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Abstract
The length polymorphism of the serotonin (5-HT) transporter gene promoter region has been
implicated in altered 5-HT function and, in turn, neuropsychiatric illnesses, such as anxiety and
depression. The nonhuman primate has been used as a model to study anxiety-related mechanisms
in humans based upon similarities in behavior and the presence of a similar 5-HT transporter gene
polymorphism. Stressful and threatening contexts in the nonhuman primate model have revealed 5-
HT transporter genotype dependent differences in regional glucose metabolism. Using the rhesus
monkey, we examined the extent to which serotonin transporter genotype is associated with 5-HT
transporter binding in brain regions implicated in emotion-related pathology.

Methods—Genotype data and high resolution PET scans were acquired in 29 rhesus (macaca
mulatta) monkeys. [C-11]DASB dynamic PET scans were acquired for 90 minutes in the anesthetized
animals and images of distribution volume ratio (DVR) were created to serve as a metric of 5-HT
transporter binding for group comparison based on a reference region method of analysis. Regional
and voxelwise statistical analysis were performed with corrections for anatomical differences in gray
matter probability, sex, age and radioligand mass.

Results—There were no significant differences when comparing 1/1 homozygotes with s-carriers
in the regions of the brain implicated in anxiety and mood related illnesses (amygdala, striatum,
thalamus, raphe nuclei, temporal and prefrontal cortex). There was a significant sex difference in 5-
HT transporter binding in all regions with females having 18% – 28% higher DVR than males.

Conclusions—Because these findings are consistent with similar genotype findings in humans,
this further strengthens the use of the rhesus model for studying anxiety related neuropathologies.

Introduction
The serotonin system plays a central role in regulating mood and affect (Lucki, 1998).
Dysfunction of the serotonin system is implicated in a variety of psychopathologies, including
anxiety, depression and obsessive compulsive behavior. The serotonin transporter clears
serotonin from the synaptic cleft and thereby plays a major role in serotonergic
neurotransmission. The gene encoding the 5-HT transporter (5-HTT) contains a functional
length polymorphism in the promoter region (referred to as 5-HTTLPR) that is associated with
the development of emotional traits and psychopathology (Lesch et al., 1996). Carriers of the
short allele (s), combinations of either s/s or s/l, have reduced in vitro gene transcription of 5-
HTT mRNA and protein (Heils et al., 1997) compared to homozygous carriers for the long
allele (1/1). In humans, there is considerable evidence suggesting that s-carriers demonstrate
higher levels of anxiety related traits and have increased susceptibility for depression (Lesch,
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Bengel et al. 1996; Caspi et al. 2003; Kendler et al. 2005; Ebstein 2006; Rutter et al. 2006;
Hayden et al. 2007) (see Canli et al. 2007 for review).

The rhesus monkey possesses a similar length polymorphism in the serotonin transporter gene
promoter to that of humans (Lesch et al., 1996). In the same region (though not exactly same
location) as the promoter polymorphism in humans, a 21 base pair insertion/deletion variant
is found in the rhesus monkey (alternatively referred to as rh5-HTTLPR). As with humans, the
s-allele is associated with alterations in serotonergic function, such as 5-HT metabolites present
in CSF (Bennett et al., 2002), and in functions associated with the serotonergic system,
including alterations in stress responsivity (Barr et al., 2004b) and behavior (Barr et al.,
2004a; Champoux et al., 2002).

The nonhuman primate model for studying the underlying mechanisms of human anxiety has
been developed to further characterize the anxious endophenotype using behavioral (Kalin and
Shelton, 1989), endocrine (Kalin et al., 1998) and neuroimaging (Fox et al., 2005) testing.
These studies have identified regional differences in metabolic activity based upon anxiety-
related behaviors (Kalin et al., 2005). Using FDG high resolution PET scanning, Kalin and
colleagues (2008) demonstrated that rhesus monkey s-carriers displayed increased regional
metabolic activity in response to stressful situations (relocation and threat) compared to (1/1)-
homozygotes, similar to functional imaging studies in humans using fearful stimuli (Hariri et
al., 2002). The region of the brain affected (with s-carriers showing increased FDG metabolism)
was dependent on the context of the eliciting stressor, with the amygdala activated in response
to relocation and the bed nucleus of the stria terminalis activated in response to threat. Such
findings illustrate a context by genotype interaction which affects separate neural networks
involved in the mediation of emotion. It is conceivable that these networks are also
characterized by differences in neurochemical endophentoypes, such as the distribution of the
serotonin transporter.

In this study, the relation between 5-HTT receptor binding availability and the serotonin
transporter length polymorphism was examined in a large cohort of rhesus monkeys. PET scans
were acquired with a high resolution small animal PET scanner using [C-11]DASB to assay
5-HTT receptor binding. In humans, PET and SPECT studies examining this relation have
reported mixed results, using a variety of radiotracers, methodologies and allelic variants for
the 5-HTT (Heinz et al., 2000; Jacobsen et al., 2000; Kalbitzer et al., 2009; Parsey et al.,
2006; Praschak-Rieder et al., 2007; Reimold et al., 2007; Shioe et al., 2003; Van Dyck et al.,
2004; Willeit et al., 2001), although the majority of these studies find no difference between
1/1 homozygotes and s-carriers. The studies herein were conducted using a highly selective 5-
HTT PET radiotracer in a well characterized cohort of rhesus monkeys, thus minimizing
potential variability due to suboptimal radioligand kinetics and heterogeneous populations.
Because there is only limited data on [C-11]DASB binding in the nonhuman primate model
(Ichise et al., 2006) (Banks et al., 2008), we also present the regional variation of [C-11]DASB
binding in several midbrain and cortical structures, particularly those implicated in anxiety
related behaviors.

Materials and Methods
Subjects

29 macaca mulatta (rhesus monkey) underwent [C-11]DASB PET scans. This cohort has been
described in detail in our previous work (Fox et al., 2008; Kalin et al., 2008; Oakes et al.,
2007). It consisted of 18 females, 11 males; mean age 4.4 ± 0.6 years; mean weight 6.0 ± 1.2
kg. None of the rhesus monkeys were closely related in this cohort. The average kinship across
these animals is 0.003, which is equivalent to two individuals separated by six generations. All
monkeys were mother-reared (mean age of weaning was 8.4 months, no significant difference
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between groups) and housed at the Harlow Primate Laboratory or the Wisconsin National
Primate Research Center. Animals from both groups went through periods of individual, pair-
and group- housing. Animal housing and experimental procedures were in accordance with
institutional guidelines. Environmental conditions (e.g. temperature, lighting, feeding) were
unchanged during the 3 month acquisition period of this protocol to control for potential
seasonal effects.

Genotyping for the serotonin transporter promoter was performed as described in Kalin et al.
(Kalin et al., 2008). From this cohort, there were 20 1/1 homozygotes and 9 s-carriers (2 s/s
and 7 s/l). Because the s-allele is believed to have a dominant mode of action, the homo- and
heterozygote s-carriers were grouped for analysis (Lesch et al., 1996).

MRI Scanning
Magnetic resonance imaging (MRI) data were acquired on all of the monkeys for the process
of coregistration, spatial normalization and gray matter probability analysis. Before undergoing
MRI acquisition, the monkeys were anesthetized with intramuscular ketamine (15 mg/kg).
Data were collected using a GE Signa 3T scanner (GE Medical Systems, Milwaukee,
Wisconsin) with a standard quadrature birdcage headcoil. Whole brain anatomical images were
acquired using an axial 3D T1-weighted inversion-recovery fast gradient echo sequence (TR
= 9.4 msec, TE 2.1 msec, FOV = 14 cm, flip angle = 10°, NEX = 2, matrix = 512 × 512, voxel
size = .3 mm, 248 slices, slice thickness = 1 mm, slice gap = 0.05 mm, prep time = 600,
bandwidth = 15.63, frequency = 256, phase = 224).

Radiosynthesis of [C-11]DASB
The [C-11] for the radiolabeling was produced with a National Electrostatics 9SDH 6 MeV
Van de Graff tandem accelerator (Middleton, WI). [C-11]Methane was created in situ by proton
irradiation of a 90% N2/10% H2, pressurized to 120 psi in an electroplated stainless steel target
(Barnhart, 2004). Following a 40 minute irradiation (up to 70µA), the [C-11]methane was
removed from the carrier gas mixture and converted to [C-11]CH3I via the recirculation method
(Larsen et al., 1997). The converted [C-11]CH3I was then reacted with 1 mg precursor (ABX,
Germany) in dimethylformamide and heated at 90° C for 4 min. The product was then purified
using semi-preparative HPLC and trapped using a C18 Sep-Pak similar to methods reported
by others (Wilson et al., 2000). The C18 Sep-Pak was rinsed with 10 mL of sterile water and
the product [C-11]DASB was recovered with a 1 mL ethanol rinse. The ethanol solution was
diluted with 9 mL saline and filtered through a 0.2 micron filter (Millex-LG, 25 mm).

PET Scanning
The PET data were acquired using a Concorde microPET P4 scanner (Tai et al., 2001). The
monkeys were initially anesthetized with ketamine (15 mg/kg IM) at t = 55.4 ± 17.3 minutes
prior to injection and maintained on 0.75% – 1.5% isoflurane for the duration of the entire
imaging session. The animals were also administered atropine sulfate (0.27 mg IM) to minimize
secretions during the course of the experiment. The head of the subject was positioned
downward in the prone position using a steriotaxic headholder to maintain consistent
orientation for all scanned monkeys. [C-11]DASB was administered with injected mean
activity of 4.9 ± 1.1 mCi of [C-11]DASB, and a specific activity of 360 ± 150 mCi/µmol at
time of injection. Transmission scans were completed using standard vendor-supplied
equipment (a [Co-57] point source) for a duration of 8.6 minutes before each emission scan.
List mode data were acquired beginning with injection of radioligand and lasting for a scanning
duration of 90 minutes.

Emission and transmission events were binned into 3D sinograms with a span of 3 and a ring
difference of 31 using the system software (version 2.3.3.6). No scatter correction or smoothing
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were applied during the binning process but default corrections for deadtime and randoms
corrections were incorporated. The list mode files were binned into five 2-minute frames and
eight 10-minute frames for the 90 minute study. A µ-map of attenuation coefficients was
created based on segmentation of the reconstructed transmission data and subsequently
forwarded projected to create the attenuation sinogram.

The 3D sinograms were first rebinned to 2D by the system FORE algorithm. The data were
reconstructed using a ramp projection filter (Nyquist cutoff: 0.5mm−1), a 1.5× image zoom,
and no offsets to a matrix size of 128 × 128 × 63 with voxel dimensions of 1.26 × 1.26 × 1.21
mm3. Corrections were made for scatter (direct calculation), attenuation, and normalization
during reconstruction.

Data Analysis
The dynamic PET time series were transformed into parametric images with each voxel
representing the distribution volume ratio (DVR) serving as an index of receptor binding (Innis
et al., 2007). The DVR is defined as:

where BPND is the binding potential (uncorrected for the free fraction of ligand in the
nondisplaceable tissue compartment, fND), Bavail is the density of receptors available for
binding (in units of nM) and KD is the equilibrium dissociation constant (nM) of the ligand for
the receptor site. The cerebellum was used as a reference region, representing an area of the
brain with negligible specific receptor binding. Multiple, circular (5 mm diameter) ROIs were
carefully placed over the cerebellar gray matter region on the PET images for each scan (total
sampling volume = 1.11 cm3), avoiding outer edges of the cerebellar lobes. The ROIs were
applied to the entire PET time series to generate the cerebellar time activity curves (TACs).

Distribution volume ratio (DVR) parametric images were produced for each reconstruction
using a multilinear reference tissue model (MRTM) Ichise, 2002 #65}(Ichise et al., 2003). The
DVR for each voxel within the brain was estimated using linear least squares to create a final
parametric volume of DVR values, using a period of linearization, t*, of 0 (i.e. time of
injection). To reduce noise at the voxel-based level, the images from each time frame were
spatially smoothed using a 3×3 (in-plane) voxel median filter, similar to techniques proposed
by Zhou et al. (Zhou et al., 2003).

To facilitate intersubject comparisons, each subject's DVR image was transformed into a
standard space defined by the rhesus monkey atlas of Paxinos et.al. (Paxinos et al., 2000).
Integrated images of [C-11]DASB uptake were first coregistered to the T1-weighted MRI scans
for each subject using a 6-parameter (rigid body) fit via the FSL-Flirt software (Smith et al.,
2004), and were subsequently spatially transformed into stereotaxic space using previously
reported methods (Kalin et al., 2005). The spatially normalized DVR images were then
smoothed using a 4 mm gaussian filter (Fox et al., 2008). Brain analyses controlled for
individual variations in anatomy by statistically covarying for differences in gray matter
probability across subjects as described in Oakes et al. (Oakes et al., 2007). Voxelwise t-tests
were performed to examine differences in 5-HTT binding between monkeys carrying 1/1
versus s-carrier rh5-HTTLPR alleles. To provide cohort averages of regional binding, region
of interest (ROI) analysis was performed over structures implicated in emotion disregulation,
including thalamus (region of medial dorsal nuclei, 95 mm3), raphe nuclei (region of dorsal
raphe, 95 mm3), striatum (bilateral - caudate and putamen, 312 mm3), amygdala (bilateral, 190
mm3), temporal cortex (bilateral -region of superior gyrus, 580 mm3) and prefrontal cortex
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(bilateral, 850 mm3). The spherical ROIs were placed over the central region of radiotracer
uptake on the PET images and within the boundaries of each structure. Regression analysis
was first performed for both the voxelwise and ROI-based analysis to examine the effects of
age, sex, weight, DASB injected mass and ketamine timing (time between administration and
radioligand injection) on [C-11]DASB DVR.

Results
Table 1 provides a summary of the experimental data related to the genotype groups. There
were no significant group differences in any of these experimental parameters. A cohort
average [C-11]DASB DVR parametric image is shown in figure 1 to highlight the elevated
binding in the dorsal raphe region of the midbrain. Regression analyses across the cohort
revealed no significant effect of age, weight, or ketamine timing on DVR values in the regions
of interest. Given the relatively large range of specific activity for injected [C-11]DASB, we
expected this to be an important covariate in the analysis; however, there was also no significant
negative correlation between injected DASB mass and DVR ( threshold of p < 0.05). Because
no effects of competing DASB were observed throughout the high and medium 5-HTT density
regions of the brain, further analysis did not control for injected DASB mass. A significant sex
effect was observed. Significantly higher DVR values were observed in females throughout
portions (spatial extent ≥ 95 mm3) of all regions in the brain with medium to high 5-HTT
density, including the raphe nuclei ( +22% higher in females ), thalamus ( +18%), striatum
( +28%), amygdala ( +22% ) and temporal cortex ( +20% ) based on a p < 0.05 threshold of
the voxelwise analyses. The regional mean and standard deviations of DVR taken from the
larger ROI volumes are shown in table 2, grouped according to sex. The coefficient of variation
( = s.d. / mean) for both sexes was highest in the raphe nuclei, 18% and 23% for females and
males, respectively, and lowest in the striatum ( 7%, females) and temporal cortex (6%, males).
There were no significant sex differences in the nondisplaceable component of the PET signal,
indexed as cerebellar area under curve (in units of % injected dose · min/cc), between males
and females (p = 0.40).

The voxelwise comparison between the 1/1 and s-carrier groups (controlling for gray matter
probability and sex) revealed no significant difference in DVR in the brain regions implicated
in emotion regulation, such as the anterior cingulate, amygdala and insula cortex. The only
significant difference was seen in the occipital cortex (V1 and V2) with the 1/1 group having
higher binding than the s-carrier group using a threshold of p < 0.005 (one-tailed, uncorrected)
t = 3.07 (peak), volume = 134 mm3.

Included in table 2 are the ROI cohort averages of [C-11]DASB binding throughout regions
of the brain with high to medium 5-HTT receptor density grouped according to genotype and
sex. The COV is higher in the s-carrier group, which is attributed to a smaller group size. The
s/s homozygotes (1 male, 1 female) had DVR values that were within close range of the mean
(< 1 s.d.) across all regions of the brain.

Discussion
The nonhuman primate model serves an invaluable role in studying the behavioral, biochemical
and genetic underpinnings of psychiatric illnesses in humans. For anxiety related disease, the
rhesus monkey has been shown to demonstrate large and quantifiable behavioral inhibition in
response to stressful situations, providing a model for excessive anxiety in humans which has
strong face-validity along with similar neurochemical and neuroantomical substrates (Fox et
al., 2008; Kalin and Shelton, 1989; Kalin and Shelton, 2003). In humans, the literature strongly
supports a link between anxiety related psychopathology and allelic differences in the promoter
region of the serotonin transporter gene (Canli and Lesch, 2007). The positive identification
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of a similar allelic difference in the rhesus monkey significantly strengthens the use of this
animal model for studying the genetic components of psychiatric illnesses implicating the
serotonergic system (Barr et al., 2004a; Barr et al., 2004b; Lesch et al., 1996; Lesch et al.,
1997). In addition to the ability to do invasive research, the nonhuman primate model provides
an excellent model in which potentially confounding factors can be held constant. For example,
although recent work in humans has highlighted the influence of seasonal variations (Praschak-
Rieder et al., 2008) and dietary conditions (Attenburrow et al., 2003) in altering brain
serotonergic systems, both the length of daylight and diet were held constant in this study,
thereby eliminating any environmental effects associated with these factors. More importantly
for genetic studies, the rhesus model provides the opportunity to eliminate or isolate epigenetic
effects that may adversely alter the serotonergic system. It is possible to control for sex-specific
environmental variables that are associated with increased susceptibility to anxiety and
depression, such as social insubordination and social rejection stress (Altemus, 2006), which
are extremely difficult to control for in human studies. Similarly, rearing conditions, such as
time of weaning or being peer-raised, can be altered to create stressful environments that may
potentially disrupt serotonergic development. The subjects used in this cohort were closely
matched in age, and there were no differences due to seasonal effects or dietary intake and all
subjects had similar rearing and socialization conditions. In summary, many of the confounding
factors often present in similar human studies of 5-HTTLPR / 5-HTT binding were removed
or minimized in this cohort.

While there is compelling evidence linking emotional traits to genetic variation in the serotonin
system, our findings support Hariri & Holmes' hypothesis (Hariri and Holmes, 2006) that the
effects of the serotonin transporter genotype on behavior and brain function may not be
mediated through the expression of the serotonin transporter. For imaging studies it is important
to consider the sensitivity of the selected metrices for detecting significant changes. Based on
the variability of [C-11]DASB DVR in the amygdala across the entire cohort (s.d./mean =
15%), we can estimate that for a power of 0.8 and p <0.05 (one sided), a 15% change in DVR
between groups would be required for the ability to detect an effect. This range of an effect
size in serotonin transporter binding has been reported in humans using [C-11]DASB PET for
group differences of subjects with depression (Meyer et al., 2004; Reimold et al., 2008). In our
study, the DVR in the high 5-HTT binding regions of the s-carrier group revealed a larger
variance, which is attributed to a smaller sample size. Because the mean DVRs between
genotype groups are approximately the same, we believe that it is unlikely that a larger sample
size would reveal group differences, given typical intersubject variations of 10%–20% in PET
neuroreceptor studies (Christian et al., 2009; Costes et al., 2005; Ito et al., 2008; Rabiner et al.,
2002).

Despite the lack of association between genotype and in vivo 5-HTT binding in the rhesus
monkey reported here, there is evidence that the length polymorphism in the promoter region
of the serotonin transporter gene is associated with phenotypes related to emotionality. Several
studies in the rhesus monkey support the relation between this genotype and endophenotypes
for psychopathology. It has been reported that (s/s)-animals displayed significantly reduced
performance in several tests measuring cognitive flexibility and socioemotional behavior
(Izquierdo et al., 2007). Bethea et al. found a higher measure of anxiety-related behavior in (s/
s)-homozygote rhesus monkeys (Bethea et al., 2004). Our previous work using FDG imaging
in the rhesus monkey demonstrated a context dependent pattern of regional brain metabolism
that differed between s-carriers compared to (1/1)-homozygotes (Kalin et al., 2008). When
presented with the stressful situation of relocation, the s-carrier animals displayed increased
amygdala reactivity (via increased FDG metabolism), and in response to threat using the human
intruder paradigm (Kalin and Shelton, 1989) an increase in FDG metabolism was measured in
the bed nucleus of the stria terminalis (BNST), which is an area implicated in anxiety (Davis
et al., 1997). In extending this work, we recently demonstrated that metabolic activity within
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the amygdala and BNST in response to these stressors correlates with a composite measure
(behavioral and endocrine) of anxious temperament (Fox et al., 2008). Future studies will be
aimed at elucidating the functional relationship between 5-HTT binding and metabolic activity
within the brain circuitry hypothesized to mediate anxious temperament, and the risk to develop
associated psychopathology.

There is a growing body of evidence supporting the involvement of rhesus serotonin transporter
genotype and developmental experience on behavioral and endocrine responsivity outcomes,
providing a valuable model for studying gene x environment interactions. Using a cohort of
peer-reared (PR) monkeys as a condition of chronic stress, PR animals with the s-allele yielded
elevated levels of CSF 5-hydroxy-3-indoleacetic acid (5-HIAA) compared to l-carries and
control s-carriers (Bennett et al., 2002). Subsequent studies in the rhesus monkey also
demonstrated significant s-allele dependent affects on neonatal response (Champoux et al.,
2002), alcohol sensitivity (Barr et al., 2003) and HPA axis stress reactivity (Barr et al.,
2004b) only in s-allele PR animals, but not s-allele monkeys reared by their mothers. In sexual
maturation, subordinate female carriers of the s-allele were significantly delayed in puberty
compared to (1/1)-homozygote carriers, independent of neonatal growth hormone secretion
(Wilson and Kinkead, 2008). In examining the stress associated with social status within the
environment of the rhesus colony, female s-carriers displayed an increased vulnerability to the
stress accompanying subordinate status compared to 1/1 animals (Jarrell et al., 2008). Using a
colony of rhesus monkeys it was found that prenatal alcohol exposed carriers of the s-allele
exhibited increased neonatal irritability and increased adrenocorticotropic hormone and
cortisol compared to (1/1)-homozygotes independent of prenatal alcohol exposure (Kraemer
et al., 2008). These findings support the body of literature in human gene x environment studies
that s-carriers demonstrate higher levels of anxiety related traits and have increased
susceptibility for depression (Caspi et al., 2003; Ebstein, 2006; Hayden et al., 2007; Kendler
et al., 2005; Lesch et al., 1996; Rutter et al., 2006). In summary, the literature suggests that
this polymorphism has functional relevance, however, further research is needed to identify
the mechanisms of their involvement.

Sex Differences in 5-HTT Binding
Sex-based differences in serotonergic function have long been implicated in anxiety and mood
related disorders as supported by epidemiological studies (Cosgrove et al., 2007). Females
have been reported to have increased vulnerability to phobias and anxiety disorders (Altemus,
2006) and there is ongoing research into understanding the underlying mechanisms of these
serotonergically linked disorders. In this cohort, the females displayed elevated [C-11]DASB
binding and the greatest difference was in the striatum, including regions of the caudate and
putamen, with females having a DVR of 28% higher than males. Inconsistent sex differences
in 5-HTT binding have been reported in healthy humans, one study reporting higher binding
in females (n = 21) (Staley et al., 2001) and another study, which imaged females only during
the follicular phase of menstration, found higher binding in males (n = 28) (Jovanovic et al.,
2008). In the present study, we did not control for the monkeys’ phase of the estrous cycle, and
we cannot further dissociate its effect on 5-HTT expression and/or function.

Methodological Considerations: Ketamine and DASB Mass Effects
Previous studies have reported a reduction in 5-HTT binding following high dose ( 333 – 400
mg/kg) ketamine administration with [H-3]-(S)-citalopram in rats, possibly acting as a
competitive inhibitor to the 5-HTT (Elfving et al., 2003). For the experiments herein, there was
an average of 55.4 minutes ± 17 minutes between the pre-anesthesia induction with ketamine
and the injection of [C-11]DASB. The animals were placed under isoflurane within 5 – 10
minutes following ketamine. Across the entire cohort there was no significant relation detected
between ketamine timing and [C-11]DASB binding, as shown in figure 2A, suggesting the
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competitive effects of ketamine for 5-HTT are either too small at this dose ( 15 mg/kg) or not
variable within the time frame reported here.

The groups were also closely matched for injected DASB ligand mass. Two animals were
scanned on separate occasions with varying specific activity to obtain an estimate of the
apparent KD. For the first subject, the injected masses were 200 nmoles and 26 nmoles with a
change in DVR-1 of 80% and the other subject with 79 nmoles and 16 nmoles and a change
in DVR – 1 of 59%. From these data and using the methods originally described by Farde and
colleagues (Farde et al., 1986), we can approximate the apparent KD of [C-11]DASB to be 10
nM. Based upon this estimation and using the equilibrium relationship:

we can approximate the effects of competing ligand occupancy ( B/Bmax ) on our outcome
variable (DVR) by assuming the free ligand concentration ( F ) is proportional to the injected
mass for each study. Figure 2B shows the relationship between DVR and injected DASB mass,
along with the theoretical curve. In the high binding region of the raphe nuclei, the coefficient
of variation due to DASB mass effect can be approximated as 8%, i.e. if a single subject were
to be scanned on 29 occasions using the injected masses for this cohort, then the COV in DVR
due to just mass effects would be 8%. This DVR variability due to competing mass is lower
for the regions with reduced [C-11]DASB, being approximately 3% in the temporal cortex.
Based upon exploratory voxelwise analysis, there were no areas in the brain regions of interest
where mass effects could be significantly identified above intersubject variability (p < 0.05).

Conclusions
Further supporting the use of the nonhuman primate as a model for studying human anxiety,
our findings are in agreement with the majority of human PET studies of 5-HTTLPR length
polymorphisms that suggest there is not a significantly detectable relationship between in
vivo 5-HTT binding and s-allele carrier status (Jacobsen et al., 2000; Parsey et al., 2006; Shioe
et al., 2003; Van Dyck et al., 2004; Willeit et al., 2001 also though see Praschak-Rieder et al.,
2008). A significant difference in 5-HTT binding between males and females was found, which
is of interest because anxiety related studies have a higher prevalence in females. There is
strong evidence that this polymorphism is important in mediating the risk to develop stress
associated psychopathology (Canli and Lesch, 2007) and may interact with other components
of the 5-HT network, such as the expression of the 5-HT1A receptor subtype (David et al.,
2005). However, our work in the rhesus monkey, and that of others in humans, calls into
question whether this increased risk is mediated by changes in the expression of the number
of serotonin transporter molecules.
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Figure 1.
Binding of [C-11]DASB in the rhesus brain. The MRI image (top row) is coregistered to the
[C-11]DASB DVR image (bottom row). Binding is highest in the raphe nucleus (RN) region
of the midbrain, with elevated levels of binding also seen in the thalamus (thal), amygdala
(amy), lateral temporal cortex (temp) and prefrontal cortex (pfc).
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Figure 2.
Distribution volume ratio (DVR) in the raphe nucleus as a function of the time between
ketamine and [C-11]DASB injection (A) and injected DASB mass (B). The line in figure B
represents the theoretical relationship between free DASB concentration (represented by
DASB injected mass / kg) and DVR. There is no statistically significant relationship between
either of these experimental conditions and the measured DVR in the cohort.
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Table 1

Description of Experimental Variables

1/1 homozygotes
(n = 20; 15 female)

s-carriers (s/l and s/s)
(n = 9; 5 female)

p-value

Age (years) 4.4 ± 0.6 4.5 ± 0.6 0.56

Weight (kg) 5.7 ± 0.9 6.4 ± 1.5 0.26

ketamine timing*
(minutes)

57 ± 21 53 ± 5 0.75

Injected activity (mCi) 4.9 ± 0.7 5.0 ± 0.9 0.86

DASB mass (µg/kg) 1.12 ± 0.62 0.78 ± 0.44 0.27

*
duration between ketamine administration and [C-11]DASB injection
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Table 2

Cohort Regional [C-11]DASB DVR ROI Values

Region Female
n = 18

(mean ± s.d.)

Male
n = 11

s-carriers
n = 9

1/1
homozygotes

n = 20

raphe nuclei 4.19 ± 0.75 3.47 ± 0.83 3.85 ± 1.25 3.95 ± 0.65

thalamus 2.92 ± 0.38 2.55 ± 0.33 2.75 ± 0.60 2.79 ± 0.27

amygdala 2.56 ± 0.36 2.20 ± 0.37 2.40 ± 0.61 2.42 ± 0.28

striatum 1.81 ± 0.13 1.57 ± 0.15 1.73 ± 0.24 1.72 ± 0.15

temporal c. 1.51 ± 0.21 1.54 ± 0.10 1.57 ± 0.13 1.46 ± 0.13

prefrontal c. 1.38 ± 0.12 1.34 ± 0.09 1.36 ± 0.13 1.37 ± 0.10

*
all of the brain regions contained subregions with significant sex differences based upon the voxelwise analysis ( p < 0.05,

spatial extent ≥ 95 mm3 ). There were no subregions with significant genotype differences.
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