (MEG sensors) rather than at
the global level so far considered. For example, we estimated the
between-session intraclass correlations for nodal efficiency estimated
at each sensor in both n-back and resting state data andmapped these
reliability estimates onto a surface rendering of the scalp (Fig. 4). This
analysis demonstrated that reliability was not homogeneously
distributed across all sensors. In the γ- and β-band networks, for
which reliability of global network metrics was less than in lower
frequency networks, we found that some sensors had highly reliable
efficiency in both experimental conditions. Moreover, when we
investigated the effects of n-back task practice on reliability of nodal
efficiency, we found that the subset of highly reliable nodes became
concentrated in right frontal and parietal regions of the scalp surface
as a function of increasing practice on the task (Fig. 5). Collectively
these observations indicate that reliability of local or nodal network
metrics can be reasonably high evenwhen reliability of global metrics
is low; and that changes in experimental condition, including greater
practice on the same experimental task, can be associated with
differences in the spatial distribution of highly reliable nodal network
properties.

Discussion

The primary objective of this study was to investigate the
reliability of graph theoretical measures of human brain functional
networks derived from experimental MEG data. Overall, we found that
the reliability of graph metrics was reasonably good (mean
ICC=0.62), in comparison to the limited prior data available on
reliability of other electrophysiological measurements. For example,
EEG spectral parameters measured during a working memory task
were found to be relatively stable over a period of up to 40 months,
reflected in the fact that 35 out of 40 first and second sessions were
correctly matched to each other (Naepflin et al., 2008). Also Huang et
al. (Huang et al., 2007) have examined the abnormal metabolic brain
networks associated with Parkinson's disease in two PET sessions over
8 weeks and found them to be highly stable with an intraclass
correlation coefficient of ICC=0.89. However, we were also able to
identify significant effects on reliability of a number of factors –

including frequency band, type of metric and task conditions – which
might help guide investigators on the most reliable applications of
these metrics in future studies.

First, we noted that global brain network metrics tended to be
more reliable at lower frequency intervals. This is perhaps not
surprising in light of prior literature, (e.g. Honey et al., 2007),
indicating that lower frequency coherent oscillations in neuroanato-
mically realistic computational models are more strongly dictated by
structural constraints. More anatomically constrained systems would
naturally be more reliable over the course of repeated measurements
only a few weeks apart. In addition to the relationship between lower
frequency functional connectivity and anatomical connections which
may drive replicability, there is evidence for a basic replicability of
resting state functional networks over a wide range of frequency
bands based on high heritability (Smit et al., 2008). Indeed, univariate
time series properties, such as the power spectrum, have also
previously been shown to be highly heritable (van Beijsterveldt and
van Baal, 2002) and this may be regarded as further evidence for a
likely genetic effect on the high reliability of functional network
metrics.

The higher frequency γ and β-band networks were less reliable at
a global level. This is arguably consistent with prior work suggesting
that higher frequency systems are rapidly reconfigurable in support of
cognitive representations and perceptions. Dynamically nonstation-
ary networks would be expected to have lower reliability on test–
retest measurement over several weeks.

From a cognitive neuroscience perspective, it was notable that
brain functional network metrics were generally more reliable when
measured under experimentally controlled task conditions – the n-
back workingmemory paradigm – thanwhenmeasured in a relatively
uncontrolled “resting” state. This is consistent with results reported in
a recent study looking at the test–retest reliability of frequency
components in EEG over an interval of 7 days (McEvoy et al., 2000).
Reliability of these components was also found to be higher in a
working memory task than in resting state, suggesting that the
external direction of brain function necessitates specific functional
configurations with little variance. The stability of event-related
desynchronization and synchronization (ERD/ERS) for different
frequency bands has also been investigated in 29 subjects over the
course of two years (Neuper et al., 2005). These authors found
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satisfactory stability (ICCN0.7) when subjects were performing a task;
in the resting state, the α range was the most stable frequency band.
These studies support our findings that reliability is frequency
dependent and that the reliability of the α-band network is least
affected by task.

The comparably low reliability in the resting state might be a
consequence of the diverse nature of neural patterns found in resting
state, as reported by Damoiseaux et al. in a test–retest fMRI study
(Damoiseaux et al., 2006): 10 different resting state patterns, arguably
related to different functions (e.g. memory) that may occur during
resting state, were identified across subjects with a tensor probabil-
istic independent component analysis. Even though these patterns
were consistent across subjects and sessions (9 of 10 patterns were
found in both 40 minute sessions), this does not imply good reliability
in our case, as different “patterns” may be active at different times,
thereby reducing reliability, especially in the short 2.25 min recording
used here. In planning a study where between-session reliability is
important, it therefore seems sensible to use a task in the
experimental paradigm to assure that subjects retain a similar time-
dependent cognitive state in both sessions. It should be noted,
however, that the resting state data used here was acquired while
participants had their eyes open. It is probable that networks derived
from resting state datawith eyes closedmay prove to bemore reliable,
since the signal-to-noise ratio of eyes-open data can be adversely
impacted by alpha suppression and eye blink artefacts.

Moreover, we found that task practice was associated with greater
reliability of global network metrics over time. As subjects rehearsed
the task within each session their pattern of network configuration
became more consistent over different recording sessions. This
suggests that learning reliable behavior is related to emergence of
more reliable brain network configurations: task training drives
functional network selection to an asymptotic limit that is relatively
stable over time — perhaps anatomically constrained. Task practice
improved global network reliability in all frequency intervals except
β-band. However, when we considered the task practice-related
changes in the β-band network at a finer-grained nodal level of
analysis, we found the emergence of a subset of highly reliable
network nodes in frontal and parietal regions, apparently by a
process of elimination on a larger initial set of reliable nodes. This
could mean that during the beginning of the task, more brain areas
are involved in task performance (and are therefore reliably
reproducible) whereas later on, only a core set of brain regions is
still concerned with the task, leaving the other brain areas to random
fluctuation and poor reproducibility. There is evidence from func-
tional imaging studies that with increasing task practice, activation
decreases in some initially highly activated brain regions. For
example, Raichle et al. found in a PET study that areas most active
during naive performance were significantly less active during
practiced performance in a verbal response selection task (Raichle
et al., 1994). Practice produced decreases in activation were also
found in a visuospatial working memory task (Garavan et al., 2000).
This study also showed that fewer regions passed statistical criteria
for activation at the end of practice as compared to the beginning of
practice. These results are consistent with the idea that during the
course of performing a task, underlying networks may become more
focused. Moreover, the location of these more focused, reliable
regions in frontal and parietal cortex matches regions that are found
to be activated in the n-back task (Owen et al., 2005).

On a more methodological note, we found that there were
differences in reliability between metrics. Generally the simpler
metrics – such as average MI or first-order graph metrics (like path
length) – were more reliable than second-order graph metrics (like
small-worldness). It is not clear whether the worse reliability of
second-order metrics is caused by added metric variance or increased
sensitivity of these metrics to, for example, performance related
changes in brain function. Our finding that the non-thresholded
measure of association or functional connectivity measure – average
mutual information – did not prove to be more reliable than first-
order metrics suggests that information important for reliability is
retained in suprathreshold connections in an undirected graph. An
alternative to thresholding is to use the full information of a coherence
matrix in a weighted graph, as has been done, for example, in a study
by Rubinov et al. (2009). It would be very interesting to investigate the
reliability of graph metrics in weighted graphs, which unfortunately
was outside the scope of this paper.

In conclusion, the results of this study support the potential use of
graphmetrics of brain functional network organization in longitudinal
designs, e.g., cross-over studies where the effect of acute drug
administration on network configuration is compared to the effects
of placebo by repeated measurements on the same subjects. In such
situations, we recommend that greater statistical power might be
conferred by lower longitudinal variability of first-order metrics of
global network properties at lower frequencies and under experi-
mentally controlled or well-rehearsed task conditions. If it is
hypothetically important to make longitudinal measurements on
higher frequency networks then our results suggest that it will be
more powerful to consider regional or nodal metrics rather than
global network measures.
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