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Abstract
Sensitivity, specificity, and reproducibility are vital to interpret neuroscientific results from
functional magnetic resonance imaging (fMRI) experiments. Here we examine the scan-rescan
reliability of the percent signal change (PSC) and parameters estimated using Dynamic Causal
Modeling (DCM) in scans taken in the same scan session, less than five minutes apart. We find fair
to good reliability of PSC in regions that are involved with the task, and fair to excellent reliability
with DCM. Also, the DCM analysis uncovers group differences that were not present in the analysis
of PSC, which implies that DCM may be more sensitive to the nuances of signal changes in fMRI
data.
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Introduction
As the analysis tools of functional MRI data evolve into methods of greater complexity,
ongoing critical examination of their sensitivity, specificity, and reproducibility is vital to
ensure that interpretations of the data do not exceed the limitations of the data itself. In the past
few years, several limitations have been examined. The accuracy of transforming data to a
common space has been called into question because of the assumptions made about uniform
brain anatomy (Devlin 2006, Feredoes 2007, Goldman-Rakic 2000, Saxe 2006.) In addition,
models of the physiological basis of the BOLD signal and its neurological underpinnings have
been under continual examination (Aguirre 1998, Handwerker 2004, Leontiev 2007, Raichle
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2006.) And finally, leading researchers (Logothetis 2008) have shown that BOLD activity
could be due to inhibitory or excitatory effects.

The need for this reevaluation extends to complex mathematical analysis methods. Emerging
data analysis techniques that draw from unrelated fields such as engineering and economics
may be conceptually and statistically sound, but their power can only be realized if their
assumptions are satisfied, and this is often difficult to do in the context of brain imaging. They
must therefore be shown to be reliable and valid when applied to a variety of well-characterized
datasets. This is a prerequisite for rigorous interpretation of findings about group differences
in brain activation, correlation of brain activation with tasks, subject traits, or subject behavior,
or more complex understanding of connectivity of different regions in a single brain. Moreover,
reliability and validity are of paramount importance when fMRI is applied to clinical research,
clinical diagnosis, and the study of neural changes arising from therapeutic interventions.

Many studies (Aron 2006, Caceres 2009, Cohen 1999, Friedman 2006, Friedman 2008,
Johnstone 2005, Le 1997, Loubinoux 2001, Waites 2004, Wei 2004) have focused on the
reliability of fMRI signal, as measured by regional percent signal change (PSC) during
sensorimotor, cognitive and affective tasks. The results have suggested that, while not ideal,
generally there is evidence for reliability of PSC within a subject across time. These studies
calculate reliability using Type 1 intraclass correlation coeffecient, the ICC(1,1), based on the
work of Shrout and Fleiss (1979). ICC(1,1) is calculated using

where BMS is the between-subject mean square, WMS is the within-subject mean square, and
k is the number of scans on each subject. Cicchetti's guidelines of ICC (Cicchetti 2001) classify
ICC<0.40 as poor, 0.40 - 0.59 as fair, 0.60 -0.74 as good, and 0.75 to 1.00 as excellent. Some
studies report reliabilities in the fair to poor range, but many of the studies of reproducibility
of PSC would be classified as ‘good.’ Loubinoux et al. (2001) report highly reliable activation
in ROI's in response to a motor task repeated 5 hours, one month, and two months apart, and
Friedman et al. (2008) find good reliability (average ICC=0.67) in ROI's involved in a block
design sensorimotor task with scans one day apart. In a classification learning task, Aron et al.
find good to excellent reliability using voxel-wise ICC's in regions involved with the learning
task scanned a few minutes apart (Aron 2006.) In contrast, Wei et al. find reliabilities ranging
from poor to excellent in different regions in response to an auditory 2-back task, with the
Brodmann's Area 40 (BA40) producing the highest reliability across scan sessions at least three
weeks apart (Wei 2004.). The current study replicates the finding that the PSC measurement
in an ROI has good reliability in scans that are in the same scanning session (Aron 2006,
Caceres 2009, Cohen 1999, Friedman 2006, Friedman 2008, Johnstone 2005, Le 1997,
Loubinoux 2001, Waites 2004, Wei 2004.)

The main goal of this work is to study the reliability of Dynamic Causal Modeling (DCM)
(Friston 2003) and to see how this method compares to PSC. DCM is an example of a creative
application of an engineering technique to the analysis of neuroimaging data. The analysis
makes use of time series of activation in a priori regions of interest to estimate changing
connectivities between those regions, in addition to direct effects of the stimuli on the regions
themselves. It is conceptually appealing and has been used to explore several neural models
including language (Mechelli 2005, Bitan 2005, Ethofer 2006, Booth 2007, Sonty 2007,
Noppeney 2008), motor activation (Grol 2007, Grefkes 2008), face perception (Fairhall 2007),
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visuospatial attention (Siman-Tov 2007) and changes across development (Cao 2008, Booth
2008.)

A full explanation of the mathematical underpinnings of DCM can be found in Friston
(2003), but an overview of the basic structure will be presented here. DCM is an effective
connectivity method, as opposed to a functional connectivity method. Functional connectivity
analyses examine correlations between regions without regard to causation, while effective
connectivity analyses can infer causation within a model. DCM asserts that a change in
neuronal firing in one region can be caused by external driving inputs, connections to other
regions, and contextual modulation of those inter-regional connections. This is shown
explicitly with the formula

where z and u are vectors containing the time series of the neural state of the volumes of interest
(VOI's) and stimuli presentations, respectively. A is a matrix that describes connectivity
between different VOI's when the system is in a steady state, B is a matrix that describes how
that connectivity changes based on the presentation of each stimulus j, and C is a matrix that
describes the effect of each stimulus on each brain region, comparable to a traditional GLM
analysis. The model is then extended from the hypothetical neuronal state to the observed
BOLD activity using formulas that calculate blood flow induction, volume changes, and
subsequent changes in the fraction of oxy- to deoxy-hemoglobin (Stephan et al. 2007, further
discussed in David et al. 2008.) These formulas employ biophysical parameters as priors, which
are entered into a Bayesian estimation procedure (Friston 2002.) This estimation uses an
Expectation-Maximization algorithm to estimate the matrices A, B, and C. The estimated
indices of A, B, and C can then be used to explore differences in activation between groups.

In the present experiment, we examined the reliability of results obtained from an analysis of
PSC and two DCM analyses, and the ability of each method to discriminate between groups
attending to different sensory modalities. We found regions of interest which activated in
response to the simultaneous presentation of faces and voices, and studied the behavior in those
regions in subjects that were asked to attend to either the face or the voice. We studied the
ability of the each analysis method to discriminate between the two groups, and we studied
reliability by comparing the analysis results in two scans approximately two minutes apart.

Methods
Participants

Forty-two healthy human subjects were recruited through the local newspaper and chosen by
phone screening with an MRI compatibility form and the Edinburgh Handedness Survey. The
goal was to obtain a sample representative of the “normal” types of subjects recruited as
controls from the population at large. Subjects ranged in age from 18–50 years, with number
and sex balanced within each decade: 18–29 years, 8 males and 6 females; 30–39 years, 6 males
and 6 females; and 40–50 years, 8 males and 6 females. Before participating, each subject gave
informed consent. UW-Madison's Human Subjects Committee approved the study paradigm.
These data are part of the Wisconsin Neuroimaging Tool Evaluation Resource (WINTER)
dataset used to explore fMRI methodology and data analysis issues. Further details on this
dataset are outlined in Oakes et al (2005).
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Experimental Task
Event-related FMRI was used to examine brain activation in response to angry and happy vocal
expressions, while participants concurrently viewed either emotionally congruent or discrepant
facial expressions, a task similar to that previously used to examine the crossmodal processing
of fear expressions (Dolan, Morris, & de Gelder, 2001). Visual stimuli consisted of 16 greyscale
faces displaying expressions of anger and 16 expressions of happiness, half of them females,
taken from the Karolinska Directed Emotional Faces set (Lundqvist, Flykt, & Öhman, 1998).
Auditory stimuli consisted of short phrases (dates and numbers) lasting on average 1 second,
spoken with either angry or happy prosody, taken from the Emotional Prosody Speech and
Transcripts dataset (Linguistic Data Consortium, Philadelphia, PA, 2002). 16 angry phrases
and 16 happy phrases, half of each spoken by female actors, were used. All phrases were
normalized to the same mean signal amplitude.

Stimuli were presented for 1 second with an inter-stimulus interval of 15 seconds. Each of the
four different types of stimulus pairs [angry voice+angry face (AA), angry voice+happy face
(AH), happy voice+angry face (HA) and happy voice+happy face (HH)] were presented 20
times each in a pseudo-random order, across two scan runs. Participants performed a two-
response (angry or happy) discrimination task. Half the participants were randomly selected
to make their decision on the basis of the facial expression (Attentional Focus: ‘face’ condition),
while the other half were instructed to make their decision on the basis of the vocal expression
(Attentional Focus: ‘voice’ condition). Apart from the instruction to attend to either visual or
auditory stimuli, all participants performed the identical task, with identical stimulus pairs
being presented. Participants were instructed to press one button on a 2-button response pad if
the attended stimulus was an angry expression, and to press the other button if the attended
stimulus was a happy expression. The matching of buttons to responses was counterbalanced
across subjects within each response group. Participants were instructed to respond as quickly
and accurately as possible. Stimuli were presented and responses were recorded using EPrime
software.

Image Acquisition
Images were acquired on a GE Signa 3.0 Tesla MRI scanner device with a quadrature head
coil. Anatomical scans consisted of a high resolution 3D T1-weighted inversion recovery fast
gradient echo image (inversion time = 600 msec, 256×256 in-plane resolution, 240mm FOV,
124×1.2mm axial slices), and a T2-weighted spin echo image with the same slice position and
orientation as the functional images (256×256 in-plane resolution, 240mm FOV, 30×4mm
sagittal slices with a 1mm gap). Two functional scan runs were acquired using a gradient echo
EPI sequence (64×64 in-plane resolution, 240mm FOV, TR/TE/Flip = 2000ms/30ms/90°,
30×4mm interleaved sagittal slices with a 1mm interslice gap; 290 3D volumes per run).

Analysis
Individual subject data were slice-time corrected in AFNI (Cox, 1996) to correct for temporal
offsets in the acquisition of slices (which were acquired in an interleaved slice order.) Image
distortion was corrected using measured B0 field-maps to shift image pixels along the phase
encoding direction in the spatial domain (Jezzard & Balaban, 1995). The data were then
transformed to ANALYZE format and the rest of the preprocessing and analysis was done
using SPM5. The slices were realigned to the first scan of each session using a 5 mm smoothing
kernel and resliced using a 4th degree B-spline interpolation. The functional data from
individual subjects were analyzed using a General Linear Model (GLM) with stimulus
presentation modeled with a canonical hemodynamic response function, as defined in SPM5.
The stimuli were not subdivided on the basis of their emotional valence because the models
we were studying deal with strictly sensory regions.
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The output of the individual GLM analyses was then transformed to the MNI152 template
using FSL's FLIRT (Jenkinson 2002) and volumes of interest (VOI's) were determined from
a second level group analysis. In the second level analysis we used the first scan run of each
subject and found the clusters that survived an uncorrected voxel-wise threshold of t>10.13
(p<10-12.) The clusters were then transformed back from the MNI-152 template to each
subjects' native space using the inverse transformation as calculated in FLIRT. The regions
were the left auditory cortex (A1), primary visual cortex (V1), right Fusiform Gyrus (including
the Fusiform Face Area), and a cluster that spans the left Primary Motor Area and (M1) and a
portion of the left somatosensory cortex (BA4 and BA6.) Details of cluster size and location
are given in Table 1. These clusters were then entered as VOI's in SPM5 and the first
eigenvariates of the timeseries were extracted and employed as the timeseries of the cluster.
VOI's from each session were then analyzed in DCM with two different simple models – an
auditory model (Figure 1) and a visual model (Figure 2.). It was hypothesized that activity in
the sensory regions would relate to activity in the motor area because participants were
instructed to press a button in response to the presentation of the stimulus. We also added
stimulus-modulated connections, as it was hypothesized that the connectivity between regions
in the model would increase as a result of presentation of relevant stimuli. Both models were
applied to subjects that attended to faces and subjects that attended to voices, and the values
of the resulting parameter estimates of the models were compared across groups. Reliability
of output of the GLM and DCM was measured in SPSS using a single measure Type 1 Intraclass
Correlation Coefficient.

Results
The two separate models, a simple auditory model (Figure 1) and a more complex visual model
(Figure 2), were entered into the DCM analysis and their parameter estimates were compared
with each subject's assigned attentional target (face or voice.) In the auditory model it is
assumed that the stimulus activates Primary Auditory cortex (A1) and activation in A1 then
leads to activation in Primary Motor cortex (M1), when the subject indicates his or her
discrimination decision with a button press. The visual model follows a similar path, but
involves the signal traveling from V1 to the Fusiform Face Area before leading to activation
in M1 when the subject executes a button press in response to the emotional face. These two
separate models were used to test the reliability of DCM in estimating the parameters of the
two different models, and to check if the attended modality of the group could be discriminated
by comparing the calculated connectivity values in the two groups. Each subject was assigned
only one modality and attended to the same one for both scans.

The parameters calculated in both the auditory and visual DCM models were tested for across-
scan reliability in subjects who attended to voice and subjects that attended to face, to test
whether the models were more reliable in subjects who were attending to the relevant modality.
Reliability results are compiled in Table 3, and plots of the parameter estimates across scans
are shown in figures 5 and 6. The visual model performed most reliably among subjects who
were attending to faces - four of the five parameters had excellent reliability and the last
parameter had reliability categorized as “good.” The same model, when applied to the subjects
that were attending to voices, showed fair to poor reliability in four of the five parameters.
Overall, the subjects attending to voice had less reliable activation for both the auditory and
visual models, but the disparity is less in the auditory model. The subjects attending to voice
had good reliability for the stimulus effect on A1, and the connection from A1 to M1. The
stimulus-modulated connection between A1 and M1 had only fair reliability, which is in
accordance with the similarly fair reliability of the PSC in those two regions.

To measure the scan-rescan reliability of the PSC we took the clusters that were found in the
second level analysis and measured the change in signal during the modeled peak in the
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hemodynamic response compared to baseline. The measure of reliability, the Intraclass
Correlation Coefficient, is a number defined on the interval [-1,1] with reliability improving
as the ICC approaches 1. ICC values in the range [-1,0] can effectively be treated as zero
reliability. The reliabilities are reported in Table 2, and plots of PSC across scans are shown
in Figure 4. The reliabilities of the PSC for all four ROI's were consistently in the fair to good
range for subjects attending to the voice, and good to excellent range for subjects attending to
the face. It is unclear why A1 and M1 have less reliable PSC's in the subjects attending to the
voice than the subjects attending to the face, but this disparity is also present in the DCM
analysis.

We then looked for the ability of the DCM analysis to detect differences between groups by
testing the interaction of the attentional target with the DCM-estimated connectivity of regions
in the two models. In the visual model, three of the five parameters were significantly higher
in the subjects that attended to face than the subjects that attended to voice. These were the
effect of the stimulus on V1 (p=.033), and both of the stimulus-modulated connections of V1
to Fusiform (p=.018) and Fusiform to M1 (p=.001.) The connection from Fusiform to M1 in
the absence of the stimulus was significantly higher in subjects attending to voice than subjects
attending to face (p=.001) but the reliability of the voice-attending subjects is very low (ICC=-.
067) so results with this parameter are questionable. Both stimulus-modulated connections also
showed increases from the first to the second scan (p=.002 for V1 connecting to Fusiform
during stimulus presentation and p=.01 for Fusiform connecting to M1 during stimulus
presentation.) This accords with the fact that task accuracy significantly increased from the
first to the second run in subjects who were attending to the face (from 77.8% to 86.9%, p=.
003.) This ability to measure the connection growing stronger as the task is repeated is
something that the PSC approach did not demonstrate in this analysis, and speaks to the ability
of DCM analysis to detect subtle changes. The PSC analysis showed no differences over time
and significant differences between groups only in Fusiform activation (p=.034.)

The auditory model connections calculated in DCM also showed differences between groups.
The subjects that attended to the voice showed a stronger connection from A1 to M1 than
subjects that attended to face (p=.002), though subjects that attended to face showed a stronger
stimulus-modulated connection from A1 to M1 (p=.006), which is the opposite of what we
expected. This might have been caused by the less reliable activity of M1 in the subjects
attending to the voice. The stimulus-modulated connection from A1 to M1 held to the same
pattern as the stimulus-modulated connections in the visual model, becoming stronger from
the first to the second scan (p=.000). This is again in agreement with the increase in task
accuracy across scans. Connectivity values in either model did not predict task accuracy, most
likely because accuracy was very high and there was a ceiling effect. Emotion discrimination
accuracy was 83.3 ± 6.7% and 85.5 ± 8.6% for subjects attending to voice (n=21) and face
(n=20), respectively.

Discussion
Many creative methods have emerged to extract information from the massive amounts of data
produced by neuroimaging studies in order to characterize the functional role of different brain
regions. Both methods evaluated here - one that infers stimulus-related activation by using a
General Linear Model to relate brain activity to a predetermined hemodynamic response
function (HRF) and another that infers causal relationships between activation in different
regions from a mechanistic model, are useful approximations and can produce important
insights into neural mechanisms. However, the complexity of the translation from neuronal
activity to BOLD signal induction might be better-served by the DCM neuronal to BOLD
model that allows for flexibility in modeling the shape of the HRF. Also, the inclusion of
connectivity information can produce more complete and sensitive information about
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differential regional activations and their interactions, which can be more reliable than solely
main effects from a GLM. This flexibility in the model, combined with a consideration for
regional connectivity and the interaction between regional connectivity and external context,
allows a greater ability to detect group differences and nuances of the signal. It can be
particularly useful in the analysis of models that are more complex, and regions that are not
described well by a canonical HRF. When applied to our data, a simple DCM model performs
equally well, if not better, than PSC in reproducibility and ability to distinguish between groups
with different attentional targets.

The models we used were relatively simple, dealing with well-characterized regions involved
in basic neural functions. An important next step will be to test the reliability of results of
analyses performed on regions that are less well characterized, but important to our
understanding of more complex psychological processes. It would also be useful to test how
well these results reproduce on different days, in different scanners, and with different design
paradigms. These questions have been addressed for the reliability of percent signal change
(Aron 2006, Cohen 1999, Friedman 2006, Friedman 2008, Johnstone et al, 2005, Loubinoux
2001, Waites 2004, Wei 2004) and functional connectivity (Shehzad 2009.) It will be valuable
to know the power and limitations of other methods as well.

One of the strengths of the current study is the large number of subjects, which allowed us to
look more confidently at the reliability and validity of particular methods and models.
However, even if practical constraints limit the number of subjects in a particular study, it
would be beneficial to do repeated scans of tasks of interest and use the knowledge of reliability
when interpreting the results. It is important to know the limitations of current measures and
the extent to which a finding is biased by assumed theoretical neural mechanisms and the
characteristics of the measurement itself. We have found that, at least when applied to a simple
model of well-characterized regions, DCM performs reliably and appears to be sensitive to
group effects. Further studies should be done to confirm its ability to handle with less well-
defined networks and more complex brain regions. However, it is an excellent example of the
potential of methodology adopted from another field to become a powerful and informative
method of answering neuroscientific questions through the analysis of neuroimaging data.
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Figure 1.
Schematic illustrating the connections in the auditory model that were tested with DCM. The
model posits that the stimulus (simultaneous presentation of face and voice) has a direct effect
on the auditory cortex (A1), and a modulatory effect on the connection from the auditory cortex
to the motor cortex (M1.)
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Figure 2.
Schematic illustrating the connections in the visual model that were tested with DCM. The
model posits that the stimulus (simultaneous presentation of face and voice) has a direct effect
on the visual cortex (V1), and a modulatory effect on the connection from the visual cortex to
the Fusiform gyrus and the connection from the Fusiform gyrus to the motor cortex (M1.)
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Figure 3.
Statistically defined ROI's in MNI space that were subsequently transformed to the native space
of each subject. (a) Left Auditory Cortex (A1) (b) Primary Visual Cortex (V1) (c) Right
Fusiform Gyrus (d) Left Motor Cortex (M1).
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Figure 4.
Percent Signal Change Values for Scan 1 and Scan 2. Abscissa is Scan 1 and ordinate is Scan
2, for a visual representation of the reliability of the percent signal change in the four regions
used in the analysis.
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Figure 5.
Visual Model DCM Values for Scan 1 and Scan 2. Abscissa is Scan 1 and ordinate is Scan 2,
for a visual representation of the reliability of the connections in the visual model estimated
with DCM. The connections are (a) Stimulus effect on V1 (b) V1 connection to Fusiform (c)
Stimulus modulation of V1 connection to Fusiform (d) Fusiform connection to M1 and (e)
Stimulus modulation of Fusiform connection to M1.
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Figure 6.
Auditory Model DCM Values for Scan 1 and Scan 2. Abscissa is Scan 1 and ordinate is Scan
2, for a visual representation of the reliability of the connections in the auditory model estimated
with DCM. The connections are (a) Stimulus effect on A1 (b) A1 connection to M1 (c) Stimulus
modulation of A1 connection to M1.
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Table 1

Size and location in MNI space for the four regions studied. Regions are auditory cortex (A1), visual cortex (V1),
fusiform gyrus, and motor cortex (M1.)

Region Extent of activation (mm3) MNI coordinates

x y z

A1 1089 -52 -18 2

V1 931 4 -86 -4

Fusiform 137 36 -52 -22

M1 363 -42 -22 60
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Table 2

Reliabilities of percent signal change values. Values are color-coded according to Cicchetti's guidelines for
reliabilities. ICC<0.40 is poor (black), 0.40 - 0.59 is fair (red), 0.60 -0.74 is good (yellow), and 0.75 to 1.00 is
excellent (green.) Percent Signal Change means and standard deviations are also shown. Regions are auditory
cortex (A1), visual cortex (V1), fusiform gyrus, and motor cortex (M1.)

Visual Attentional Focus (n=21) Auditory Attentional Focus (n=20)

Region Intraclass Correlation
Coefficient (ICC)

Mean Percent Signal
Change (%)

Intraclass Correlation
Coefficient (ICC)

Mean Percent Signal
Change (%)

A1 .750 .51 ± .20 .539 .51 ± .19

V1 .761 .56 ± .31 .587 .47 ± .28

Fusiform .855 .58 ± 24 .759 .41 ± .28

M1 .703 .24 ± .16 .436 .31 ± 17
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Table 3

Reliabilities of model estimates in DCM. Values are color-coded according to Cicchetti's guidelines for
reliabilities. ICC<0.40 is poor (black), 0.40 - 0.59 is fair (red), 0.60 -0.74 is good (yellow), and 0.75 to 1.00 is
excellent (green.) Pearson's r value is shown in parentheses since many parameters increased significantly from
Scan 1 to Scan 2.

Estimated Path Coefficient Scan-Rescan Reliability (ICC)

Auditory Model (Figure 1) Visual Attentional
Focus (n=21)

Auditory Attentional
Focus (n=20)

Stimulus->A1  (909)  (.725)

A1->M1  (.734)  (.647)

Stimulus moderating A1->M1  (.878)  (.476)

Visual Model (Figure 2)

Stimulus->V1  (.865)  (.830)

V1->Fusiform  (.857)  (.471)

Stimulus moderating V1->Fusiform  (.915)  (.478)

Fusiform->M1  (.918) -.067 (-.067)

Stimulus moderating Fusiform->M1  (.689)  (.485)
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