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Abstract
When both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) data are
collected they are typically analyzed separately and the joint information is not examined.
Techniques that examine joint information can help to find hidden traits in complex disorders such
as schizophrenia. The brain is vastly interconnected, and local brain morphology may influence
functional activity at distant regions. In this paper we introduce three methods to identify inter-
correlations among sMRI and fMRI voxels within the whole brain. We apply these methods to
examine sMRI gray matter data and fMRI data derived from an auditory sensorimotor task from a
large study of schizophrenia. In Method 1 the sMRI–fMRI cross-correlation matrix is reduced to a
histogram and results show that healthy controls (HC) have stronger correlations than do patients
with schizophrenia (SZ). In Method 2 the spatial information of sMRI–fMRI correlations is
retained. Structural regions in the cerebellum and frontal regions show more positive and more
negative correlations, respectively, with functional regions in HC than in SZ. In Method 3
significant sMRI–fMRI inter-regional links are detected, with regions in the cerebellum showing
more significant positive correlations with functional regions in HC relative to SZ. Results from
all three methods indicate that the linkage between gray matter and functional activation is
stronger in HC than SZ. The methods introduced can be easily extended to comprehensively
correlate large data sets.
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Introduction
Developments in neuroimaging techniques, especially in magnetic resonance imaging
(MRI), have enabled researchers in the past decade to perform in vivo studies of the
structural and functional brain. Structural MRI (sMRI) is widely employed to image
different tissue distributions and functional MRI (fMRI) is used to identify brain activation
regions for a certain task. During an fMRI experiment a subject is asked to perform a task
while the scanner records the blood oxygen level dependent (BOLD) changes of different
brain regions. fMRI has become a popular functional neuroimaging technique since it is less
invasive, less expensive and has better spatial and temporal resolutions than previous
techniques such as positron emission tomography (PET). sMRI and fMRI allow
investigators to study groups of patients and healthy controls and identify differential brain
characteristics between groups. The identified anatomical and functional measures or a
connection between them may be subsequently used as indicators of susceptibility to the
disorder.

In most fMRI studies sMRI is also acquired. These two modalities provide unique
information about the brain; however, their analysis is typically performed separately. The
sMRI images are often used to co-register different subjects’ brains onto a common template
(Toga and Thompson, 2001) or used as a rendering surface to visualize overlaid functional
activation (Corbetta et al., 1998). The brain is a vastly interconnected organ and it is
reasonable to expect that changes in local morphological structures may result in
modulations of brain activity in distant regions (Mesulam, 1998). The correlation or the
connection between structural regions and functional activation of the whole brain has not
been well established. Studies have been designed to examine localized correlations between
gray matter volumes with fMRI or to correlate structural and functional data from certain
regions in the brain (Hasnain et al., 1998, 2001; Siegle et al., 2003). Existing tools for
examining joint information include region-based approaches such as structural equation
modeling (McIntosh and Gonzalez-Lima, 1994) and dynamic causal modeling (Friston et
al., 2003). The above methods were primarily designed to investigate functional
connectivity between brain regions. These studies and techniques are important and needed;
however, they are limited by a priori knowledge of the implicated brain regions and lack
detailed examination of the relationship between distributed brain voxels. The confound of
anatomical differences or registration error contributing to differential functional activation
was addressed by integrating differences in underlying gray matter as a nuisance variable
into the general linear model (Oakes et al., 2007). This method addresses an important issue
but investigates functional activation differences due to underlying structure only within the
same voxel and hence does not examine relationships between structure and function at
distant brain regions. There are other methods (Fan et al., 2007; Ford et al., 2002) that use
structural and functional data for classification purposes; however, they do not examine the
inter-relationship between structurally and functionally derived data.

In our approach we assess cross-correlations among all sMRI and fMRI voxels. This task is
straightforward for a small numbers of voxels, but becomes challenging for whole brain
studies due to the magnitude of necessary computations and temporary storage needed. With
tens of thousands of voxels from two modalities to be comprehensively correlated a cross-
correlation matrix with billions of values needs to be constructed. In this paper we introduce
techniques to iteratively compute the large cross-correlation matrix and reduce it to
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statistical measures that can be used to identify discriminating features between healthy and
patients groups. We have used a related approach to evaluate function–function linkages
(Michael et al., in press). The correlation for each pair of sMRI–fMRI voxels is computed
across subjects belonging to a certain group. Our method is a data driven approach with no
prior assumptions about the brain regions to be investigated.

We apply our methods to a group of patients with schizophrenia (SZ) and healthy controls
(HC). Schizophrenia is a complex and chronic mental disorder that affects about 1% of the
population across all cultures, sexes and socioeconomic groups (Bhurga, 2005). The clinical
heterogeneity of schizophrenia, characterized by a myriad of symptoms and signs, presents a
difficult target for research into its neurobiological mechanisms (Andreasen, 2000). No
neurobiological marker of the disorder is present and no specific brain region has been
found to be solely responsible for the disorder. Schizophrenia is currently diagnosed on the
basis of patient’s self reported experiences and observed behavior.

Studies separately analyzing structural and functional images have found that multiple brain
regions appear to be affected in schizophrenia (Goldstein et al., 1999; Honea et al., 2005;
Niznikiewicz et al., 2003). Structural findings suggest enlarged ventricles, reduced volume
of temporal lobe and superior temporal gyrus, with moderate evidence for frontal lobe
volume reduction, and some evidence for persistent cavum septi pellucidi and abnormalities
in basal ganglia, corpus callosum, thalamus and cerebellum. Functional results suggest
abnormal connectivity between temporal and frontal brain regions and aberrant activation in
the dorsolateral prefrontal cortex (DLPFC) (Manoach et al., 2000; Weinberger et al., 1986).
An overwhelming number of studies report that for a given task, abnormal function is not
localized to a specific brain region, but instead the abnormalities involve a network of brain
regions.

Schizophrenia is likely associated with disruptions in the connectivity between different
cortical regions (Andreasen et al., 1999;Andreasen et al., 1998; Breakspear et al., 2003;
Friston, 1998; Kubicki et al., 2007; Lim et al., 1999; Ross and Pearlson, 1996). Studies that
investigate the linkage between structure and function while taking into account all brain
voxels are thus needed to investigate the differences between HC and SZ. The term ‘linkage’
in this paper is used to denote the relationship, association or correlation between two
variables. A joint analysis of this nature enables one to do a comprehensive study of the
interactions between sMRI and fMRI. It is reasonable to expect that large functional
networks are associated with features of gray matter but to different degrees in HC and SZ.
The disconnection hypothesis of schizophrenia (Friston, 1998) states that neural mechanisms
in schizophrenia are not localized to any one area alone, but it is the integrity of the
interconnections between brain regions that is compromised. Thus, we predicted that the
relationship between structure and function will be weaker in SZ than in HC.

sMRI data were derived from T1-weighted scans and with voxel-based morphometry
(Ashburner and Friston, 2000) the images were segmented to obtain gray matter (GM)
concentration. GM concentration is the percentage of GM content at a voxel location. By
form, given in the title, we mean the tissue composition of a voxel. We selected GM, since
GM brain regions are the information processing centers of the brain. Many previous studies
have found gray matter volume and density differences in SZ and motivated us to
investigate its correlation with function (Ananth et al., 2002; Gur et al., 1999;Hulshoff Pol et
al., 2001). fMRI data were acquired while subjects performed an auditory sensorimotor
(SM) task and were reduced to activation maps by regressing the task time course and other
models against the data using the GLM. The SM task was designed to activate the auditory
cortex robustly since previous studies (Calhoun et al., 2007; Kiehl and Liddle, 2001;
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Machado et al., 2007; Schroder et al., 1999) have shown abnormal activation in auditory
temporal lobe regions in SZ.

Subjects and methods
Participants

Subjects recruited for this study were scanned at four different sites: the University of Iowa
Hospital (IA), Harvard’s Massachusetts General Hospital (MA), the University of
Minnesota (MN) and the Mind Research Network (NM). Patients were recruited from
inpatient and outpatient psychiatric clinics, group homes, referrals from physicians,
advertisements and by word-of-mouth. Controls were recruited from advertisements, fliers
and word-of-mouth. All participants provided written, informed, IRB approved consent at
their respective sites and were compensated for their participation. Subjects analyzed in this
study had normal hearing (assessed by self report) and were able to carry out the fMRI task.
A total of 70 healthy controls (HC) and 70 patients with chronic schizophrenia (SZ) are used
in this analysis. We checked that the structural brains and functional activation regions were
consistent across subjects through a correlation analysis. The two subject groups are
matched for age, sex and parental socioeconomic status and their demographics are
presented in Table 1. In Table 1 all demographics except years of education have
insignificant group differences. A large number of subjects have to be removed to match all
between group subject demographics. To avoid this we select a subset of subjects to match
education between the two groups and repeat the tests to show the robustness of our result.
The significance of structural–functional correlation between the two groups is comparable
since the number of subjects in each group is equal.

HC in the study were screened to ensure they were free from diagnostic and statistical
manual of mental disorders (DSM-IV) axis I or axis II psychopathology, assessed using a
modified version of the comprehension assessment of symptoms and history (CASH)
(Andreasen et al., 1992). They were interviewed to determine that there was no history of
psychosis in any of their first-degree relatives. Patients met criteria for schizophrenia based
on structured clinical interview for DSM (SCID) or CASH and were confirmed by review of
their case file. Average patient symptom measures, positive (Andreasen, 1984), negative
(Andreasen, 1981) and disorganization, are reported in Table 1. Out of the 70 SZ, 58 were
receiving the following antipsychotic medication (number of subjects in parenthesis):
clozapine (12), quetiapine (8), olanzapine (9), ziprasidone (4), risperidone (9), aripiprazole
(9), quetiapine and aripiprazole (1), perphenazine (1), haloperidol (3), thiothixene (1),
fluphenazine and thiothixene (1). Information was not available for 12 SZ.

fMRI task
fMRI data were collected while subjects performed an auditory sensorimotor (SM) task.
Prior to the scan all subjects were instructed until they were able to perform the task
adequately. The participants were requested to actively participate and respond as quickly
and accurately as possible. The SM task was designed to robustly stimulate the auditory
cortex. Sound stimuli were incorporated into E-prime scripts (http://www.pstnet.com) run on
a Windows machine and were presented via sound insulated, MR-compatible earphones
(Avotec, Stuart, FL). The task consisted of an on/off block design (Fig. 1). During the on-
block, 200 ms tones were presented with a 500 ms stimulus onset asynchrony (SOA). There
were eight tones at different pitches along a scale and they were presented in ascending and
descending cycles for the duration of the ‘on’ block. No tones were presented during the
‘off’ block. Upon each presentation of the tone a subject was required to make a speeded
right thumb button-press response through an MR-compatible input device

Michael et al. Page 4

Neuroimage. Author manuscript; available in PMC 2010 July 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.pstnet.com


(https://www.mrn.org/facilities/mind-input-device). There were two runs, each lasting about
4 min.

Imaging parameters
sMRI—A T1-weighted sMRI was acquired at each site. For MA and NM the scans were
acquired on a Siemens scanner at 1.5 Tesla (T) with the following parameters: repetition
time (TR)/echo time (TE) = 12 ms/ 4.76 ms, bandwidth = ±150 kHz, flip angle (FA) = 20°,
slice thickness= 1.5 mm, voxel size = 0.63 × 0.63 × 1.5 mm3, field of view (FOV)= 161
mm, and pulse sequence = gradient echo. For IA the scans were acquired on a GE Signa
scanner at 1.5 T with the following parameters: TR/TE = 20 ms/6 ms, bandwidth = ±180
kHz, FA = 30°, slice thickness= 1.6 mm, voxel size = 0.66 × 0.66 × 1.6 mm3, FOV = 168
mm, and pulse sequence = gradient echo. The MN scans were acquired on a Siemens Trio at
3 T with the following parameters: TR/TE = 2530 ms/3.8 ms, bandwidth = ±180 kHz, FA =
7°, slice thickness = 1.5 mm, voxel size = 0.625 × 0.625 × 1.5 mm3, FOV = 160 mm, and
the pulse sequence = MP-RAGE. At all four sites brain images were acquired in a coronal
orientation.

fMRI—Functional data were acquired at all four sites with EPI sequences on Siemens 3.0 T
scanners, except at the NM site where a 1.5 T Siemens scanner was used. Data were
collected from each participant while performing the SM task. The parameters for the
functional scan are as follows: TR/TE = 2 s/30 ms (TE = 39 ms for NM), bandwidth (BW) =
±100 kHz= 3126 Hz/pixel, FA = 90°, slice thickness= 4 mm, gap between slices=1 mm,
voxel size=3.4×3.4×4 mm3, FOV= 22 cm, pulse sequence = PACE-enabled, single shot,
single-echo echo planar imaging (EPI), scan plane = oblique axial, AC-PC; acquisition
matrix=64×64, number of slices=27, ascending sequential acquisition.

Data analysis
Preprocessing sMRI—For MA and NM, three T1’s were coregistered to each other and
an average T1 was computed for segmentation and smoothing. IA and MN acquired only a
single T1 image. Tissue classification, bias correction, image registration and spatial
normalization were performed using voxel-based morphometry (VBM) (Ashburner and
Friston, 2005) in SPM5 (http://www.fil.ion.ucl.ac.uk/spm/software/spm5) where the above
steps are integrated into one model. Unmodulated normalized parameters were used for
segmentation as previously applied in two large VBM studies (Meda et al., 2008; Segall et
al., 2008) to segment the brain into white matter (WM), gray matter (GM) and cerebral
spinal fluid (CSF) probabilistic maps. For each brain voxel the three concentrations from
these maps add up to one. After segmentation, the GM images were smoothed with a
Gaussian kernel of full-width half maximum (FWHM) of 10 × 10 × 10 mm3. The voxel size
of all images was resliced to 3×3×3 mm3.

Preprocessing fMRI—The SPM5 software package was employed to perform fMRI
preprocessing. Slice timing was performed with the middle slice as the reference frame.
Images were realigned using INRIalign, a motion correction algorithm that is unbiased by
local signal changes (Freire and Mangin, 2001; Freire et al., 2002). Data were then spatially
normalized into the standard Montreal Neurological Institute (MNI) space (Friston et al.,
1995) with affine transformation followed by a non-linear approach with 4 × 5 × 4 basis
functions. Images (originally collected at 3.4 × 3.4 × 4 mm3) were then slightly
downsampled to 3×3×3 mm3, resulting in a data cube of 53 × 63 × 46 voxels. Finally data
were spatially smoothed with a Gaussian kernel of FWHM of 9×9×9 mm3 (White et al.,
2001).
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The SM task was modeled as a block design as shown in Fig. 1. The task regressor was
created by modeling the on–off blocks as rectangle functions convolved with the default
SPM5 canonical hemodynamic response function (HRF). Drift was modeled by a high pass
filter with cutoff at 128 s. The contrast map was computed with these regressors using GLM
in SPM5. Contrast maps from the two runs of the task were averaged for each subject to
create the final map input into our approach.

Structural–functional correlation
The brain maps contained about 153 k (53 × 63 × 46) voxels and after the exclusion of non-
brain voxels the final number of voxels was about 60 k (N). The reduced three dimensional
voxels were vectorized along different columns of a matrix where subjects belonging to a
certain group (SZ or HC) were stacked along the rows (Fig. 2). Let Xi and Yj be the column
vectors across all subjects for the ith voxel from sMRI (gray matter concentration map from
VBM) and the jth voxel from fMRI (activation map from GLM), respectively. Our interest
was in finding the correlation (using Eq. 1) between Xi and Yj where i and j varied
independently from 1 to N.

(1)

A cross-correlation matrix (RSF) of size N × N is required to store all structural–functional
correlations and making such a matrix is not easy due to limitations in computer memory.
Even if RSF is computed its interpretation will be based on some reduced statistics. We
introduce three methods to find statistics by iteratively computing RSF.

Method 1: histogram of RSF—The histogram of all the elements of RSF gives a general
idea of how the structural–functional correlations are distributed. Steps to find the histogram
of RSF are listed below (see Fig. 3).

Step 1: Find the correlation of the 1st structural voxel with all functional voxels
(correlation of Xi and Yj; j=1 to N) and store them in an array (A1) of length N.

Step 2: Compute the histogram (H1) of A1 at 100 bins equally spaced between −1 and
+1.

Step 3: Repeat steps 1 and 2 for ith structural voxel, i=2 to N. Each time a histogram is
computed it is added to the histogram of Step 2. If Hi is the histogram of
correlations of the ith structural voxel with all functional voxels then the final

histogram .

This method essentially finds the histogram of RSF (N × N) by iteratively finding the
histograms of its rows and finally adding the histograms. In the next paragraph we show that
the histogram computed through this method and the histogram of all the elements of RSF is
identical given that the binning intervals are identical. In that sense we do not lose
information but we are reducing N × N correlations of the RSF matrix to 100 numbers of
occurrences, a form that can be easily represented and analyzed.

In Fig. 4 the histograms of each row of RSF are shown as number of occurrences within
different binning intervals. The lower (L1), upper (L2) bounds and the bin interval (Δx) are
kept constant across the rows of RSF. In our application L1 and L2 are equal to −1 and +1,
respectively, since they are the lower and upper bounds of the correlation coefficient and Δx
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equals (L2–L1)/100. The number 100 was selected arbitrarily. Hi is the histogram of the
elements of the ith row of RSF and fij is the number of occurrences in the jth bin of Hi.
Histogram Hi is essentially a collection of occurrences *(fi1, fi2, …, fij, …, fi100). If L1, L2
and Δx are kept constant and if RSF is fully computed the number of occurrences within a
certain bin will be the summation of occurrences of the rows of RSF within the same bin.
Hence the summation of Hi is identical to the histogram of RSF if it had been fully
computed.

Method 2: mean (p-value) of RSF along its rows/columns—In Method 1 we find
the distribution of structural–functional correlations but the spatial information of where
these correlations are located is lost. In Method 2 we try to retain average spatial distribution
of the correlations. This is achieved by collapsing either the rows or the columns of RSF
(Fig. 3b) and then reconstructing the p-values on to a brain map.

Step 1: Compute the 1st row (r1)/column (c1) of RSF.

Step 2: Find the mean, standard deviation and p-value of r1/c1 and store it as the 1st

element of array p (1 × N).

Step 3: Repeat steps 1 and 2 for the ith row/column, i=2 to N.

Step 4: Reconstruct p to a brain map.

If RSF is collapsed along the columns, the p-value at a certain voxel in the reconstructed
brain map corresponds to the significance of the mean correlation of the structural voxel at
that location with all functional voxels being non-zero. If collapsed along the rows the p-
value at a certain voxel corresponds to the significance of the mean correlation of the
functional voxel with all functional voxels being non-zero. To compute the p-value we
performed a one sample t-test and computed the t-value using the mean and standard
deviation of the correlations at that voxel. The number of subjects (=70) was used as the
original degrees of freedom (dof) since the correlations were computed from 70 independent
subjects. To examine how each structural voxel is correlated to all functional voxels a total
of N maps are needed and inspecting such a large number of brain maps is not an easy task.
It should be noted that this method gives an average sense of the correlations. In this method
we are reducing the N × N correlations of RSF to a map of N p-values of correlations.

Method 3: reduce RSF to inter-regional correlations—In method 2 we retained
average spatial correlations but did not retain information on structural–functional inter-
regional correlations. With Method 3 it is possible to find structural–functional regions that
are significantly correlated.

Step 1: Segment RSF into na × na (na is the number of atlas regions) anatomical regions
as defined by an atlas. In our application we use the AAL atlas (Tzourio-Mazoyer
et al., 2002) and RSF is segmented into 116× 116 anatomical regions.

Step 2: Cluster the elements of RSF belonging to a certain anatomical segment (Fig. 3c).

Step 3: Compute each segment of RSF, its mean, standard deviation and p-value.

In Fig. 3c, various segments are represented by different colors. The orange segment, for
example, corresponds to how structural voxels from the 1st atlas region correlate to
functional voxels from the 2nd atlas region. In this method we are reducing the N × N
correlations of RSF to 116× 116 inter-regional p-values of correlations. Here the p-value
indicates the significance of the mean correlation of a segment being non-zero.
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Results
Structural–functional spatial correlation histogram of all brain voxels

Method 1 was applied to the group of HC and SZ separately and the structural–functional
correlation histogram was computed with all brain voxels. In Fig. 5a the y-axis represents
the number of occurrence of different correlation values given along the x-axis. The
summation of the number of correlation occurrences in the histogram equals the number of
elements of RSF (N × N). A mean correlation value of zero in the histogram indicates that on
average the structural gray matter concentration (across subjects) and functional activation
values (across subjects) are uncorrelated. A positive correlation means that an increase or
decrease in gray matter concentration corresponds to an increase or decrease in functional
activation respectively. A negative correlation value conveys that a change in gray matter
concentration has a change in functional activation in the opposite direction.

In Fig. 5a the SZ histogram is shown in red and the HC in blue. The difference between SZ
and HC histograms is not very clear when they are drawn on the same plot. To enhance the
difference in Fig. 5b the difference histogram (HC–SZ) is illustrated. From this plot it is
evident that the number of zero correlations is higher in SZ than in HC and the number of
+0.2 and −0.2 correlations is higher in HC than in SZ. To find the significance of the
correlation between functional activation and gray matter concentration we converted the
correlation value (±0.2) that showed group difference into a t value using Eq. 2, where r =
±0.2 and ndof = 70 (number of subjects). We then converted the t value to its corresponding
p-value. After these steps for an r = ±0.2 we obtained a p-value of 0.048. This value does
not indicate the significance of the difference between the two groups but the significance of
correlation (at r = ±0.2) between structural and 436 functional data within a group is p<0.05.

(2)

The result presented above was based on a cohort of subjects with insignificant group
differences in age, sex and parental socioeconomic status but a significant group difference
in years of education. To match education we selected a subset of 65 subjects from each
group. The mean, standard deviation and the significance of difference between the two
groups are as follows: HC = 14.6 ± 1.5, SZ = 14.1 ± 2.4, t-value = 1.4 and p-value = 0.15.
The structural–functional correlation histograms (as in Fig. 5) were computed and the result
that HC having higher correlations than SZ was consistent with this subject group as well.

Correlation histograms of significant voxels
In the previous analysis structural–functional correlations were found using all brain voxels.
During the preprocessing steps we had removed voxels that were ‘noisy’ as a result of
scanner issues. Another set of ’noisy’ voxels appear when voxels do not activate
consistently across all subjects. We were interested in checking the above result for
functional voxels with significant activation and structural voxels with high gray matter
concentration. Our test was to find if the pattern of HC having higher correlations than SZ
changed across different levels of significant voxels. Functional voxels that had the highest
group (HC + SZ) mean t-values for the SM task and structural voxels with the highest group
mean gray matter concentration were used for this analysis. The voxels that pass a certain
threshold in the group mean map were chosen from each subject to compute the histogram.
We compute the histograms for different combinations of structural and functional
thresholds and the difference histograms (HC–SZ) are presented in the rows of Fig. 6a. In
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Fig. 6a the difference histograms (HC–SZ) are shown as a colormap. Shades of red
correspond to HC having higher number of correlations than SZ and shades of blue
correspond to SZ having higher number of correlations than HC at correlation values given
by the x-axis. In Fig. 6a SM activation map t-value is changed (between 0 and 4.0 in steps of
0.25, separated by dashed lines) in the outer loop and GM concentration is changed
(between 0 and 0.8 at steps of 0.1) in the inner loop. The first row in Fig. 6a corresponds to
all structural and functional voxels and the last row to structural voxels with GM
concentration above 0.8 and functional voxels with t-values above 4.0

At lower SM t-value thresholds (0.0–1.5) and lower GM thresholds (0.0–0.5) HC show
higher number of correlations around +0.2 and –0.2 and SZ show higher number of
correlations around zero. This pattern is consistent with the histogram found in the previous
section using all brain voxels. At higher GM thresholds (0.5–0.8), independent of SM t-
values, HC show higher number of positive correlations and SZ a higher number of negative
correlations. This is seen in Fig. 6a, as GM thresholds are increased from 0.5 to 0.8, blue and
red shades move to the left and right of correlation =0 axis, respectively. In Fig. 6a color
intensity reduces at higher GM and SM thresholds. This is due to the fact that at higher
thresholds a lower number of voxels are selected to compute the histogram and hence the
number of occurrences is also lower. To find the significance of the histograms at different
thresholds we normalize the histogram by dividing it by the total number of correlation
occurrences. A normalized histogram is essentially a probability density function (pdf). In
Fig. 6b the difference between HC and SZ normalized histograms are illustrated in a manner
similar to Fig. 6a. From Fig. 6b we see that a more significant difference between the two
groups occurs at higher SM and GM thresholds. At these thresholds controls show more
positive and patients more negative structural–functional correlations.

Spatial location of structural–functional correlations
In this section we present results, using Method 2, where the spatial content of the
correlations is retained. In Fig. 7 we present the p-values of how a functional voxel, on
average, is correlated to all structural voxels. This p-value is presented at the brain location
of the functional voxel. In Fig. 7a and b the p-value indicates the significance of the mean
correlation of a functional voxel with all structural voxels being non-zero. The p-values in
Fig. 7c correspond to the significance of the mean correlation of one group being higher
than the other. Voxels with p-values less than 0.01 are mapped in Figs. 7a–c for HC, SZ and
HC–SZ, respectively. In Figs. 7a and b if the mean correlation is positive the p-value is
denoted with a shade of red or yellow and if the mean value is negative it is denoted by a
shade of blue. All reported p-value regions are corrected for multiple comparisons using
Bonferroni correction.

In HC there were large regions of positive correlations in the following anatomical regions:
superior temporal gyrus, pre- and postcentral gyri, superior frontal gyrus and insula.
Negative correlations were seen in the following regions in HC: middle temporal gyrus,
inferior temporal gyrus and middle occipital gyrus and cuneus. In SZ the following regions
showed positive correlations: inferior parietal lobule, lentiform nucleus, middle frontal
gyrus, superior temporal gyrus and insula. Negative correlations in SZ were seen in
precuneus, middle occipital gyrus, cuneus, fusiform gyrus, cingulate gyrus, middle temporal
gyrus, culmen and anterior cingulate. In Table 2 we present regions that show significant
difference (p<0.01) between HC and SZ of how a certain functional voxel, on average, is
correlated to all structural voxels. These regions were converted from MNI space to
Talairach coordinates and entered into a database (http://ric.uthscsa.edu/projects/tdc/) to
provide the labels and volumes of contiguous regions.
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InFig. 8 we present the p-values of how a structural voxel, on average, is correlated to all
functional voxels. These p-values were found in the same manner as explained for the
previous result. In Figs. 8a–c regions with p<0.01 (after Bonferroni correction) are presented
for HC, SZ and HC–SZ, respectively.

An interesting result was that in HC, cerebellar regions showed more positive correlations
and prefrontal regions showed more negative correlations than did SZ. From Figs. 8a and b
it is seen that HC show larger and more significantly correlated regions than SZ. The
following brain regions showed positive correlations in HC: cerebellum, middle occipital
gyrus, pyramis, superior temporal gyrus, inferior semi-lunar lobule, precuneus, thalamus and
cuneus. In the following brain regions, negative correlations were seen in HC: medial frontal
gyrus, superior frontal gyrus, middle frontal gyrus, precentral gyrus, inferior frontal gyrus,
cingulate gyrus, anterior cingulate and insula. SZ did not exhibit large contiguous regions of
positive nor negative correlations. In Table 3 we present the regions and their volumes, that
show significant (p<0.01) group differences of how a certain structural voxel is correlated to
all functional voxels.

Structural–functional inter-regional correlations
In this section using Method 3 we identify regions in the brain that have significant
structural–functional linkages. With this method the structural–functional cross-correlation
matrix (RSF) is reduced to a matrix of p-values of size 116 × 116 indicating the significance
of nonzero mean inter-regional correlations. The cerebellar vermis from the structural data
had significant (p<0.01, after Bonferroni correction) positive correlation in HC with
functional data from the following regions: calcarine, cuneus, lingual gyrus, paracentral
lobule and Heschl’s gyrus. In SZ there were no positive correlation below a p-value of 0.01
(after Bonferroni correction) but the basal ganglia from the structural data had significant
negative correlation with the posterior cingulate from the functional data.

Our next interest was in determining inter-regional correlations that were significantly
different between HC and SZ. We used two sample t-test to compute the t-value
corresponding to a certain segment and then converted it to a p-value. Structural regions in
the cerebellum had significant (p<0.01, after Bonferroni correction) positive correlation
(HC>SZ) with functional regions in the calcarine, lingual gyri, occipital lobe and Heschl’s
gyrus.

Discussion
The main purpose of this paper is to present methods to fuse structural and functional data
through spatial sMRI–fMRI cross-correlations across the whole brain. These methods enable
one to compute statistics of the very large sMRI–fMRI cross-correlation matrix (RSF)
through iterative computing. Our interest was to investigate how local structure (in our
application gray matter concentration) may influence functional activity (probed through a
sensory motor task) across the whole brain. This objective is motivated by the fact that the
brain is a highly interconnected organ and also to check if the relationship between structure
and function is compromised in healthy versus diseased brain (in our application
schizophrenia).

The structural–functional connection is tested by finding the correlation between two
vectors. The first vector is gray matter concentration of a brain voxel and the second
functional activation from another brain voxel. These vectors are obtained across subjects
belonging to a certain group (controls or patients). A strong correlation between these two
vectors indicates that structural and functional variations across subjects are related. We
repeat this correlation process for all structural and functional voxels to compute N × N
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structural–functional correlations, where N is the number of brain voxels. For easier analysis
and better representation, the N × N correlations are reduced to metrics through three
different methods we introduce with increasing levels of anatomical specificity. In Method 1
we obtain a histogram of the N × N correlations by reducing them to 100 numbers of
occurrences at correlation values between +1 and −1. A higher number of zero correlations
in one group indicate that the structural–functional correlation of the whole brain across
subjects is weaker in that group. With this method we are ableto demonstrate the distribution
of the correlations; however, the spatial location of the correlations is not retained. In
Method 2 we preserve the average spatial maps of how voxels from Modality1 are
correlated to all voxels from Modality2. By collapsing across the columns of the cross-
correlation matrix we find how a certain structural voxel is correlated to all functional
voxels and the corollary is obtained by collapsing across the rows. If a structural voxel
shows high mean correlation with all functional voxels it indicates that the gray matter
concentration variation of that voxel across subjects and functional activation of all brain
voxels across subjects on average are highly related. With Method 2 the average correlation
is found across the whole brain and useful information can be lost. For example some
regions in the brain can have negative correlations and others positive correlations and an
average can indicate a correlation value close to zero. This issue is partially addressed by
reporting the significance of non-zero correlation through p-values that accounts for this
variation. We also report the significance of positive and negative correlations separately as
different colors in Figs. 7 and 8. In Method 3 we made an effort to find significantly
correlated links between structural and functional brain regions as defined by the AAL atlas.
The methods introduced are simple ways to reduce a large data set and answer three
different questions about the large cross-correlation matrix: distribution of correlations,
average spatial maps of correlations and average inter-regional correlations. The methods
can be further improved to answer different questions. For example which pair of voxels has
the most significant correlations, which segments of RSF have the highest positive or
negative correlations or how two regions of interest are correlated. Depending on the nature
of the question, reduction steps need to be devised and methods to represent the results also
need to be developed. What we demonstrate in this work is that even using simple reduction
techniques, it is possible to find features that significantly differ between groups of patients
diagnosed with schizophrenia and healthy controls.

The approaches were applied to a group of patients with chronic schizophrenia and matched
healthy controls to investigate if the degree of association between the gray matter
concentration and functional activation probed through an auditory sensorimotor task is
different in these two groups. Our results reveal several interesting findings. The main
finding was that patients with schizophrenia show less correlation across subjects between
structural data (gray matter concentration) and functional data (obtained from the activation
map of a sensorimotor task) than healthy controls. This result was confirmed with all three
different methods and was found to be consistent. The results reported in this study were
derived from a total of 140 subjects (70 in each group). The large number of subjects is an
advantage as it increases the statistical power of the analysis.

In Method 1 we found that at correlation values centered around +0.2 and −0.2 the controls
have a higher number of correlations than patients and at zero correlation patients had a
higher number of correlations than controls. This finding suggests that the connection
between gray matter concentration and functional activity as probed by the sensorimotor
task is weaker in patients than in controls.

Method 2 results showed contiguous regions of high correlations in both patients and
controls. This indicates that highly correlated regions were not located in randomly
distributed brain regions, but were spatially clustered, and increases the validity of our
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results. In the map of how a functional voxel, on average, is correlated to all structural
voxels (Fig. 7) both patients and controls show positive correlations in the superior temporal
gyrus but healthy controls show larger and more significant correlation regions than in
patients. This result indicates that the variation of functional activity in the superior temporal
gyrus across subjects and variation of gray matter concentration of the whole brain across
subjects was more correlated in controls than in patients. The question of whether this
difference was caused by inaccurate registration of subject data is reasonable. The spatial
normalization step during the preprocessing step used the same template to normalize
patient and control subject data. Minimal topological differences can be attributed to spatial
normalization but volume differences as large as listed in Table 2 are unlikely to be due to
registration issues. Our results indicate functional regions that were not directly involved in
the functional task to be having high correlations with structural regions. This result was
made possible since our methods did not make prior assumptions on regions of interest
(ROI). In Fig. 8 and Table 3 controls demonstrate significantly more correlated regions than
patients. The main findings included cerebellar regions in controls had positive correlations
and prefrontal regions had negative correlations. In controls the correlations in cerebellar
regions in the left hemisphere were larger and stronger than the corresponding right region
(see Fig. 8a) even though higher activations were observed in the right cerebellar regions
(Fig. 1). We performed a two sample t-test on gray matter concentration but did not find
cerebellar regions to be significantly different between the two groups. This indicates that
between group differences in gray matter concentration may not have contributed to the
differences in correlations.

In Method 3 we computed structural–functional inter-regional correlations and did not see
significant correlations between the same structural and functional regions. This should
encourage researchers to investigate correlations between distant brain regions. This point
supports the hypotheses that local morphological structures can have correlations with
distant functional activation.

A possible reason for differences in correlation can be attributed to differences in activation
regions between the two groups. The activation maps for the functional task for the patient
and control groups are presented in Fig. 1. The maps indicate that both patients and controls
activated similar functional regions and hence did not possibly contribute to differences in
structural–functional correlations. We also checked how our correlation result changed over
different threshold for gray matter and functional activation. In Fig. 6 it is seen that the
result of patients having higher number of zero or negative correlations is consistent across
all combinations of GM and functional activation thresholds.

It is possible that higher correlations can be introduced as a result of head motion while
correlating voxels within the same brain. Let us assume that during data acquisition group 1
has still heads inside the scanner and group 2 has head motion. If in group 2 a certain voxel
is active, due to head motion, its activation will spread to neighboring voxels in the
activation map. This can make correlations higher in group 2 than in group 1. In our results
we see less correlation in patients than in controls. However, in reality it is the patients who
have more head motion or tremors than the controls. If head motion had contributed to the
results then our results should have been flipped with patients showing more correlation than
controls.

In the theory of cognitive dysmetria (Andreasen et al., 1998) it is hypothesized that the
system that is disturbed in schizophrenia is more distributed and it is modeled as a
dysfunction in cortical–subcortical–cerebellar circuitry. This theory states that deficits in the
complex distributed neural circuitry within the brain can express itself with a broad range of
symptoms. The cerebellum has substantial connections with prefrontal cortex and can
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perform parallel processing supported by its array structure and large number of condensed
cells (Andreasen et al., 1998). In our results we report regions that are widely distributed
across the whole brain, especially in the cerebellar, subcortical and prefrontal regions, which
interestingly are the nodes that fall under the rubric of the cognitive dysmetria model.

The results reported in this study also support the disconnection hypothesis (Friston, 1998)
of schizophrenia. The disconnection hypothesis states that the disconnection is explicitly
functional, not anatomical. This effective connectivity, as opposed to anatomical
connectivity, is hypothesized as a result of differences in synaptic efficacy (Friston, 1998).
In this work we did not directly investigate the anatomical connections between different
regions of the brain but the correlation between gray matter concentration and functional
activation. This investigation does not report on synaptic efficacy but provides evidence that
further sources can exist for sMRI/fMRI linkage differences in schizophrenia.

There are several advantages of the methods we have introduced. The approaches are
simple, easy to implement and efficient. They are simple, since they do not use complex
mathematical equations, but rather the fundamental correlation equation to make all
computations. They are easy to apply since the same simple computation is performed
iteratively. In less than 40 min it was possible to compute the histogram for all possible
combinations of all brain voxels (presented in Fig. 5) with MATLAB (R2006a) on a desktop
machine (1.86 GHz CPU speed and 2 GB RAM). The methods are data driven and results
obtained are after a comprehensive correlation analysis. We did not have prior hypotheses
on which regions would show high correlations. Our results indicate non-task related regions
(example left cerebellum) to be showing high correlation difference between the two groups.
This result shows how data driven approaches can discover new features of the disorder.
Another advantage is that the two modalities that are to be fused can have different
resolutions or matrix sizes and thereby the loss of finer resolutions acquired can be avoided.
In our application we matched the spatial resolution of sMRI and fMRI but this is not a
necessary requirement. If the resolutions of the two modalities are different the cross-
correlation matrix will be a non-square matrix. In data fusion the correct method to
normalize the data sets to be fused is often unclear. In our methods we combine two data
sets using correlation, a simple approach that also normalizes the two vectors. Correlation is
also insensitive to the amplitude of the signal. For example, if there exists a relationship
between non-task related functional activation and gray matter concentration, correlation
will be able to pick it up. Another advantage of the method introduced is that it reduces
issues pertaining to brain registration (Thompson et al., 2000). Instead of performing ROI
analyses our method investigates voxels from the whole brain. In ROI methods perfect
registration is crucial and even the slightest misalignments can cause errors in results.
Further improvements can be made to the methods introduced to fuse data from other
modalities, for example, to EEG or genetic data with sMRI or fMRI.

Further studies are needed to confirm our findings that the linkage between structure and
function is weaker in patients with schizophrenia than in healthy controls. Our analysis was
based on just one functional task and it will be important to confirm the results with other
tasks that activate similar and different cognitive processes. It may be useful to apply this
method on related and unrelated fMRI tasks to replicate and to assess the generalization of
the findings. We measure brain function through fMRI, an imaging modality that is being
widely used to measure brain function. fMRI captures the blood oxygen level dependent
(BOLD) signal and is an indirect measurement of neural activity but has inherent spatial and
temporal limitations (Menon and Kim, 1999). EEG and MEG are other modalities that can
capture brain function but is not appropriate for this study due to their low spatial resolution.
Our functional maps were obtained through GLM, a model based approach, where the
hemodynamic response function is assumed to be identical for all subjects at all time points
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for all brain regions. There are reports that in schizophrenia there can be reduction in fMRI
amplitude response (Carter et al., 2001), delay in HRF (Ford et al., 2005) and that HRF can
vary from region to region (Miezin et al., 2000). Our method is insensitive to fMRI
amplitude variations as explained above, but in this study we did not investigate the effects
of HRF delay or altered HRF. However the between group differences we report are
unlikely due to suboptimal HRF since the activation regions (Fig. 1) of the two groups are
similar in overall activation. Independent component analysis (ICA) (Calhoun et al., 2001) is
a model free method and can be used to find functional components that can vary as a result
of changes in HRF. Subject demographics were not incorporated in our analyses; however,
we show that our results were consistent when age, sex and education were matched
between the two groups. Subject age had a range of about 40 years and it is possible that
age-related differences exist. The groups included a mix of different handedness and
medication, which were not included in the model. In order to assess specific demographics,
a larger number of subjects would be required. In this work we also did not investigate how
the structural–functional correlation would change with severity of symptom scores of
schizophrenia. Our methods can be modified to check such a hypothesis. In our work we
focused on the gray matter content in a brain voxel. Cortical thickness, gyrification or the
physical connections between brain regions are other structural forms that may contribute to
functional differences. In a previous study (Harris et al., 2007) it is found that prefrontal
gyrification can predict those who develop schizophrenia. Prefrontal regions do show
differences in our results as well, although, we did not investigate the relationship between
gray matter concentration and gyrification or cortical thickness. In our method we attempt to
identify linearly related linkages and in future work we intend to extend the methods to
identify non-linear relationships, for example, using mutual information where higher order
statistics can be investigated. A drawback of our method is that to find structural–functional
relationships a group of subjects is needed. With our methods it is not possible to find the
structural–functional relationships on an individual subject. This drawback makes it difficult
to develop an algorithm that can classify a new subject as a patient or control. However, in a
previous effort (Michael et al., 2008) we used the direction of shift of the functional–
functional histogram (similar to Method 1) as a feature to classify when a new subject is
introduced to the subject pool. Similar improvements are possible that may hold potential
clinical application.

Data fusion in human subjects is a challenging problem. Unlike fusion in other areas of
imaging, in human brain imaging within subject and between subject inconsistencies are
unknown or complicated to compute. It is difficult to conceptualize a correct way to fuse
data without making many assumptions. In this paper we introduced straightforward
approaches with minimal assumptions to correlate structure with function incorporating all
brain voxels and demonstrate methods by which this fusion can reveal differences between
patients with schizophrenia and healthy controls. To our knowledge a fusion analysis of this
nature is the first of its kind.

Conclusion
We introduce methods to fuse structural and functional imaging data by including all
possible combinations of correlations from the whole brain. We show how these methods
can be used to extract features that differentiate a group of patients with schizophrenia from
a group of healthy controls. Our findings indicate that the correlation between structural
data, from gray matter concentration, and functional data, from a sensory motor task
activation map, are weaker in patients than in controls. Structural regions in the cerebellum
had higher positive correlations with functional data in controls than in patients. Structural
regions in the frontal regions had higher negative correlations with functional data in
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controls than in patients. The results reported in this paper reveal interesting findings that are
not possible to derive from conventional one dimensional/unimodal approaches.
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Fig. 1.
The sensorimotor fMRI task and the group mean activation map. (a) fMRI task: An on–off
block design. During the ‘on’ block cycles of ascending/descending pitched tones were
presented. After each tone the subject was required to press a button with the right thumb.
Mean activation maps (t>3) for (b) controls (HC) and (c) patients (SZ) shows functional
activation in auditory and motor regions and that both groups had similar activation regions.
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Fig. 2.
Structural–functional cross-correlation matrix (RSF). Gray matter concentration maps are
vectorized and placed along the columns and subjects along the rows to construct the
structural matrix. Similarly activation maps from the fMRI task are used to make the
functional matrix. The desired cross-correlation matrix (RSF) has information about
correlations between all structural and all functional voxels. N is the total number of brain
voxels. RSF is the matrix product of normalized matrices S and F. RSF is computed for each
group (SZ or HC) separately.
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Fig. 3.
Reducing the structural–functional cross-correlation matrix (RSF). (a) Finding the histogram
of RSF (Method 1): Rows of RSF are iteratively computed and for each row its histogram
between −1 and +1 is computed. Each time a histogram is computed it is added to the
summation of previous histograms. (b) Finding the p-value of RSF along rows/columns
(Method 2): Rows/columns of RSF are iteratively computed and for each row/column the p-
value for non-zero correlation is found and stored. (c) Finding mean inter-regional
correlations (Method 3): RSF is segmented into clusters defined by an anatomical atlas (in
this case AAL). Each segment is computed and its p-value is stored.
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Fig. 4.
A scheme to check the validity of the histogram method. Histogram (Hi) for the ith row of
RSF is computed between L1 and L2 at bin intervals of Δx. fij is the number of occurrences of
elements in the ith row of RSF and the jth interval of Hi.
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Fig. 5.
Structural–functional spatial correlation histogram with all brain voxels. (a) Histograms for
all possible combinations of correlations between structural (gray matter concentrations) and
functional (activation maps for an auditory sensorimotor task) voxels of the whole brain for
70 patients with schizophrenia (SZ) in red and 70 healthy controls (HC) in blue. The y-axis
represents the number of occurrences of correlation values given along the x-axis. In (b) the
difference (HC–SZ) histogram is shown and it is evident from this plot that patients with
schizophrenia have a higher number of correlations close to zero and controls have a higher
number of correlations close to +0.2 and −0.2.
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Fig. 6.
Structural–functional spatial correlation difference histograms, healthy control minus
patients with schizophrenia (HC–SZ) with voxels at different thresholds. Histograms were
computed using selected voxels. Functional voxels were selected from the group mean
activation maps of all subjects and structural from the group mean gray matter concentration
map. Individual histograms were computed for different sets of structural and functional
voxels that were selected using different thresholds. In (a) difference (HC–SZ) histograms
are represented by different rows where the color denotes number of occurrences at
correlation values of x-axis. The SM t-values are changed in the outer loop and the GM
concentration in the inner loop. For example the first nine rows (separated by dash line)
correspond to histograms of functional voxels of the whole brain and structural voxels
selected with gray matter concentrations at nine thresholds (0–0.8 at steps of 0.1). From (a)
it is seen that only at lower SM t-values and lower GM concentrations HC show a higher
number of negative correlations (around −0.2) but the trend of HC having higher number of
positive correlations (around +0.2) continues across all levels. At higher levels of SM and
GM thresholds the color intensity goes down since fewer voxels are chosen to compute the
histogram. In (b) normalized histograms are computed and it is seen that the significance of
group difference between HC and SZ is higher at voxels selected at higher thresholds.
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Fig. 7.
Map of significance of mean correlation (how a functional voxel is correlated, on average, to
all structural voxels). For a certain functional voxel its correlation with all structural voxels
are computed and using their mean and standard deviation a p-value is calculated and stored
at the location of the functional voxel. This process is repeated to all functional voxels.
Regions with p<0.01 (after Bonferroni correction) are shown in the brain map. The map for
healthy controls (HC) is shown in (a), patients with schizophrenia (SZ) in (b) and HC–SZ in
(c). Yellow and red shades represent positive correlations and blue shades negative
correlations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 8.
Map of significance of mean correlation (how a structural voxel, on average, is correlated to
all functional voxels). For a certain structural voxel its correlation with all functional voxels
are found and using their mean and standard deviation a p-value is calculated and stored at
the location of the structural voxel. This process is repeated for all structural voxels and
regions with p<0.01 (after Bonferroni correction) are shown as a brain map. The map for
healthy controls (HC) is shown in (a) and patients with schizophrenia (SZ) in (b) and HC–
SZ in (c). Yellow and red shades represent positive correlations and blue shades negative
correlations. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Table 2

Significantly different brain regions between healthy controls (HC) and patients with schizophrenia (SZ) of
how a functional voxel, on average, is correlated to all structural voxels.

Region R/L volume (cm3)

(HC - SZ) > 0 Superior temporal gyrus 2.9/4.3

Superior frontal gyrus 4.4/0.6

Precentral gyrus 2.8/1.5

Cingulate gyrus 0.8/2.6

Middle frontal gyrus 2.2/1.0

Medial frontal gyrus 1.5/1.6

Inferior parietal lobule 0.6/2.3

Insula 2.4/0.4

Precuneus 1.3/0.8

(HC - SZ) < 0 Inferior frontal gyrus 8.2/2.9

Middle temporal gyrus 9.8/1.0

Inferior parietal lobule 7.1/3.4

Middle frontal gyrus 8.0/1.7

Superior temporal gyrus 5.2/0.6

Cerebellum 4.1/1.2

Lentiform nucleus 3.3/0.2

Inferior temporal gyrus 3.0/0.0

Superior frontal gyrus 1.8/0.9

Note: SZ=patients with schizophrenia; HC=healthy controls; R/L=right and left brain.

For a functional voxel its correlations with all structural voxels are found and from the mean and standard deviation the p-value is computed. This
process is repeated for all functional voxels for HC and SZ separately. The volumes of regions with p<0.01 (after Bonferroni correction) are listed
in the table. These regions correspond to Fig. 7c where (HC–SZ) >0 is shown in red or yellow and (HC–SZ) <0 in blue.
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Table 3

Significantly different brain regions between healthy controls (HC) and patients with schizophrenia (SZ) of
how a structural voxel, on average, is correlated to all functional voxels.

Region R/L Volume (cm3)

(HC - SZ) >0 Cerebellum 17.3/19.9

Middle occipital gyrus 3.8/3.4

Cuneus 3.3/2.3

Middle temporal gyrus 1.9/3.7

Middle frontal gyrus 2.6/2.6

Precuneus 1.3/1.9

Inferior occipital gyrus 2.1/0.9

Thalamus 1.5/1.1

Supramarginal gyrus 1.9/0.6

Inferior frontal gyrus 1.0/1.4

Inferior temporal gyrus 1.5/0.9

Superior temporal gyrus 1.4/0.8

HC - SZ <0 Medial frontal gyrus 7.7/6.0

Superior frontal gyrus 4.2/5.1

Cingulate gyrus 2.9/4.0

Anterior cingulate 4.0/2.6

Middle frontal gyrus 2.9/3.6

Precentral gyrus 0.9/2.5

Lingual gyrus 0.7/2.4

Inferior frontal gyrus 1.6/1.2

Posterior cingulate 0.7/1.7

Middle temporal gyrus 1.4/0.9

Cuneus 0.2/1.9

Middle occipital gyrus 1.1/0.8

Insula 0.1/1.6

Superior temporal gyrus 0.4/1.3

Note: SZ=patients with schizophrenia; HC=healthy controls; R/L=right and left brain.

For a structural voxel its correlations with all functional voxels are found and from the mean and standard deviation the p-value is computed. This
process is repeated for all structural voxels for HC and SZ separately. The volumes of regions with a p<0.01 (after Bonferroni correction) are listed
in the table. These regions correspond to Fig. 8c where (HC–SZ) >0 is shown in red or yellow and (HC–SZ) <0 in blue.
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