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Abstract

Most statistical analyses of fMRI data assume that the nature, timing and duration of the

psychological processes being studied are known. However, in many areas of psychological

inquiry, it is hard to specify this information a priori. Examples include studies of drug uptake,

emotional states or experiments with a sustained stimulus. In this paper we assume that the timing

of a subject's activation onset and duration are random variables drawn from unknown population

distributions. We propose a technique for estimating these distributions assuming no functional

form, and allowing for the possibility that some subjects may show no response. We illustrate how

these distributions can be used to approximate the probability that a voxel/region is activated as a

function of time. Further a procedure is discussed that uses a hidden Markov random field model

to cluster voxels based on characteristics of their onset, duration, and anatomical location. These

methods are applied to an fMRI study (n = 24) of state anxiety, and are well suited for

investigating individual differences in state-related changes in fMRI activity and other measures.
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1 Introduction

The voxel-wise general linear model (GLM) (Worsley and Friston, 1995) has arguably

become the dominant approach towards analyzing fMRI data. It tests whether variability in a

voxel's time course can be explained by a set of a priori defined regressors that model

predicted responses to psychological events of interest. The GLM has been shown to be a

powerful and efficient way of analyzing data as long as the nature, timing and duration of

the psychological processes under study can be specified in advance (Loh, Lindquist, and

Wager, 2008). However, in many areas of psychological inquiry, it is hard to specify this

information a priori. Examples include studies of drug uptake, emotional states or
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experiments with sustained stimulus. In these situations standard GLM-based analysis may

not be able to accurately model brain activity and new kinds of statistical models are needed

to capture state-related changes in activity.

The effectiveness of the GLM in modeling state-related activity is limited in several ways.

One limitation concerns the match between the desired inference and that supported by the

model. In many experiments, the primary parameter of interest may be the timing of

activation rather than the magnitude. However, a GLM analysis does not allow for direct

inference on the onset and duration of activation. The interpretable parameters of the GLM

model refer to the magnitude rather than the timing of the activation response. A set of

regressors which do a poor job of modeling the true activation profile will have smaller

estimated magnitudes than a set which accurately reflects the timing, but there is no way to

directly estimate the true timing of activation. It may be possible to indirectly account for

timing differences by using a set of flexible basis functions in the GLM (Friston, Fletcher,

Josephs, Holmes, Rugg, and Turner, 1998; Glover, 1999). However, the a priori

specification of an onset time is still necessary for the definition of the regressors, and they

are typically only able to account for very small timing shifts. Further, such models are

usually constrained in their flexibility in order to avoid substantial losses in power and

stability (Calhoun, Stevens, Pearlson, and Kiehl, 2004; Lindquist and Wager, 2007;

Lindquist, Loh, Atlas, and Wager, 2008). Another limitation of the GLM approach is related

to reproducibility. Suppose that a brain region reproducibly responds to a particular emotion,

though the onset and duration varies across participants and studies depending on the

particular task demands and individual propensities. In this case, there is no GLM model

that will give reproducible activation in the region of interest. However, a more flexible

model may capture consistencies in activation magnitude while allowing for variations in

timing.

For the situations outlined above, model flexibility is critical. Models that permit more data-

driven estimates of activation, and inferences on when and for how long activation occur,

may be advantageous for discovering state-related activations whose timing can only be

specified loosely a priori. Rather than treating psychological activity as a zero-error fixed

effect specified by the analyst (as in the GLM) and testing for brain changes that fit the

specified model, data-driven approaches attempt to characterize reliable patterns in the data,

and relate those patterns to psychological activity post hoc. One particularly popular

approach is independent components analysis (ICA) (Calhoun, Adali, Pearlson, and Pekar,

2001; McKeown and Makeig, 1998; Beckmann and Smith, 2004). Though ICA has proven

efficient in identifying brain activity patterns (components) that are reliable across

participants and state-related changes in activity that can subsequently be related to

psychological processes, they do not provide statistics for inferences about whether a

component varies over time and when changes occur in the time series; subsequent GLM-

based tests have been used for this purpose. In addition, because they do not contain any

model information, they capture regularities whatever the source; thus, they are highly

susceptible to noise, and components can be dominated by artifacts.

In sum, the GLM approach is attractive due to its power to test statistical hypotheses, while

data-driven techniques are attractive due to their flexibility to handle uncertainties in the
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timing of activation. For these reasons, there is interest in extending the GLM framework to

enable it to handle uncertainties in onset and duration. In past work (Lindquist, Waugh, and

Wager, 2007; Lindquist and Wager, 2008), we have introduced a technique that allows the

predicted signal to depend non-linearly on the transition time. It is a multi-subject extension

of the exponentially weighted moving average (EWMA) method used in change-point

analysis. We extended existing EWMA models for individual subjects so that they were

applicable to fMRI data, and developed a group analysis using a hierarchical model, which

we termed Hierarchical EWMA (HEWMA). The HEWMA method can be used to analyze

fMRI data voxel-wise throughout the brain, data from regions of interest, or temporal

components extracted using ICA or similar methods. While the HEWMA method is

exploratory in nature, it retains the inferential nature of the GLM approach. Further, the

HEWMA framework includes a step for estimating the time when the activation profile in

the population changes from a baseline state to a state of activation, which we refer to as the

“change point”, in keeping with statistical literature on similar models.

A drawback of this estimation procedure is that the change points were assumed to be fixed

across subjects, i.e. all subjects change states (e.g., from inactive to activated) at the same

time. In this work, we relax this condition, assuming that the change points for each subject

are randomly drawn from unknown population distributions (see Figure 1). We develop a

procedure for estimating, for each individual voxel, the distributions of onset and duration of

the BOLD response. We estimate these distributions assuming no functional form, and

allowing for the possibility that some subjects may show no response at all. In our model we

allow for up to two change points in each subject's voxel time course, signifying the

beginning and end of the activated state. Joseph and Wolfson (Joseph and Wolfson, 1993)

addressed the problem of maximum likelihood estimation in multi-path change-point

problems. The procedure described in this paper is an extension of their method applied to

multi-subject fMRI data with multiple change points. We further illustrate how these

distributions can be used to approximate the probability that a voxel is active at a given time

point.

This model is formulated for a state-related shift from a baseline to activated state and a

subsequent return to baseline at a later, unknown time. This type of model is suited for

studying state-related, single epoch paradigms, such as acute social stress (Wager, Waugh,

Lindquist, Noll, Fredrickson, and Taylor, 2009b; Wager, van Ast, Hughes, Davidson,

Lindquist, and Ochsner, 2009a), bolus drug infusion (Wise, Williams, and Tracey, 2004;

Breiter, Gollub, Weisskoff, Kennedy, Makris, Berke, Goodman, Kantor, Gastfriend,

Riorden, Mathew, Rosen, and Hyman, 1997), or social exclusion (Eisenberger, Lieberman,

and Williams, 2003). In each of these paradigms, scanning begins during a baseline

condition, and partway into scanning, an irreversible event happens (stressor, exclusion,

drug delivery), which persists for a period of time. The condition is either reversed with a

new manipulation (stress-relieving instructions, inclusion) or the brain returns to baseline

naturally after some period of time (e.g., drug washout). These situations are less readily

amenable to GLM-based analyses, making change-point models an appealing choice for

analysis.
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Once the activation onset and duration have been estimated for individual voxels, it is

important to identify patterns of similar activation across voxels and across brain regions. As

a final step of our analysis, we perform spatial clustering of voxels according to onset and

duration values and anatomical location using a hidden Markov random field model. These

types of models have been successfully used to segment images based on structural

characteristics (Zhang, Brady, and Smith, 2001; Zhang, Johnson, Little, and Cao, 2008).

Here we use a multivariate hidden Markov random field (HMRF) model to estimate the

grouping of voxels based on their activation characteristics.

In summary, in this work we develop an approach towards estimating voxel-specific

distributions of onset times and durations from the fMRI response, by modeling each

subject's onset and duration as random variables drawn from an unknown population

distribution. We also discuss a technique for performing spatial clustering of voxels

according to onset and duration characteristics, and anatomical location using an HMRF

model. Together these procedures provide a spatio-temporal model for dealing with data

with uncertain onset and duration.

2 Theory

In this section we develop the ideas surrounding the estimation of population distributions

for onset and duration of activation and for performing spatial clustering using the HMRF

approach.

2.1 Multi-subject change point modeling

We model each voxels time course using a two-state model where at a given point in time a

subject is considered to be either in an active or an inactive state. For each voxel, suppose

we have data from M subjects measured at N different time points. For subject i, the time

profile of the voxel is modeled as a sequence of independent identically distributed random

observations yij, j = 1 … N, which may at an unknown time point τi undergo a shift in mean

of unknown magnitude. This shift, referred to as a change point, represents the location

where the time course shifts from the inactive to the active state. Further, this shift may be

followed by a return to the inactive state at time τi + ωi, where the second change point ωi is

also unknown. In this formulation τi represents the onset of activation for subject i, while ωi

represents the duration. Both τi and ωi are assumed to be randomly drawn from separate

unknown population distributions denoted gτ and gω, respectively. Fig. 1 provides an

illustration.

The time course for each voxel can be modeled as arising from a mixture of two

distributions, one corresponding to the active and the other to the inactive state, with the

added constraint that, except where separated by a change point, temporally contiguous

observations come from the same mixture component. If f1 is the density of observations

generated during the non-activated state, and f2 is the density for the activated state, the

positions of the change points, τi and τi + ωi, determine whether each observation yij was

drawn from f1 or f2.
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In this work, we assume that f1 and f2 are both Gaussian, and seek to estimate their

parameters θ1 = (μ1, , i = 1 … M) and θ2 = (μ2, , i = 1, … M), as well as the population

distributions for the change points τi and ωi. While the change points are allowed to vary

across subjects, the means of the baseline and activation states, μ1 and μ2, are assumed to be

equal for all subjects. In addition, the variances  are assumed to be constant across time,

but allowed to differ across subjects. In order to fit the model, τ = {τi}i=1…M and ω =

{ωi}i=1…M are treated as missing data. The sequences of onset times {τi} and durations {ωi}

are both assumed to be independent and identically distributed sets of discrete random

variables. No functional form is assumed for the population distributions gτ(t) = P(τi = t)

and gω(k) = P(ωi = k). Rather, gω(k) is estimated for the time points k = ωmin, …, ωmax and

gτ(t) is estimated for t = 1, …, N −ωmin, where ωmin and ωmax are specified by the

researcher. Note that the values of ωmin and ωmax could be set to 1 and N, respectively, but

for speed of estimation we typically choose a smaller range of reasonable values for

activation duration. Finally, the onsets and durations are assumed to be independent of one

another.

Given the onset and duration of the signal and assuming independence in time, the joint

density of the time series for subject i is the product of the densities of the yij, i.e.

(1)

Since in practice τ and ω are unknown, the data can be modeled by a mixture of components

with different values of τ and ω weighted by gτ(·) and gω(·), making the joint likelihood

given the entire data Y = {yij}, i = 1 … M, j = 1 … N,

(2)

To estimate the unknown parameters θ = {μ1, μ2, , gτ(·), gω(·)} we must compute

(3)

The maximum likelihood estimates (MLEs) can not be computed directly from the

likelihood function, but by treating τi and ωi as missing data, we can employ the EM-

algorithm (Dempster, Laird, and Rubin, 1977) to compute the estimates. The details of the

EM-algorithm implementation are in Appendix A. Here we simply note that as the EM-

algorithm is deterministic, it can converge to a local maximum and is sensitive to initial

parameter estimates. The analysis should therefore be repeated under various initial

conditions until the investigator is reasonably certain that the global MLE has been found.

2.1.1 Estimating gτ and gω with smoothness constraints—The voxel-specific

estimates of gτ and gω can be defined as the MLEs under the change-point mixture model
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formulated above. The drawback of this approach is that gτ(τ) is assumed to be independent

of its neighboring terms gτ(τ − 1) and gτ (τ + 1) for each possible value of τ, resulting in

estimated densities which tend to be noisy and rough (see Fig. 2 for an example). It is

common in non-parametric density estimation to perform some regularization of the

estimated density, based on the assumption that in most situations, g(τ) will tend to be close

to g(τ + 1), meaning that even if g does not assume a standard parametric form (e.g.,

Gaussian), we still assume it will be relatively smooth. As regularization reduces the

variability in the density estimates, it is often considered to be preferable to unregularized

non-parametric MLE. To obtain smoother estimates, we can incorporate additional

smoothness assumptions about gτ and gω into the model formulation. We first discuss two

equivalent approaches: maximum penalized likelihood and a Bayesian approach that allows

for the inclusion of a prior on gτ and/or gω. In addition, we also discuss the smoothed EM-

algorithm (Silverman, Jones, Wilson, and Nychka, 1990).

Maximum penalized likelihood estimation (MPLE) (Silverman, 1986) imposes a penalty

term on the log-likelihood function, creating a new objective function from which the

parameters are estimated:

(4)

where l(·) is the likelihood function defined in (2), J is a penalty function and λ is a tuning

parameter controlling the relative impact of the penalty term. The use of the penalized

likelihood necessitates the specification of the tuning parameter λ, which can either be pre-

specified or incorporated directly into the estimation procedure. The penalty term can

alternatively be interpreted as the logarithm of the prior density in a Bayesian formulation. If

we incorporate priors on gτ and gω into the model, the log posterior distribution will contain

a term which behaves like a penalty term with respect to the maximum a posteriori (MAP)

estimates of gτ and gω. The standard maximum likelihood estimates for gτ and gω can in this

context be viewed as being the MAP estimates calculated using a non-informative prior.

We have found that rather than placing priors directly on gτ and gω, it is beneficial to first

model them as functions constrained to be non-negative and sum to 1, thus ensuring that

they are proper density functions, and thereafter place priors on the parameters of these

functions. We begin by defining two auxiliary variables ητ and ηk and modeling gτ and gω

using the softmax function (Bishop, 2006), i.e.

(5)

and

(6)
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Next, we assume that ητ ∼ N(0, Στ) and ηω ∼ N(0, Σω). To obtain a smooth solution we

define both covariance terms to be on the form

(7)

where h represents the precision of the covariance and k allows one to truncate the co-

variance after a certain number of observations. In general, our prior/penalty imposes a

covariance structure on the density across values of τ and ω in which nearby values have

positive covariance, which decreases exponentially as a function of proximity. The

parameters h and k impact the width and smoothness, respectively, of the estimated

distributions. Larger values of h result in very peaked distributions (potentially with peaks at

multiple modes), smaller values give wider distributions. Small values of k allow for more

jagged distributions, while still shrinking the estimates at most possible values of τ and ω.

Values of h and k can either be determined empirically, or in a more principled manner

using leave-one-out cross-validation. We take the former approach in the first simulation

study, while we take the latter approach in the second simulation study and in the analysis of

experimental data. Cross-validation is performed by finding the values of h and k that

minimize the average mean squared error between the left-out time course and expected

time course obtained from fitting the model to the remaining M − 1 subjects. To fit the

maximum penalized likelihood model one needs to use a generalized EM-algorithm outlined

in Appendix B.

The smoothed EM-algorithm (Silverman, Jones, Wilson, and Nychka, 1990) is an alternative

approach that adds a smoothing step to each iteration of the standard EM-algorithm. For our

problem, after the model parameters are estimated using maximum likelihood in the M-step,

a pre-defined smoothing kernel can be applied to the estimates of gτ and gω, and these

smoothed estimates are used in the next iteration. We use a simple local smoother,

(8)

to create a smoothed version of , the estimated density from the kth iteration of the EM-

algorithm. We then pass  on to the (k + 1)th iteration in place of .

In certain special cases the smoothed EM can be shown to be related to the maximum

penalized likelihood estimates, but is essentially an ad hoc procedure without rigorous

theoretical justification. Fig. 2 compares the results of the standard MLE, MPLE, and

smoothed EM estimation procedures on simulated data.

2.2 Spatial Clustering

A natural unit of analysis in fMRI is a multi-voxel region whose voxels show similar

properties with respect to the timing of activation and de-activation. We wish to create a

segmented image consisting of cluster labels for each voxel in the brain, identifying which
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voxels exhibit similar behavior with respect to onset and duration of activation. We expect

the clusters containing similar voxels will exhibit some spatial coherence, but allow clusters

which consist of networks of spatially disjoint regions. To achieve these goals we implement

a hidden Markov random field model described below. We begin by giving a brief overview

of Markov random field models.

2.2.1 Markov random field models—We use a Markov random field (MRF) model for

the unobserved field of cluster labels to describe the spatial structure of the image. MRFs are

a way to incorporate an assumption of spatial smoothness into the image segmentation

algorithm. In our application we assume that two neighboring voxels are somewhat more

likely to be in the same cluster than two non-neighboring voxels. The global dependence

properties of a MRF are controlled by the specification of local properties, i.e. the spatial

dependence structure of the entire image is determined completely by the conditional

distribution of a voxel given neighboring voxels. This property eases the computational

burden and is a reasonable assumption in many applications. The use of MRFs in image

analysis was popularized by, among others, Besag (Besag, 1974) and Geman and Geman

(Geman and Geman, 1984).

Let S = (1, 2, …, N) be the index of voxels in the image. Suppose each voxel has a label

from the set  = {1, 2, …, L} where L denotes the total number of clusters. Further let X =

(x1, x2, …, xN), be the configuration of labeled voxels, where xi ∈  for every i ∈ S. The

collection of all possible configurations of labeled sites, denoted , is then

(9)

A random field X is said to be a Markov Random Field if after conditioning on the cluster

labels of its neighborhood, the probability that a given voxel belongs to any particular

cluster is independent of the rest of the image. The neighborhoods are defined by a

neighborhood system, which in our application consists of the 4 immediately adjacent

voxels.

An important theoretical result in Markov random field theory is that any MRF can be

equivalently characterized by a Gibbs distribution on X = (x1, …, xN) of the form

(10)

where U(X) is called the energy function. In this application we consider models with only

pair-wise interactions between voxels. Let i ∼ j denote that xi and xj are neighbors. We can

then write the energy function as

(11)

the exact form of which will be described below.
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2.2.2 Hidden Markov random field models—A Hidden Markov Random Field

(HMRF) model derives from the concept of a Hidden Markov Model. In an HMRF model,

the random field of cluster labels, X, is unobserved while the data D is observed on S. At

each voxel, we assume that the observed value di, which may be multivariate, is drawn from

a probability distribution whose parameters depend on the cluster to which it belongs. Given

xi = l, the conditional distribution of di is

(12)

We assume that that the functional form of f(·) is the same for each l ∈ , and that the di are

conditionally independent of one another given the field X, i.e.

(13)

The joint density of an (xi, di) pair given the neighborhood X i is given by

(14)

and thus the marginal distribution of di given the labels of neighboring sites is

(15)

If we assume that the random variables xi are independent of one another the HMRF reduces

to a finite mixture model with mixing weights all equal to 1/L.

In our application, the observed data in the HMRF model consists of features estimated from

the fMRI time courses such as the expected value and standard deviation of the onset and

duration in the population, as well as the difference in means between states. Further, we

assume that f(·) is multivariate Gaussian with dimension p, where p is the number of

features; typically equal to five in our application. Finally, we also need to model the

distribution of the unobserved cluster labels X. We choose a model of the form (10) with

(16)

where 1xi=xj is equal to 1 if xi and xj belong to the same cluster, and 0 otherwise. The local

characteristics of this model are then given by

(17)
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Here the β parameters control the amount of spatial coherence, with larger values giving

increased coherence. If βij = β for all i and j, this is the Potts model, a well-studied model

originating in statistical mechanics (Potts, 1952). The goal of the Markov random field

model is to enforce some spatial smoothness in the estimated clusters. However, there is a

danger of over-smoothing with these models if the spatial dependence overwhelms the

observed differences between neighboring regions. Therefore special care needs to be taken

when determining β, and in our implementation it is estimated directly from the data.

Once we have formulated the model we are interested in estimating X and θ based on the

data D. The conditonal maximum a posteriori estimate (MAP) of X is given by

(18)

Since X and θ are both unknown and highly interdependent, they cannot be estimated

directly. As in the two-state change point problem described above, if we phrase the

problem as one of missing data, where the missing data is the set of class labels X, we can

again employ an EM-algorithm. In our implementation we use an EM-algorithm with

stochastic variation (Zhang, Johnson, Little, and Cao, 2008) to estimate clusters. Using this

approach the expectation of the conditional log likelihood given the observed data is

computed stochastically in the E-step using the Swendsen-Wang algorithm (Swendsen and

Wang, 1987); an efficient sampler developed specifically for the Potts model. In the M-step,

the cluster-wide means and standard deviations and the spatial regularization parameter β are

updated. The appropriate number of clusters is determined using the AIC-criterion (Akaike,

1973). For more details about the EM-algorithm we refer interested readers to Zhang et al.

(Zhang, Johnson, Little, and Cao, 2008).

In implementing the HMRF model, we typically incorporate additional a priori information

about the image. Specifically, the boundaries of the entire brain region may be known, and it

is useful to remove non-brain regions from the clustering algorithm, as they affect brain

region voxels through spatial proximity, and waste computational time. Also, when the non-

brain region is large or non-contiguous, we may see more than one cluster label assigned in

the non-brain region, which affects the within-brain clustering. In our analysis we typically

prescreen voxels using HEWMA and hence perform clustering on a fractured image

consisting solely of active voxels.

2.3 Estimation of the within-cluster distribution

Once we have clustered voxels according to characteristics related to their onset and

duration, it may be of interest to obtain within-cluster estimates of gτ and gω. We assume

that the image can be segmented into clusters 1, …, L, and that within each cluster the

voxels have common distributions for onset and duration  and , l = 1, … L. The voxel-

specific estimates ĝτ and ĝω are assumed to be replicated estimates of the true  and .

Because for each voxel the ĝτ and ĝω have typically been smoothed as a part of the

penalized estimation procedure, we have determined empirically that simply averaging

across voxels in the cluster provides results that well represent the true underlying

Robinson et al. Page 10

Neuroimage. Author manuscript; available in PMC 2014 June 27.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



population distribution. However, if we use estimates that are rougher (i.e. obtained using

the standard MLE) we can compute a smoothed estimate of the cluster density using a spline

basis set and obtain a solution which is constrained to be positive and integrate to 1

(Silverman, 1986).

2.4 Approximating the probability of activation

As a final step in the analysis, we can approximate the probability that a certain cluster is

active at a specific time point. Given estimates of  and , l = 1, … L, the probability of

activation for cluster l is given by

(19)

This allows us to quantify our uncertainty about the activation status of a cluster and allows

us to compare the timing of activation of different clusters with one another. For an example

see the heat map in Fig. 2. The estimates of  and  can also be used to estimate the

expected time of onset of the activation, as well as the expected duration. These values are

given by

(20)

and

(21)

respectively.

3 Methods

3.1 Simulations

To assess the performance of our method we performed two separate simulation studies. The

first illustrates the multi-subject change point estimation procedure for estimating population

distributions for the onset and duration of activation. In particular we compare the fits

obtained using the various fitting procedures (EM, Penalized EM and smoothed EM). The

second illustrates the application of the combined change-point detection/spatial clustering

methodology to simulated fMRI data.

Simulation 1—To illustrate the multi-subject change point estimation procedure, it was

applied to three sets of simulated data consisting of M = 20 subjects and N = 200 time

points. For each data set, the onset and duration of activation for the 20 subjects were
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randomly drawn from different discrete probability distributions. For the first data set the

onset distribution was assumed to follow a Poisson distribution with mean 10. The observed

onset times were thereafter shifted 50 time points. In the second data set, 15 subjects were

simulated in a similar manner as described above. The remaining 5 subjects were assumed to

have no activation. Finally a bimodal distribution (a mixture of Poisson) was used to

generate onset times for a third data set. In each of the three data sets the distribution for the

duration followed a Poisson distribution with mean 20. Noise was added to each time

course, corresponding to signal-to-noise ratios (SNR) of .5, 1, and 2. See Fig. 3 for an

example of the generating distributions and sample time courses for the second data set.

The multi-subject change point estimation procedure was applied to all three data sets.

Estimates of gτ and gω were computed using the standard MLE (henceforth denoted MLE),

the penalized maximum likelihood method (MPLE) with penalty terms preset to h = .005

and k = 5 and the smoothed EM-algorithm (EMS) using the smoothing kernel from (8) with

j = 2. This whole procedure was repeated 100 times. After each repetition, the Kullback-

Leibler divergence between the true and estimated values of gτ were computed. The same

procedure was repeated for gω. This allowed us to quantify the similarity between the

estimated distributions and their true values.

Simulation 2—To assess the effectiveness of our multi-stage analysis procedure, images

of size 40 × 40 were simulated. The images are grouped into 3 activation clusters in which

the locations of shifts into and out of the activated state were drawn randomly from common

(by region) distributions for onset and duration. The simulated images contain multiple

regions with homogeneous distributions of timing parameters amid voxels with no

activation, see Fig. 4. Noise was added to the simulated images corresponding to SNRs of .

5, 1, and 2. HEWMA was applied to each of the three sets of functional data and significant

voxels (p < 0.01) were moved to the second stage of the analysis. Estimates of gτ and gω

were computed for these voxels using the MLE, the EMS with j = 2, and the MPLE with

penalty terms h and k determined using leave-one-out cross-validation. Images were

segmented with the HMRF clustering algorithm, using the expected values and standard

deviations of the estimated gτ(k) and gω(k) and the differences in means between the

activated and inactivated states as observed data (i.e. p = 5). The appropriate number of

clusters was determined in each case using the AIC-criterion.

3.2 Experimental data

We applied our methods to data from 24 participants scanned with BOLD fMRI at 3T (GE,

Milwaukee, WI). The experiment was conducted in accordance with the Declaration of

Helsinki and was approved by the University of Michigan institutional review board. The

task used was a variant of a well-studied laboratory paradigm for eliciting anxiety

(Dickerson and Kemeny, 2004; Gruenewald, Kemeny, Aziz, and Fahey, 2004; Roy,

Kirschbaum, and Steptoe, 2001), shown in Fig. 5. The design was an off-on-off design, with

an anxiety-provoking speech preparation task occurring between lower-anxiety resting

periods. Participants were informed that they were to be given two minutes to prepare a

seven-minute speech, and that the topic would be revealed to them during scanning. They

were told that after the scanning session, they would deliver the speech to a panel of expert
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judges, though there was “a small chance” that they would be randomly selected not to give

the speech. After the start of fMRI acquisition, participants viewed a fixation cross for 2 min

(resting baseline). At the end of this period, participants viewed an instruction slide for 15 s

that described the speech topic, which was to speak about “why you are a good friend”. The

slide instructed participants to be sure to prepare enough for the entire 7 min period. After 2

min of silent preparation, another instruction screen appeared (a relief instruction, 15 s

duration) that informed participants that they would not have to give the speech. An

additional 2 min period of resting baseline followed, which completed the functional run.

Heart rate was monitored continuously, and heart rate increased after the topic presentation,

remained high during preparation, and decreased after the relief instruction. Because this

task involves a single change in state, as in some previous fMRI experiments (Breiter and

Rosen, 1999; Eisenberger, Lieberman, and Williams, 2003), and the precise onset time and

time course of subjective anxiety are unknown, this design is a good candidate for our

change point analysis.

A series of 215 images were acquired using a T2*-weighted, single-shot reverse spiral

acquisition (gradient echo, T = 2000, TE = 30, flip angle = 90) with 40 sequential axial slices

(FOV = 20, 3.12 × 3.12 × 3 mm, skip 0, 64 × 64 matrix). This sequence was designed to

enable good signal recovery in areas of high susceptibility artifact, e.g. orbitofrontal cortex.

High-resolution T1 spoiled gradient recall (SPGR) images were acquired for anatomical

localization and warping to standard space.

Offline image reconstruction included correction for distortions caused by magnetic field

inhomogeneity. Images were corrected for slice acquisition timing differences using a

custom 4-point sync interpolation and realigned (motion corrected) to the first image using

Automated Image Registration (AIR; (Woods, Grafton, Holmes, Cherry, and Mazziotta,

1998)). SPGR images were coregistered to the first functional image using a mutual

information metric (SPM2). When necessary, the starting point for the automated

registration was manually adjusted and re-run until a satisfactory result was obtained. The

SPGR images were normalized to the Montreal Neurological Institute (MNI) single-subject

T1 template using SPM2 (with the default basis set). The warping parameters were applied

to functional images, which were then smoothed with a 9 mm isotropic Gaussian kernel.

Individual-subject data were subjected to linear detrending across the entire session (215

images) and analyzed with EWMA. An AR(2) model was used to calculate the EWMA

statistic and its variance, and they were both carried forward to the group level HEWMA

analysis. We used custom software to calculate statistical maps throughout the brain,

including HEWMA (group) t and p-values for activations (increases from baseline) and

deactivations (decreases from baseline).

Significant voxels (p < 0.01) were brought forth to the next level of analysis, where the

distribution of onset and duration were estimated using the penalized maximum likelihood

method with penalty terms h and k determined using leave-one-out cross-validation. Next,

images were segmented with the HMRF clustering algorithm, using the expected values and

standard deviations of the estimated gτ(k) and gω(k) and the differences in means between

the activated and inactivated states as observed data. The number of clusters was determined

using the AIC-criterion. Finally, for each cluster the estimates of the distribution of onset
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and duration were combined to cluster-wise estimates and the probability of activation as a

function of time was estimated for each cluster.

4 Results

4.1 Simulations

Simulation 1—The KL-divergence was used to assess the difference between the

estimated values of gτ(t) and gω(k) and the true distributions used to create the simulations.

The results for gτ(t) are shown in Fig. 6. Analogous results for gω(k), not presented here,

gave rise to similar results. The left column shows the 3 distributions used to generate the

subject-specific onset times. The center and right columns show boxplots of the estimated

KL-divergence between the true and estimated value of gτ(t) for 100 different repetitions of

the simulation obtained using the MLE and MPLE approaches, respectively. Results for the

EMS approach produced similar results to the MLE and are not presented here. Each set of

simulations were repeated using 3 different SNRs. It is clear from studying the boxplots that

when the SNR is low (e.g., 0.5), the MLE approach gives rise to extremely variable

estimates of the true onset distribution. The estimates improve as the SNR increases. These

results are consistent with empirical evidence showing that for low SNR values the MLE

estimation gives rise to noisy and rough estimates that are ill-suited for estimating the true

underlying distribution which is smooth. The MPLE approach performs consistently better

than the MLE, particularly at low SNR. This is not surprising as these estimates not only

reflect the shape of the true underlying distribution but also its smoothness properties.

Results varied according to the shape of the generating distribution. For a simple unimodal

distribution (Fig. 6A), the MPLE gave consistently accurate results for all SNR levels.

However, as the generating distribution became more complicated the difference in accuracy

between low and high SNR became more apparent. This was particularly true for the

distribution where some subjects showed no reaction (Fig. 6C).

Simulation 2—HEWMA analysis was performed on each data set and voxels deemed

significant (p < 0.01) were moved to the second stage of analysis. For these voxels,

estimated clusters were computed using our spatial clustering algorithm with observed data

obtained using both the MLE and the MPLE approach. Results using data obtained with the

EMS approach produced similar results to the MLE and are not presented here. Results for

three different SNR levels are shown in Fig. 7. In each case the AIC-criterion correctly

picked 3 clusters of activation. For the MLE approach the ability of the clustering algorithm

to correctly classify regions is adversely effected by decreases in SNR. This effect is much

less pronounced when using observations obtained via the MPLE approach. Both these

results are consistent with those found in Simulation 1, as the noisy estimates of the

distribution of onset and duration obtained using the MLE method would appear to be ill-

suited to use for clustering purposes.

In general, our simulations indicate that the MPLE approach gives the most accurate

estimates of the true underlying distributions that generated the observed change points. For

these reasons, we strongly recommend using the MPLE approach over the MLE and EMS

approaches unless the SNR of the data is high.
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4.2 Experimental data

A full description of the results of the HEWMA analysis can be found in previous work

(Lindquist, Waugh, and Wager, 2007; Lindquist and Wager, 2008). Here we instead

concentrate on results relating directly to the change point/spatial clustering framework

developed in this paper. The results for a single slice are presented in Figs. 8-9. The

HEWMA analysis passed through 5 spatially coherent regions of activation consisting of

301 voxels. For each of these voxels, the MPLE estimation procedure was performed and

the results were spatially clustered. The analysis revealed four coherent clusters of activation

(see Fig. 8). Fig. 9 shows the estimated distributions of onset and duration averaged across

all voxels contained in each of the clusters. The average probability of activation was

calculated for each cluster, as was the probability of elevated heart rate (Fig. 8).

Results indicate that the visual cortex (blue in Fig. 8) has high probability of being activated

during the presentation of the visual cue (as expected). The ventral striatum (red in Fig. 8)

has a high probability of activation after the relief cue was given, indicating this region may

be associated with relief. The superior temporal cortices (green) associated in social

neuroscience studies with inferences about agency, among other things, showed evidence of

activation during the first part of the speech preparation task. Finally, the ventromedial

prefrontal cortex (yellow), an area associated with visceromotor control, self-related

attention, and generation and regulation of emotion based on context was the only area to

show sustained activation during speech preparation. Activation in this region correlated

highly with heart-rate increases in the task (Wager, Waugh, Lindquist, Noll, Fredrickson,

and Taylor, 2009b).

The results show how the HEWMA analysis with activation probability estimation can

identify brain regions with different relationships to task performance. Because of

differences in onsets and durations, these activations could not be easily detected using the

widely adopted GLM framework.

5 Discussion

In this work we introduce a technique for studying state-related single epoch paradigms,

which we apply to an fMRI study of state anxiety. The data analysis was performed in a

three step procedure. In the first stage we employed HEWMA (Hierarchical EWMA)

(Lindquist, Waugh, and Wager, 2007; Lindquist and Wager, 2008), as a simple screening

procedure to determine which voxels have time courses that deviate from a baseline level

and should be moved into the next stage of the analysis. Once a systematic deviation from

baseline was detected, the second step in the analysis entailed estimating when exactly the

change took place, as well as the recovery time (if any). We estimated voxel-specific

distributions of onset times and durations from the fMRI response, by modeling each

subjects onset and duration as random variables drawn from an unknown population

distribution. We estimated these distributions assuming no functional form, and allowing for

the possibility that some subjects may show no response. Finally, we performed spatial

clustering of voxels according to onset and duration characteristics, and anatomical location

using a hidden Markov random field model. This three step procedure provides a general

spatio-temporal model for dealing with data with uncertain onset and duration. Earlier work
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(Lindquist, Waugh, and Wager, 2007; Lindquist and Wager, 2008) introduced the HEWMA

procedure, as well as a simple approach towards performing the latter two steps of the

analysis which employed a finite mixture model and k-means clustering, respectively. The

current paper is concerned with introducing improved methods for performing these two

latter steps; relaxing the assumption that all subjects have the same onset and duration of

activation and incorporating spatial considerations into the clustering algorithm.

While the whole analysis procedure outlined above could reasonably be combined into a

single model, it would be complicated and computationally expensive to fit. We propose the

multi-stage approach as a stop-gap solution until a single spatio-temporal model is feasible.

Simulations indicate that the multi-stage approach provides an adequate balance between

computational costs and efficiency. A weakness of the proposed approach is the fact that the

parameter estimates between steps are treated as data, measured without error. This comes

with certain risk of increased bias due to the propagation of errors through various steps of

the analysis. In the current context, reducing data using HEWMA may result in inflated false

positives and false negatives (i.e. voxels may be moved to the second stage that ought not

and voxels that aren't moved may have mistakenly been left behind, thus biasing results).

It is important to note that the HEWMA stage of the analysis is simply used to locate voxels

of interest and can be replaced by an alternative data reduction technique or excluded

altogether. In the latter case the change point methodology could be applied directly to every

voxel in the brain. However, the computational costs would be high and we find the use of

an initial data reduction procedure to be beneficial. As an alternative to HEWMA, the

change point methodology could be applied directly to data from ROI studies or to temporal

components obtained from a PCA or ICA analysis. Alternatively, the combined change

point/spatial clustering technique could be applied to voxels deemed active in a mediation

analysis (Wager, Davidson, Hughes, Lindquist, and Ochsner, 2008).

The change point methods developed in this paper are appropriate for group fMRI data,

particularly for studies when it is not possible to replicate experimental manipulations within

subjects (e.g., a state anxiety induction that cannot be repeated without changing the

psychological nature of the state). Emotional responses are one prime candidate for

application of the method. Others include identifying voxels of interest and characterizing

brain responses in ‘ecologically valid’ tasks, changes in state-related activity evoked by

learning, or to studies of tonic increases following solutions to ‘insight’ problem-solving

tasks. Still another interesting application is longitudinal studies of brain function or

structure, and how they change with development or with the progression of a neurological

or psychiatric disorder. In general, our proposed approach may be particularly useful for

arterial spin labeling and per-fusion MRI studies, which measure brain activity over time

without the complicating factors of signal drift and highly colored noise found in fMRI (Liu,

Wong, Frank, and Buxton, 2002; Wang, Rao, Wetmore, Furlan, Korczykowski, Dinges, and

Detre, 2005).

Currently the model is designed to handle a single state-related shift from a baseline to

activated state and a subsequent return to baseline at a later unknown time. This type of

model is suited for studying state-related single epoch paradigms. The current approach does
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not readably extend to event-related paradigms, as it only allows for a single activation and

it does not directly take information about the hemodynamic response into consideration.

The model could potentially be generalized for other situations, including more rapid

alteration among multiple states. One possible extension is to allow for the possibility of

multiple activation onsets and durations though out the course of the time series. This can be

done by extending the likelihood function defined in (1) and (2) to allow for multiple returns

to the active state at unique time points, and the problem would extend to estimating

distributions for multiple onsets and durations. Though the extension of the likelihood

function and the resulting EM-algorithm used to estimate these multiple distributions would

appear relatively straight forward, it would lead to a significant increase in computational

costs. In addition, there may be particular confounds if the response is non-linear which will

mean that simply adding extra parameters to the likelihood will not necessarily give the

same form of the distributions. Finally, the conditional nature of change points in this

situation may complicate matters even further. Another possible extension relates to the

number of states included in the model. In certain applications it may be desirable to extend

the model to allow for different baseline means before and after activation, thereby

necessitating a three-state model. This can be done within our current model formulation by

exchanging the last term in the product of (1) by f(yij, θ3) where θ3 = (μ3, , i = 1 … M)

represents the parameters associated with the second baseline period.

Our model makes a number of assumptions, namely that the data is independent identically

distributed within states and that state means are equal across subjects. While it is generally

assumed that fMRI data is autocorrelated, we make the independence assumption to simplify

computation. There remains the option to pre-whitened the data prior to analysis (Woolrich,

Ripley, Brady, and Smith, 2001), though as data used for this type of model tend to have a

strong low frequency component special care must be taken to avoid removing signal from

the data. The method could alternatively be generalized to handle colored noise, by

incorporating a covariance matrix corresponding to an autocorrelation model (e.g. AR(p) or

ARMA(1,1)) in the likelihood function shown in (1).

The spatial clustering algorithm can be extended by using an inhomogeneous model that

implies that some neighbor pairs have a greater degree of spatial dependence than others.

These types of models are therefore useful in preserving edges between regions of high

contrast and are often used as priors in Bayesian image analysis (Brezger, Fahrmeir, and

Hennerfeind, 2007; Aykroyd and Zimeras, 1999). In our application we could also employ

information from the time domain, or from prior anatomical knowledge in specifying the

degree of spatial smoothness between voxels. If information on the degree of temporal

correlation or regions of grey/white matter is available, it can also be incorporated into the

image model.
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Appendix

A. EM algorithm for the MLE approach

E-step: Given the current estimates at the tth step, , ,  and , estimate the M × (N

− ωmax + 1) × (ωmax − ωmin + 1) matrix Z, whose elements zijk represent the probability that

subject i has change points τi = j and ωi = k, conditional on the data Y and the current

parameter estimates. Let

(22)

Then the elements of Z are given by

(23)

(24)

M-step: Given zijk update the parameter estimates.

(25)

(26)

(27)

(28)

(29)

where
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(30)

B. EM-algorithm for the MPLE approach

In the penalized version of the EM-algorithm, a smoothness penalty λJ(gτ, gω) is placed on

the unknown population distributions gτ and gω. Both the E-step and the M-Step estimates

of μ and σ remain the same as in the EM-algorithm described in Appendix A. Computing

 and  becomes more complicated, as there is no closed-form solution to the M-

step update equation after the addition of the penalty term. The (N − ωmin)-dimensional

system of equations for updating the parameters ητ = (ητ(1), ητ(2), …, ητ(τmax))′ from (5) is

(31)

where 0 and 1 are vectors of zeros and ones, respectively, Σ is as given in (7), and g( η τ) =

(g(1|ητ), g(2|ητ), …, g(τmax|ητ))′ as in (5). As the M-step estimates cannot be computed

directly, we employ a variation of the EM-algorithm, called the Generalized EM-algorithm

((McLachlan and Krishnan, 2007)). Here an optimization algorithm is used to iteratively

compute  in the M-step. To ensure that the algorithm moves closer to the MLE it is not

necessarily to find the root of (31) in each M-step, but simply move towards it. Thus, we can

implement a pre-specified number of steps of a numerical optimization algorithm such as

Newton-Raphson, and even if we do not reach convergence within the M-step, the

Generalized EM-algorithm should converge to the MLE.
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Figure 1.
In our model formulation each subject is allowed to switch states up to two times. The

timing of these state-changes are determined by change points τi and ωi, chosen at random

from the population distributions gτ and gω, respectively. In this formulation, gτ represents

the population distribution of the onset of activation, while gω represents the population

distribution of the duration.
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Figure 2.
(A) An example of 20 simulated time courses of length 215 whose onset and duration were

randomly sampled from population distributions gτ and gω, respectively. (B) The true

distribution of gτ (bold black) compared to estimates obtained using the MLE, MPLE and

EMS approaches. Note the roughness of the estimate obtained using the MLE approach. (C)

The same results for gω. (D) A heat map depicting the probability of activation as a function

of time computed using the MLE, MPLE and EMS estimates of gτ and gω.
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Figure 3.
Illustration of Simulation 1 (second data set). Data was simulated for M = 20 subjects and N

= 200 time points. (A) The onsets for the first 15 subjects were drawn from a Poisson

distribution with mean 10. The onset times were thereafter shifted 50 time points. The

remaining 5 subjects were assumed to have no activation. (B) The distribution for the

duration followed a Poisson distribution with mean 20. (C) Example time courses with

change points sampled from the distributions shown in (A) and (B). Note 25% of the

subjects showed no activation.
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Figure 4.
Illustration of Simulation 2. Time courses for the dark red, light blue and yellow voxels are

generated using the distributions for activation onset and duration shown at the right. Dark

blue voxels consist of noise time courses with no activation.
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Figure 5.
The experimental paradigm. Participants were told they would silently prepare a speech

under high time pressure during fMRI scanning, which they would subsequently give in

front of a panel after the session. They were informed of the topic via visual presentation

after 2 min of baseline scanning. After 2 min of speech preparation, they were informed

(visually) that they would not have to give a speech after all, and they rested quietly for the

final 2 min of scanning.
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Figure 6.
Results of Simulation 1. The left column shows the true value of gτ for the three simulated

data sets. Note that the bottom right figure represents a distribution with positive (.25)

probability of no activation, indicated by mass at the end of the time course. The center

column shows box plots of the KL-divergence between the true and estimated onset

distributions at three different SNR levels, with estimates computed using the MLE

approach. The right column shows similar results for the MPLE approach. Clearly the

inclusion of the penalty term gives rise to closer fits and therefore smaller KL-divergences.
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Figure 7.
Results of Simulation 2. Using the results of our change-point methods, simulated images

were segmented into spatial clusters. For low SNRs, clustering based on the results of the

MPLE approach performed significantly better than the MLE approach.
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Figure 8.
(A) The brain is split into 4 clusters of spatially coherent activation. (B) The estimated

probability of activation is shown in a heat map for each of the four clusters. In addition the

probability of elevated heart rate (HR) is shown. The timing of the original visual cue and

the speech preparation is shown in block format on the bottom right hand side for

comparison purposes. Activation in the ventromedial prefrontal cortex (Cluster 4) correlates

highly with heart-rate increases in the task.
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Figure 9.
The estimated distributions for onset and duration are shown for each of the four clusters

defined in Fig. 8. The results are averaged across all voxels contained in each cluster. These

distributions are used to calculate the probability of activation presented in Fig. 8.
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