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Abstract
Analysis of fetal magnetoencephalographic brain recordings is restricted by low signal to noise ratio
(SNR) and non-stationarity of the sources. Beamformer techniques have been applied to improve
SNR of fetal evoked responses. However, until now the effect of non-stationarity was not taken into
account in detail, because the detection of evoked responses is in most cases determined by averaging
a large number of trials. We applied a windowing technique to improve the stationarity of the data
by using short time segments recorded during a flash evoked study. In addition, we implemented a
random field theory approach for more stringent control of false positives in the statistical parametric
map of the search volume for the beamformer. The search volume was based on detailed individual
fetal/maternal biometrics from ultrasound scans and fetal heart localization. Average power over a
sliding window within the averaged evoked response against a randomized average background
power was used as the test z – statistic. The significance threshold was set at 10% over all members
of a contiguous cluster of voxels. There was at least one significant response for 62% of fetal and
95% of newborn recordings with gestational age (GA) between 28 and 45 weeks from 29 subjects.
We found that the latency was either substantially unchanged or decreased with increasing GA for
most subjects, with a nominal rate of about −11 ms/week. These findings support the anticipated
neurophysiological development, provide validation for the beamformer model search as a
methodology, and may lead to a clinical test for fetal cognitive development.
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Introduction
The study of fetal brain development is of interest for early detection of neurological disorders
and could lead to improved treatment and outcomes. Common disorders that may benefit from
perinatal detection and potential treatment include cerebral palsy, epilepsy, deafness, and
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blindness. In addition to genetic factors, these disorders are associated with prenatal or perinatal
infection, toxic insult, hypoxia, ischemia, hemorrhage, and low birth weight. Additional
information on fetal neurophysiological status could influence the decision for early delivery
intervention and premature birth (Lowery et al., 2006). Monitoring of neurophysiological
markers over the perinatal period could lead to a normative database for use in existing or new
treatment methods. Traditional indirect measures such as heart rate variability, ultrasound
observations, and behavioral changes due to external stimuli may be augmented by direct
measures of fetal brain activity using functional magnetic resonance imaging (fMRI) (Gowland
and Fulford 2004) or fetal magentoencephalography (fMEG) (Lowery et al., 2006).

Fetal MEG has been applied by several groups over the past decade (Lengle et al., 2001;
Eswaran et al., 2002; Schleussner and Schneider, 2004) and the major outcome measure of
these studies was latency estimation of evoked responses to visual and auditory stimulation.
Several studies reported a decrease in latency for auditory evoked responses (AER) with
increasing gestational age (GA). Dragonova et al. (2007) found an auditory discriminative
brain response (MMN) in 46% of 76 fetal recordings over 18 subjects after heart signal
attenuation by orthogonal projection (OP, McCubbin et al., 2006; Robinson et al., 2002). A
visual selection of peak latency was aided by comparison with averaged noise estimate and
other criteria, however there was no statistically significant correlation of latency with GA.
Kiefer et al. (2008) compared AER latency in growth restricted vs. normal fetuses and found
that, with increasing GA, both groups had a statistically significant latency decrease of 13 ms/
week. It was also noted that the growth restricted fetuses showed a delayed response. Sheridan
et al. (2008) used visual flash evoked response (VEF) to test for habituation over four sequential
flashes. Although they found a low fetal evoked response detection rate, 29% of 25 records,
there was evidence of habituation within that group. Visual selection of peaks in the averages
was the same as used by Dragonova et al. (2007) and Kiefer et al. (2008).

The detection rates and evidence for neurophysiological maturational markers exemplified by
these reports is encouraging progress, however the mostly manual process of visual
examination for latency peaks in averaged time courses with poor SNR is laborious and
subjective. The problem is to select statistically significant latency by some objective and
automated means for investigation of neurophysiological markers. This has been addressed
recently in the application of cross correlation analysis (Govindan et al., 2008) and beamformer
model search (McCubbin et al., 2007, Robinson and Vrba, 2004) to fetal MEG evoked response
detection. In Govindan et al. (2008), the cross correlation computed between the stimulus signal
and each MEG channel was subjected to a bootstrap confidence level estimate. The peaks in
the correlation time course which exceeded the confidence level were then selected as latency
for each MEG channel. They used data from four selected subjects with four to seven records
each (including neonatal recordings) and investigated the correlation between latency and GA.
The individual subject latencies did not show a statistically significant correlation with GA,
but the group data did. In McCubbin et al. (2007) a spatial filter attenuating signal components
that do not correspond to a selected electromagnetic source model was used (beamformer, with
model as a dipole in a conducting sphere). A model grid was constructed over the plausible
volume in the maternal abdomen for fetal head location and candidate averaged evoked
responses corresponding to beamformer source activity time courses were subjected to a
bootstrap significance test. Representative source time courses that passed the significance test
were selected (based on SNR) for latency estimation. They found a broad range of latency and
no clear correlation with GA in a group of 27 subjects with single records.

These promising but somewhat conflicting early results may indicate a poor selectivity of the
statistical methods applied which may be related to a high false positive rate. In fact, there has
been a considerable literature recently in the area of ‘family-wise error rate’ or ‘false discovery
rate’ (FDR), and its control as a solution for the multiple comparison problem. The situation
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arises when the p-values of multiple hypothesis tests are compared and the single hypothesis
significance threshold must be increased to maintain the overall statistical significance for the
experiment. A standard approach like Bonferroni correction (Bonferroni, 1936) provides an
intuitive but conservative solution with limited statistical power. Recently, several different
methods to control FDR have been developed which claim improved statistical power for
certain applications, mostly in genetics, positron emission tomography (PET), and fMRI. A
review of the literature in this area is beyond the scope of this report (see e.g. Li et al., 2005;
Marchini and Presanis, 2004).

MEG statistical analysis is closely related to statistical parametric mapping (SPM) of fMRI or
PET data. Fetal MEG analysis suffers from the same problem as exemplified in Govindan et
al. (2008) where p-values over about 150 MEG channels are compared, and in McCubbin et
al. (2007) with thousands of p-values in the search grid for comparison. We have selected an
approach which seems particularly well suited to beamformer SPM analysis (Barnes and
Hillebrand, 2003) and is based on PET and fMRI applications (Friston et al., 1996; Worsley
et al., 1999). The approach involves ‘statistical flattening’ of a modeled 3D Gaussian random
field to account for anisotropic and inhomogeneous distribution of noise and includes a
correction for multiple comparisons. The general approach of random field theory (RFT) has
since been advanced and refined (Taylor and Worsley, 2007). RFT has been applied to event
related potential recordings in the analysis of functional connectivity of the combined sensor/
source space (Carbonell et al., 2004) and was recently extended to include the time varying
correlation structure (Carbonell et al., 2009).

In this report, we describe an upgrade of the scalar beamformer model search with statistical
inference using RFT. In order to get best results with the more stringent statistics, we also
improved the ultrasound biometric data collection to define a more plausible and limited search
volume and improved the stationarity of the record by applying a sliding analysis window. We
apply this procedure to 29 subjects with a total of 111 recordings and report the corresponding
findings on the latency for evoked responses. We define latency here as the first peak after the
stimulus trigger in the power of the response waveform as usual for evoked response analysis.

Materials and methods
Data collection

The fetal MEG data was collected using a dedicated 151 channel instrument specifically
designed for measurements over a large area of the pregnant abdomen (Lowery, 2006). Subjects
with normal pregnancies were recruited with informed consent and measurement protocols
were approved by the institutional review board. An ultrasound (US) exam was conducted
immediately prior to the MEG session according to standard procedures and the following
measures were estimated from the images: fetal head-center to heart-center distance, fetal head
major and minor diameters and circumference, and fetal head surface to maternal abdominal
surface distance. The record also included a fetal orientation sketch as shown in the example
of fig. 1. We have quantified the orientation of the fetal head relative to the fetal heart as
indicated by measuring the angle from the positive x axis (relative to the heart location) to
approximately the center of the head within about +/− 5 degrees. The value of 5 degrees was
chosen because it reflects the perceived inaccuracy of about 1 cm over a distance of about 10
cm.

Localization coils were placed on the subject’s left and right hips and spine. A fourth coil was
positioned roughly over the fetal head location determined from the US exam. Coil locations
were measured at the beginning of each MEG session and were used as a rough registration of
the subject to the MEG array. MEG data was recorded at a sample rate of 312.5 Hz with a
bandwidth of 0 – 100 Hz with either an auditory or visual stimulation. The auditory evoked
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response protocol consisted of 100 ms tone bursts at 500 Hz (80%) or 1000 Hz (20%) with
approximately 3 s inter stimulus intervals (randomized +/− 0.5 s) delivered through a plastic
tube. Visual stimulus was generated by an array of high power red LEDs coupled to a fiber
optic cable terminated in a 3 cm by 5 cm woven panel that was positioned on the maternal
abdomen over the fetal head location (Wilson et al. 2008). Visual stimulus duration was 0.5 s
with inter stimulus interval of 3 s +/− 0.5 s.

For development of the updated model search processing method, we used a series of eight
MEG datasets (the test series) collected from different subjects with GA between 28 and 35
weeks. Each dataset consisted of 10 minutes of visual stimulation and 10 minutes of auditory
stimulation. The developed model search was then applied to a series of 111 datasets (the study
series, 90 fetal and 21 newborn records) collected from 29 subjects over multiple (from one to
six) visits in the period of 28 to 45 weeks GA and including a newborn recording from 21 of
the 29 subjects (newborn GA was between 39 and 45 weeks). Only a 10 minute visual
stimulation was available for analysis of the later series.

Beamformer
The beamformer model search method used in this work employs a scalar minimum variance
beamformer (Van Veen et al., 1997, Sekihara et al., 2004). The beamformer is a type of spatial
filter where the output is a linear combination of the measurement channel data. All data is
denoted as: m(n), n = 1, … N, where N is the number of time samples, and n is used instead
of tn, the m(n) is a M × 1 column vector with M being the number of channels. The set of
coefficients used for the linear combination of m(n) is a M × 1 vector of weights wθ, where
θ denotes dipole location, r, and orientation in the tangential plane at the location of interest,
ψ, or θ = (r,ψ). Source activity from the same location and orientation is computed as

(1)

where wθ is given by

(2)

with Bθ as the model forward solution vector for position and orientation θ and C is the
covariance matrix of the data. The method for selecting the optimal orientation involves an
eigen decomposition of the vector beamformer output (Sekihara et al., 2004). The beamformer
power at θ is:

(3)

and it gives a measure of the source activation, usually normalized by some measure of noise,
e.g.

(4)

where the noise covariance matrix is approximated by Σ = νI, ν is the mean sensor noise, and
I is the M × M identity matrix.
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Model search
In the present work, we assume that the sources of electrical activity are equivalent current
dipoles immersed in a spherical conducting medium. In typical adult MEG applications of
beamformer, the origin of the conducting volume model sphere is assumed to be known via
registration markers placed on the subject’s head and the volume is scanned on a regular 3D
grid to map the model source activation. In the case of fetal MEG, accurate registration of the
fetal head has not been available and the beamformer has been used in a model search mode
(McCubbin et al., 2007; Robinson and Vrba, 2004) whereby the model sphere origin is also
scanned over a regular 3D grid within the maternal abdomen. For each sphere origin, the sphere
volume is scanned for source activity, and the model center position for which the maximum
activity is obtained is assumed to be the “true” model. The model sphere origin search grid
was established by first searching approximately the entire maternal abdominal volume for
fetal heart source activity and then using the fetal biometric and orientation data from the US
exam along with geometrical constraints to identify a plausible search volume.

The fetal heart location estimate and the individual biometric data were used to construct a
plausible fetal MEG search grid. A spherical shell of candidate model origins with 2 cm grid
spacing was formed around the fetal heart location. The inner/outer shell radii were set to the
individual head to heart distance +/− 3 cm since we estimated the uncertainty of the head to
heart distance measurement as less than 3 cm. The shell was trimmed to a wedge by intersection
of the shell with two planes perpendicular to x-y plane, intersecting at the center of the heart,
C, and subtending ±45 deg angle with C-B line (fig. 1). Finally, only the grid points within the
estimated maternal abdominal volume were retained. As a modification to the procedure to
accommodate the random field approach, the model origin grid was converted into a model
source/model origin grid as follows. A source grid with 1 cm spacing was constructed so as to
enclose the origin grid with an additional margin of one head radius. Then all plausible origins
were assigned to each source in the grid (i.e. those origins for which the source was closer than
the fetal head radius and excluding a 1 cm radius at the model center).

Windowing of data record
The accumulation of covariance for the beamformer analysis assumes that the noise, signal of
interest, and interfering source activity are stationary over the duration of the MEG recording.
This assumption may be reasonable for an adult MEG measurement but is generally not
satisfied for fetal MEG. Not only is the fetal movement uncontrolled, but the general maternal
discomfort in the later stages of pregnancy sometimes makes it difficult for the subject to remain
still over the entire recording session. We have attempted to minimize the non-stationarity by
using a shorter analysis window and sliding it along the available record. The effect may be
illustrated by comparing residual averaged heart signal amplitude after OP using either an entire
30 minute record or sequential non-overlapping 2 minute windows for determination of the
MCG vectors, fig. 2. The example shows a significant reduction in the residual amplitude for
shorter windows and it indicates that, at least for fetal heart analysis, windowing is
advantageous. We speculate that over the 30 minute time interval the data is not stationary, but
the stationarity improves when shorter time intervals are considered.

For the 10 minute evoked response analysis we used nine analysis windows with 2 minute
duration and 1 minute overlap. The 2 minute windows provided better performance as
compared with 3, 4, 5, or 10 minute windows over the test data series. The performance was
measured by comparing the number of significant records for each processing variation: for 2,
3, 4, 5, and 10 minute analysis window widths we found significance in 6, 4, 3, 4, and 0 of 8
records, respectively. Shorter windows were not investigated because of the loss of SNR due
to insufficient noise averaging over fewer trials, and the minimum data requirement for stable
covariance matrix (see below). The 2 minute analysis windows provided about 40 trials (40
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epochs) for averaging (~3 s inter stimulus interval, ISI, averaged over (−0.5,1.5) s relative to
the trigger markers).

Various windows used for the processing described in this paper are shown in fig. 3. The data
is divided into the “analysis windows”, fig. 3a, to minimize the effect of non-stationarity.
Within each analysis window there are number of “epochs”, typically about 40 (fig. 3b). The
epochs within the analysis window are averaged (to the stimulus) to yield an “average epoch”,
as in fig. 3c. The average epoch is divided into “response power windows”, as in fig. 3d.

Processing outline
The processing sequence is outlined in the flowchart of fig. 4. The processing was repeated for
a number of selected analysis windows. For each analysis window, a statistical test was applied
to one or more evoked response power windows in the average. Inputs to the process were the
evoked response MEG record and the biometrics data described above. The record was first
marked for occurrences of fetal MCG signals using a template matching algorithm (McCubbin
et al., 2006;Robinson et al., 2002) and was then segmented into a number of analysis windows.
Subsequent processing was repeated for each analysis window, first of which was the fMCG
model search and construction of the fMEG search grid described above.

For each analysis window, the covariance matrix and the averaged evoked epoch in the window
were computed. The covariance was used to determine beamformer weights at each search
grid location (or voxel) θ via eq. 2. Then the averaged epoch for each channel over all MEG
channels was used as m(n) in eq. 1 with the weights to generate an averaged time course at
each voxel. A number of post-stimulus response power windows in the average epoch were
selected to test for statistically significant evoked response at each voxel using a z-statistic. A
clustering algorithm was then used to identify potential regions of activation and RFT was
applied to determine a false positive threshold for cluster member voxels. The processing was
completed for each hypothesized response power window in the average by tabulating the
significant cluster parameters. The sequence was terminated after all selected analysis windows
were processed.

Processing details
The covariance matrix was computed from data concatenated from time segments of all epochs
within the analysis window. The time segment within an epoch, was (0, 800) ms after stimulus
markers with (a) full measurement bandwidth (BW) 0 to 70 Hz, Ca, and (b) narrow bandwidth
0.5 to 10 Hz, Cb. This is enough data for a stable covariance provided that the number of
samples is at least 3M (Van Veen et al., 1997), where M is the number of channels, and the
effective sample rate is fs = 2 BW. Then the required time interval is T = 3 M/(2 BW). For M =
148, BW = 9.5 Hz, the minimum required time is T = 23.4 s. The beamformer performance has
been shown to be marginal for this number of samples (Brookes et al., 2008) so more data is
preferable. With about 40 trials in each 2 minute analysis window, we get 32 s of data for the
covariance. Note however that testing with (0, 600), (0, 800), and (0, 1000) ms covariance
windows on the test series indicated very little effect (as measured by comparing the number
of significant records for each processing variation).

The source orientation for maximum beamformer power and beamformer weights were
determined using the matrix Ca and the procedure developed by Sekihara et al. (2004). The
weights are obtained as

(8)
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where the forward solution Bθ corresponds to the source orientation along the maximum
beamformer power determined from Ca. The beamformer power is normalized by noise,
computed using weights from eq.8 and the narrow band covariance matrix Cb as

(9)

The weights corresponding to the model origin which produced the largest beamformer power
were assigned to a given source grid location. A regularization factor of 103 was selected from
test series results over μ = 10x, x = 2, 3, 4, and 6. The selection was based on maximizing the
number of significant records over the processing variations.

The “true average” was taken from the average epoch as the interval (0, 800) ms relative to
stimulus. The markers within the analysis window were then randomized (about +/− 2 s, based
on minimum ISI) to create a set of 500 random averages in the selected analysis window. For
clarity, the averaging is described in detail as follows.

Source activity sθ is a 1 x N matrix (row vector). Assume that the true triggers are at times nk,
k = 1, …, K, where K is the number of trials. Then the source activity within an epoch is

(10)

where nt corresponds to a point in the post-trigger interval of interest. Time averaged source
activity (averaged epoch) is

(11)

where  is averaged data. Let the randomized triggers be at times
, r = 1, …, R, where R ~ K is the number of randomized trials and i = 1,…, Nrand, with

Nrand as the number of trigger set randomizations. Then

(12)

where  is the set of random averaged data.

The test statistic, x, was taken as the mean power over a response power window in the post-
trigger interval (no, no + No − 1), with no as the first time point in the response power window
and No as the response power window width,

(13)
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(14)

Since the expected latency for a specific fetal response is unknown, we have selected No = 200
ms wide response power window sliding over the post stimulus interval from 0 to 500 ms in
steps of 50 ms, no = 0, 50, 100, 150, 200, 250, 300 ms.

For each response window of interest, the z-statistic,

(15)

was computed where xtrue is mean response power of the true average,  is the mean of the
mean response power over the Nrand random averages, and σ rand is the standard deviation of
the random averages mean response power, xrand(i), i = 1,…, Nrand. We justify the use of
estimates for the random response power distribution mean and standard deviation in place of
the population parameters by the large value of Nrand. For Nrand = 500, we considered the bias
correction for σ rand of about 0.05% to be negligible (Montgomery and Runger, 2003).

Candidate clusters of potentially significant sources were identified using the method of affinity
propagation (Frey and Dueck, 2007). The clustering was based on an input ‘similarity’ matrix
ς(i, j) over all combinations of two source voxels, computed as the negative squared Euclidian
distance between voxel locations (i, j) plus negative squared difference in z values (an
alternative is to add negative squared difference in resels volume, defined below, but we did
not find any clear advantage in the test series analysis). The distance factor was multiplied by
a penalizing factor of 5 for all distances larger than one voxel cube diagonal

. The penalizing factor value is not too important but it needs to be large
enough to exclude distant voxels from the same cluster. A variety of cluster sizes were
generated for evaluation by setting the ‘preferences’ or self similarities, ς (i,i), to a common
value in the set −a × 10−b, a = 1, 3, 5, 7 and b = 1, 2, 3, 4. Taking a maximum of 30 sources
having z > 2, the affinity propagation method estimated a number of clusters (ranging from 1
to 30) that were then used for further evaluation in a statistical significance test. The clusters
were pruned to be contiguous.

For a more stringent statistical test aimed at reduction of false positives while maintaining
statistical power, we have modified a RFT false positive threshold described by Barnes and
Hillebrand (2003) developed for adult MEG beamformer SPM analysis. The enabling equation,
due to Friston et al. (1996), expresses the probability p of obtaining at least one cluster of a
selected spatial extent, r, which would exceed an unspecified threshold, U, as

(16)

where E is the expected number of clusters to exceed U and P is the probability that the cluster
size is at least ‘r’ resolution elements or ‘resels’. A cluster is defined as one or more contiguous
source voxels in the search volume. Given a selected false positive rate for the experiment, p,
we want to solve eq. 16 for U at each cluster of voxels. This provides an adjustment on p to
account for multiple comparisons over the SPM and reflects the variable spatial smoothness
of the statistical parameter over the volume of interest.
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The method estimates local SPM smoothness by counting the number of resels, r, at each cluster
and requires the transformation from a cubic grid of voxels to a tetragonal mesh with 5
tetrahedra per cube. Then changes in parameters relative to all neighbors of a voxel are
referenced for use in the flattening via resel sums. First, parameters of the entire search volume
geometry, called ‘resel counts’, are tabulated. We have an arbitrary shaped volume so we used
the procedure for estimating resel counts over a general search volume according to Worsley
et al. (1996), which results in estimates for 4 parameters of the resel volume: R3 − total resel
volume, R2 − resel surface area, R1 − resel diameter, and R0 − Euler Characteristic (EC) of the
volume.

We computed the resel estimate, r, (Barnes and Hillebrand (2003) eq. 15) for each cluster and
for each associated tetrahedron, utilizing the clever matrix formulation with beamformer
weight vectors of Barnes and Hillebrand (2003) eq. 17 – 20. Then, we summed the resels over
all member tetrahedra in each cluster (Friston et al. 1996) to get rsum. To get the local resel
counts at each cluster, we applied the following transformation from resel space to voxel space
(Worsley et al. (1996), for our case, with isotropic voxel spacing, d, rx = ry = rz= r0 = d/
FWHM (full width half maximum) of the Gaussian point spread function, eq. 3.2: 
and Barnes and Hillebrand (2003), eq. 16: :

(17)

E in eq. 16 above is calculated as the scalar product of the local resel count vector, V = (V(0),
V(1), V(2), V(3)), and the 4-dimentional EC density function for a Gaussian distribution (we
are using a z-statistic, eq. 15, while Barnes and Hillebrand (2003) used a t-statistic and EC
density functions for a t-distribution; see Worsley et al., 1996). The EC density functions are
not to be confused with R0 defined above as EC of the volume. The later is a constant to describe
the geometrical shape of the search volume while the former are functions of U which describe
the statistical field. In our case, the EC density functions simplify to:

(18)

and

(19)

After some simplification from the expression in Barnes and Hillebrand (2003),

(20)

To get a RFT threshold value at each cluster, we numerically solved eq. 16 for the threshold,
U, given the selected nominal p-value threshold, p. Statistically significant clusters were
identified by z − U > 0 for all cluster members.
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Finally, a summary of the search was saved for analysis and interpretation. The summary
included: (a) summary table of all search parameters and raw output, (b) sensor array
projections with passed cluster(s) source/origin locations, and (c) weights for reconstructing
time course(s) of selected averaged source activity.

It should be noted that the single source time courses are statistically ambiguous with the cluster
analysis. We can only say that there was significant activity somewhere within the cluster
volume. The median time course over all cluster members may be plotted as a representative
activity but its interpretive value is limited, especially when the SNR is poor as we show in
the next section.

Latency estimation
After looping through all selected power windows for each analysis window of a dataset, the
evoked response latency was estimated as the midpoint of the selected significant power
window. The latency could be defined as the time between stimulus and detectable onset of
the response but in neurophysiological applications it is usually taken as the time between
stimulus and the first peak in the response amplitude. Therefore we took the midpoint of the
significant response window which best represented the peak in the source cluster time course
as a latency estimate. The error in this latency measure may be estimated as +/− one half window
width. Narrower power window width would improve the latency measurement error, but at
some limit there will not be enough power in the window to distinguish above background, so
we trade resolution for sensitivity.

Results
A number of test analyses and results are reported in this section which may be summarized
as follows. A Monte Carlo simulation provided a test of false positive rates for the processing
method. An example of the fetal heart localization is presented to demonstrate the need for
windowing of the data record. The detection rate for the study series is reported and the validity
of the processing is demonstrated for newborn data. An example of response detection across
response power windows demonstrates the latency estimation procedure. Finally, a plot of
latency estimation for the study series shows the decrease in latency with GA and the graphical
display is quantified by a table with correlation of latency and GA.

Monte Carlo
We conducted a Monte Carlo simulation with Gaussian noise in place of the MEG channel
data to test false positive rates. The noise amplitude was independently computed for each
MEG channel and for each time point in the record by selecting a random value in the zero
mean Gaussian distribution with variance of 25 fT. The observed false positive rates for
expected thresholds of 1, 5, and 10% were estimated from 1000 Monte Carlo iterations,
summarized in the plot of fig. 5. Tests using single voxels or clusters both became overly
conservative at 10%, possibly due to the method’s suitability only for smaller false positive
rates. This is supported by the single source rate, which seems to be approaching the ideal for
smaller false positive rates, however clustering appears to remain somewhat optimistic for
smaller false positive rates. Further refinements in the clustering method may be indicated
since we are perhaps biasing the statistics by testing multiple clusterings (due e.g. to limitations
in the cluster size parameter selection and missing condition for contiguity in the clustering
algorithm). Nonetheless, our choice of a 10% false positive rate should be somewhat
conservative for the results which follow.
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Fetal MCG variability
For each selected analysis window, a preliminary search was conducted over approximately
the entire maternal abdominal volume with the fMCG markers as trial markers. This resulted
in an estimate of the fetal heart location in MEG coordinates and provided a registration with
the US biometric data as a basis for search grid construction. To show the general benefit of
estimating the fetal heart location for each analysis window, an example of the variation among
test datasets in fetal heart movement is shown in fig. 6. In some cases (fig. 6.a) there is very
little heart movement while in others (fig. 6.b) there is considerable movement.

Detection rate summary
A statistically significant response was detected for 56 of 90 fetal records (62%) and 20 of 21
newborn records (95%). The OP processed averaged evoked response over the entire 10 minute
stimulated record for the one failed newborn case did show a response well above baseline, so
the failure was likely due to insufficient events to average in the 2 minute analysis windows.
Only 21 fetal records had more than one significant analysis window and the maximum was
four (for 1 record). The newborn records indicated better but still limited stationarity with a
maximum of 7 of 9 significant analysis windows (2 records) and 16 records with more than
one but only 7 records with more than four.

Newborn example
An example of the model search results and comparison with OP processing for a newborn
record is shown in fig. 7. The search grid construction for the newborn records was necessarily
modified from the fetal procedure, however the procedure was otherwise identical to the fetal
processing so the reliable detection serves as a check on the method. All successful newborn
model search results had a favorable comparison with the OP processed result over the same
analysis window except one for which the OP result was quite noisy. However, the OP
processed average over the entire 10 minute record did provide a response so the OP failure
was likely due to insufficient trials to average.

It is important to note for the interpretation of the model search time course plot of fig. 7 (and
those that follow) that the individual source activity within a significant cluster has limited
value. We can only say that there was statistically significant mean power over the selected
response power window somewhere within the cluster and we cannot even attach meaning to
the individual peaks of the median time course.

Latency estimation
The results for all statistically significant analysis windows for an individual subject and GA
were reviewed in order to estimate a response latency. The latency was defined as the midpoint
of the significant response power window most closely associated with the first peak in median
power over all significant source clusters. The averaged time courses of all passed cluster
sources for significant response power windows were computed via eq. 1 and plotted for
interpretation. An example of the latency selection of 300 ms for a strong response peak is
shown in fig. 8. In this example all response power windows were significant for a single
analysis window (4 of 9) which is convenient for demonstration but was not generally observed.
Here the peak response power window could have been selected as in fig. 8d, e, f, or g and the
choice was based on the smoothed nominal waveforms (including smaller cluster medians)
and neglected the sharper spikes associated with noise. This visual selection process could be
automated to improve reliability, however the implementation would be complicated by large
variability of the data, including noise, artifacts, and false positives.
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In some cases, an unexpectedly early peak response was detected, as exemplified in fig. 9, with
a latency around 100 ms or earlier. These peaks were identified as artifact, as discussed below,
and excluded from the latency selection.

In other cases, a statistically significant response power was associated with a time course
which consisted of narrow spikes rather than an expected broader morphology. An example is
shown in fig. 10 and these were rejected as false positive responses.

The selected response power window results for each subject over all GA sessions were then
plotted as shown in the example of fig. 11 and latency estimates were tabulated. As the example
demonstrates, the response time course was not always robust and sometimes there was only
one single voxel cluster available to estimate latency (fig. 11c and 11d). The example of fig
11e and 11f shows the latency selected from the earlier peak even though it was not produced
by the largest cluster. After rejection of artifacts and false positives, many subjects in the study
series were reduced to one or two GAs for latency estimates (including newborn records). In
fact only 6 subjects had more than two GAs for tabulation.

Response latency vs. GA
Latency estimation for the study series is summarized in the plot of fig. 12 for 27 of 29 subjects
including 8 with only one selected latency estimate. The remaining two subjects in the series
had no significant GA records. It was observed in fig. 12a that several early GA latency
estimates were unusually short and a few late GA (newborn) latency estimates were
surprisingly long. Two of the 19 subjects with more than one latency estimate had a GA record
with latency that was substantially longer (outside the +/− 100 ms latency error estimate, fig
12b) than the first measured GA record latency and were marked as a contrary sub-group. Of
the remaining 17 subjects (89%), 9 demonstrated latency reduction with GA as expected for
normal development. The other eight subjects showed no meaningful change of latency with
GA (remaining within the +/− 100 ms latency error estimate, fig 12b).

Latency vs. GA correlation
For those subjects with more than two GA records, the least squares fit slope and associated
correlation coefficients are listed in Table 1. The mean slope was −15 ms/week. Considering
the +/− 100 ms error bars on each latency estimate for an individual subject, it can be simply
shown that the average slope is equal to the slope determined directly from the data (column
2). Standard deviation of the slope, column 4, was computed by simulation using large number
(30,000) of various error realizations, assuming that the data errors are uniformly distributed
with zero mean. Taking all data of fig. 12a together, the fit slope was −5 ms/week with a
correlation coefficient of only 0.3. However, when a few outliers were discarded, the fit slope
increased to −11 ms/week with correlation coefficient of 0.6 (plotted as a dotted line in fig.
12a). This analysis provides a numerical value for the general trend observed in the plots of
fig. 12.

Discussion
We have implemented a statistical procedure based on RFT to control false positives in the
SPM from a fetal MEG beamformer model search. The performance of the algorithm was
tested for false positives by Monte Carlo method and found to be somewhat optimistic at lower
thresholds, but conservative for a higher p-value threshold that we used (10%). The effect of
the RFT procedure was to reduce the nominal p-value threshold for significance so we
attempted to optimize the model search parameters to provide best SNR data. The search
volume was individually constructed for each analysis window of interest in the record based
on ultrasound biometrics. The search volume was referenced to the estimated fetal heart
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location averaged over the analysis window of interest. In previous work an ‘actogram’ was
used (McCubbin et al., 2007) to identify fetal movement based on MCG variations and then
select segments with relatively stable MCG. However, there is not a clear correlation between
torso, limb, and head movements nor were maternal movements monitored. Furthermore, there
undoubtedly exist additional contributors to non-stationarity within the maternal abdomen and
even within the fetal head (e.g. eye and mouth movements, spontaneous burst activity).

As a best effort to deal with this situation, we chose an analysis window width of 2 minutes
and stepped it along the 10 minute record in 1 minute increments. In general, wider windows
produced lower detection rates and narrower windows were not considered because there
would not be enough data for construction of the beamformer covariance. Under the assumption
that fetal or maternal movements are a major source of the non-stationarity, the analysis
window length could alternatively be determined by some movement measure such as fetal
heart position variability. However the correlation between fetal heart movement and fetal head
movement might not always be strong. Additionally, there may be other unidentified
contributors to non-stationarity. A possible improvement would be an automated step-down
testing of window widths from e.g. 5 minutes to optimize for those records in a series with
better stationarity. An additional enhancement to the model search was the variable width and
location of the post-stimulus response power window. This was considered important for fetal
evoked response detection because of the unknown and variable latency or duration.

It’s interesting to note that, even with the relatively high SNR conditions of the newborn
measurement, detection is not assured. This may be partly due to inappropriate search grid
selection (newborn positioning was not too well known, grid was too coarse for high SNR
application) or insufficient spatial sampling of the sensor array, but also likely includes the
nonstationarity due to newborn movements as well as the attending mother’s movements. The
evidence from tabulation of passed analysis window counts indicates a maximum stationarity
of four windows for fetal data and seven for newborn data. Nearly half of the fetal records had
only a single significant 2 minute window while only about half of the newborn records had
more than 3 significant windows.

The observation of statistically significant response power at less than about 100 ms latency
was a complication in the latency estimation. We justify the identification of this component
as artifact by noting that there are no known reports of neonate newborn flash evoked response
latency below about 200 ms (Kræmer et al., 1999; Tsuneishi et al., 1995). The origin of the
artifact could be an event related eye blink or limb twitch, however this will have to be the
subject of a future investigation.

The most convincing validation of fetal evoked response detection is the demonstration of
some neurophysiological marker using a standardized processing over a large group of records.
We selected the processing parameters by detection performance over a small test series and
then processed a large series of different records as a batch with the same processing. The
detection rate was 56 of 90 fetal records (62%) and 20 of 21 newborn records (95%). The
number of fetal latency estimates were further limited by rejection of artifacts and false
positives, nonetheless the correlation between estimated latency and GA revealed the expected
latency decrease with GA over the group in general at −11 ms/ week and over individual
subjects for most subjects in rough agreement with Kiefer et al. (2008). Individually, the latency
reduction was quite variable. Over subjects with more than 2 GA latency estimates, the slope
ranged from −30 to + 5 ms/week with a mean of −15 ms/week, which is in agreement with the
general trend. The results of the fetal evoked response analysis may not seem too impressive
to those with experience in postnatal or adult electrophysiology, however we believe that this
report represents the most convincing evidence for reliable detection of evoked fetal brain
activity to date.
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While there are many improvements that could be made to optimize the performance, we have
shown that a beamformer model search with appropriate parameters and careful control of false
positives in the search volume has potential for reliable and routine latency detection of fetal
evoked responses. The clustering method was somewhat cumbersome and could be replaced
by a more general implementation of the RFT which would identify statistically significant
activation clusters over the whole search space without the need for the separate clustering
step. We intend to explore the parameter space for optimizations, consolidate the processing
software, and apply the method to larger fetal data series. The averaging of evoked response
over many trials reduces the noise but also may diminish the response amplitude if the latency
and duration varies over trials. In future work it may be useful to devise an experiment for a
paired sample statistical test for comparison with these results.
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Figure 1.
Fetal orientation sketch example with orientation angle (φ) measurement. The x and y
coordinates are indicated in the figure, z coordinate is perpendicular to the figure plane. Shaded
region indicates a ±45 deg wedge used to limit the search grid. C – heart center, B – head center.
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Figure 2.
Residual average mMCG peak vector magnitude vs. time over a 30 minute fMEG record with
bandwidth 0 – 70 Hz. The residual was computed for each of 15 non-overlapping 2 minute
analysis windows after OP using either vectors determined once over the entire record without
windowing (solid line), or over each 2 minute window (dotted line).
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Figure 3.
Schematic diagram of various windows and their naming used in this paper. (a) data record
segmented into analysis windows, (b) evoked response epochs in one analysis window, (c)
averaged epoch from all epochs in an analysis window, and (d) averaged epoch segmented into
response power windows. Analysis windows and response power windows may overlap.
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Figure 4.
Beamformer model search processing flowchart. Detail flowchart of the process ‘response
power window statistics’ is highlighted in gray.
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Figure 5.
False positive rate (%), expected vs. observed single voxel (circle) and clusters (diamond).
Solid line represents observed = expected.
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Figure 6.
Heart location estimates (stars) over 9 visual stimulus windows with 2 minute duration. The
quietest (a) and most active (b) examples over the test series are superimposed on projections
of the fMEG sensor array (gray dots) with maternal abdominal markers (open and filled
diamonds).
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Figure 7.
Example result for a newborn record. (a) The projection onto the x-y plane of the sensor array
(gray dots) with newborn heart location estimate (star), all members of all source clusters which
passed statistical false positive threshold of 0.10 (gray squares, gray level is a function of source
metric value (z − U) with white as zero level so that sources with largest metric values are
darkest; overlaid with largest values on top), and associated model spheres (gray circles), one
largest cluster center location (white cross); (b) The median time course for the cluster with
the largest number of members (black) and smaller clusters median (gray) time courses are
overlaid (normalized power vs. time in sec from trigger), dashed vertical lines: response power
window limits. Horizontal lines: dashed lines are  (random averages
power +/− one standard deviation), dash-dotted line is  (RFT threshold
power, please refer to eq. 15), and solid line is xtrue (mean power over response power window).
The statistical parameters were taken from the one cluster member with best metric value (z −
U); (c) Superposition of squared MEG channels after OP.
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Figure 8.
Example of latency selection for subject NT19 at 33 weeks GA; (a) typical projection and (b
– h) time course plots for significant clusters over each analysed response power window: (b)
0 – 200 ms, (c) 50 – 250 ms, (d) 100 – 300 ms, (e) 150 – 350 ms, (f) 200 – 400 ms, (g) 250 –
450 ms, and (h) 300 – 500 ms. Legend is the same as for fig. 7 except for the addition of
maternal abdominal coils (solid diamonds) and 4th coil (open diamond) locations in the
projection. The projection (a) is for the selected latency response power window (f) however
in this example all were very similar as are the median time courses of significant clusters.
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Figure 9.
Example of a response identified as artifact; (a) projection and (b) time course plot. Legend is
the same as for fig. 8.
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Figure 10.
Example of a response identified as false positive; (a) projection and (b) time course plot.
Legend is the same as for fig. 8. Note that in this case the RFT threshold power and mean power
over the response power window are nearly coincident, indicating that this cluster was of very
low significance.
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Figure 11.
Example of selected significant response power windows for all GA records of one subject
(NT02); (a, b) 34 weeks GA, (c, d) 36 weeks GA, and (e, f) 39 weeks GA newborn. Legend is
the same as for fig. 8. Note that the RFT threshold power and mean power over response power
window are nearly coincident in (d), indicating that this cluster was of very low significance.
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Figure 12.
(a) Response power window latency vs. GA for two subjects with latency which did
substantially increase with GA (gray) and 17 subjects for which it did not (black). Dashed line
is the least squares fit to all data after discarding outliers (latency < 250 ms for GA < 32 weeks
or latency > 300 for GA > 40 weeks) (b) same data normalized for each subject with more than
one GA latency estimate to latency difference (latency[GA] − latency [first measured GA]) vs.
GA difference (GA − first measured GA.) to accentuate the key observation of latency
reduction with increasing GA. Latency error bars are estimated as +/− 100 ms, marked as
horizontal dotted lines associated with the first measured GA. Power window width was 200
ms with center points from 100 to 400 ms in 50 ms steps. Newborn points are marked with
open circles.
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Table 1
Slope, correlation coefficient, and standard deviation for subjects with more than 2 GA records. Last column reports
the number of GA records used in the calculation.

Subject Slope
(ms/wk)

Corr.
Coeff.

s.d. Points
to fit

NT15 −29 0.85 8 3
NT02 −27 0.96 16 3
NT14 −17 1.00 7 3
NT27 −13 0.52 11 3
NT03 −6 0.52 6 4
NT16 +5 0.99 7 3
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