% Maastricht University

The identification of interacting networks in the brain
using fMRI: model selection, causality and
deconvolution

Citation for published version (APA):

Roebroeck, A., Formisano, E., & Goebel, R. (2011). The identification of interacting networks in the brain
using fMRI: model selection, causality and deconvolution. Neuroimage, 58(2), 296-302.
https://doi.org/10.1016/j.neuroimage.2009.09.036

Document status and date:
Published: 01/01/2011

DOI:
10.1016/j.neurocimage.2009.09.036

Document Version:
Publisher's PDF, also known as Version of record

Document license:
Taverne

Please check the document version of this publication:

« A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.

« The final author version and the galley proof are versions of the publication after peer review.

« The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

« Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain
« You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:
www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl
providing details and we will investigate your claim.

Download date: 28 Apr. 2024


https://doi.org/10.1016/j.neuroimage.2009.09.036
https://doi.org/10.1016/j.neuroimage.2009.09.036
https://cris.maastrichtuniversity.nl/en/publications/0b490c28-6efc-4f9a-9e7d-aacb51b4eeef

Neurolmage 58 (2011) 296-302

journal homepage: www.elsevier.com/locate/ynimg

Contents lists available at ScienceDirect

Neurolmage

Comments and Controversies

The identification of interacting networks in the brain using fMRI:
Model selection, causality and deconvolution

Alard Roebroeck *, Elia Formisano, Rainer Goebel

Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Postbus 616, 6200MD Maastricht, The Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 8 June 2009

Revised 24 August 2009

Accepted 17 September 2009
Available online 25 September 2009

Functional magnetic resonance imaging (fMRI) is increasingly used to study functional connectivity in large-
scale brain networks that support cognitive and perceptual processes. We face serious conceptual, statistical
and data analysis challenges when addressing the combinatorial explosion of possible interactions within
high-dimensional fMRI data. Moreover, we need to know, and account for, the physiological mechanisms
underlying our signals. We argue here that (i) model selection procedures for connectivity should include

consideration of more than just a few brain structures, (ii) temporal precedence - and causality concepts
based on it - are essential in dynamic models of connectivity and (iii) undoing the effect of hemodynamics
on fMRI data (by deconvolution) can be an important tool. However, it is crucially dependent upon
assumptions that need to be verified.

© 2009 Elsevier Inc. All rights reserved.

Introduction

Understanding how interactions between brain structures (‘func-
tional and effective connectivity’) support the performance of specific
cognitive tasks or perceptual processes is a prominent goal in
cognitive neuroscience. Neuroimaging methods, such as electroen-
cephalography (EEG), magnetoencephalography (MEG) and func-
tional magnetic resonance imaging (fMRI), are employed more and
more to address questions of functional connectivity, inter-region
coupling and networked computation that go beyond the ‘where’ and
‘when’ of task-related activity (McIntosh, 2004; Valdes-Sosa et al.,
2005a; Salmelin and Kujala, 2006; Horwitz and Smith, 2008). A
network perspective onto the parallel and distributed processing in
the brain - even on the large scale accessible by neuroimaging
methods - is a promising approach to enlarge our understanding of
perceptual, cognitive and motor functions. However, we face serious
conceptual, statistical and data analysis challenges when addressing
the combinatorial explosion of possible interactions within high-
dimensional neuroimaging data sets. Moreover, we need to know, and
take account of, the actual physiological mechanisms underlying our
signals (e.g., Logothetis, 2008).

Functional magnetic resonance imaging (fMRI) in particular is
increasingly used not only to localize structures involved in cognitive
and perceptual processes but also to study the connectivity in large-
scale brain networks that support these functions. Two fMRI-based
connectivity methods have gained increasing popularity in recent
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years: Granger causality analysis (GCA; Goebel et al., 2003; Valdes-
Sosa, 2004; Roebroeck et al., 2005) and dynamic causal modeling
(DCM; Friston et al., 2003). Both techniques aim to estimate directed
influences between brain structures making use of the temporal
dynamics in the fMRI signal. Despite the common goal, there are also
differences between the two methods. Whereas GCA explicitly
models temporal precedence and uses the concept of Granger
causality (or G-causality), DCM employs a biophysically motivated
generative model of neuronal population dynamics and hemody-
namic processes. A recent article (David et al., 2008) has compared
the two techniques in a rat model of absence epilepsy. Simultaneous
fMRI and EEG and separate intracranial EEG (iEEG) were measured in
six rats during epileptic episodes in which spike-and-wave discharges
(SWDs) spread through the brain. These authors and a related
commentary (Friston, 2009) concluded that (i) the concepts of
temporal precedence and G-causality should not be used in fMRI
connectivity analysis and (ii) explicit biophysically motivated models,
such as DCM, model true causality in fMRI data, because they account
for the hemodynamic processes that intervene between neural
activity and fMRI signals.

We show here that these conclusions are not unequivocally
supported by the actual results of David et al. (2008) and that they
give only a partial view onto the important considerations in
modeling brain connectivity. More specifically, we argue that the
results of David et al., along with general considerations in system
identification theory and neuroscience, lead to three crucial points
about brain connectivity modeling:

(i) model selection procedures for connectivity should include
consideration of more than just a few brain structures,
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Fig. 1. A partitioning of brain connectivity models. Models to estimate connectivity from data (e.g. fMRI) can partitioned into a structural (or anatomical) model and a
dynamical (or mathematical) model (Buchel and Friston, 2000). The structural model contains a selection of the structures in the brain that are assumed to be of importance
in the cognitive process or task under investigation. Specifically, it specifies which regions of interest (ROIs) in the spatially rich high-dimensional fMRI data set will be
considered for further analysis, as illustrated by the selection of the red boxes yj...ys. The structural model can also define the possible interactions between the ROIs in the
form of one or more directed graph models that might be compared in a later model selection step. Finally the structural model also defines where exogenous inputs (that
may be under control of the experimenter) can exert effects onto the network. The dynamical model embeds the structural model assumptions into parameterized equations
that relate the selected measurements and inputs to each other. Connectivity modeling involves the estimation of the parameters in the dynamical model from actual

measurements y; and, possibly, inputs uy.

(ii) temporal precedence - and causality concepts based on it - are
essential in dynamic models of brain connectivity and

(iii) undoing the effect of hemodynamics on fMRI data (by
deconvolution) can be an important tool. However, it is
crucially dependent upon assumptions that need to be verified.

Structural model selection for brain connectivity

Brain connectivity modeling of neuroimaging data entails the
estimation of multivariate mathematical models and inference on
parameters that quantify the directed influence between brain
structures. The estimation mathematical models from time series
data generally has two important aspects: model selection and
model identification (Ljung, 1999). In the model selection stage a
class of models is chosen by the researcher that is deemed suitable
for the problem at hand. In the model identification stage the
parameters in the chosen model class are estimated from the
observed data record. In practice, model selection and identification
often occur in a somewhat interactive fashion where, for instance,
model selection can be informed by the fit of different models to
the data achieved in an identification step. The important point is
that model selection involves a mixture of choices and assumptions
on the part of the researcher and the information gained from the
data record itself.

We can usefully partition brain connectivity models into two parts,
each necessitating choices and assumptions: the structural model and
the dynamical model (see Fig. 1). The structural model contains (i) a
selection of the regions of interest (ROIs) in the brain that are
assumed to be of importance in the cognitive process or task under
investigation, (ii) the possible interactions between those structures
and (iii) the possible effects of exogenous inputs onto the network.
The exogenous inputs may be under control of the experimenter and
often have the form of a simple indicator function that can represent,
for instance, the presence or absence of a visual stimulus. The
dynamical model consists of parameterized equations that relate the
signals of the selected structures and exogenous inputs to each other.
The functional form of these equations can embed assumptions on
signal dynamics, temporal precedence or physiological processes
from which signals originate. Connectivity modeling involves the
estimation of (and inference on) the parameters in the dynamical
model from actual measurements and possibly exogenous inputs. The
number of parameters to be estimated (i.e., the total model

complexity) is directly dependent on the complexity of the structural
model (i.e., how many ROIs are included) and the complexity of the
dynamical model. The bias/variance trade-off in model fitting dictates
that overfitting a finite data set with too many parameters will lead to
poor generalization of model fit to other data sets. Therefore, clear
justifiable choices must be made both in the structural model and in
the dynamical model to keep the number of estimated parameters in a
suitable range. Applications of DCM invariably use very simple
structural models (typically employing three to six ROIs) in
combination with a complex parameter-rich dynamical model that
we discuss below. The clear danger with overly simple structural
models is that of spurious influence: an erroneous influence found
between two selected regions that in reality is due to interactions
with additional regions which have been ignored. Prototypical
examples of spurious influence, of relevance in brain connectivity,
are those between unconnected structures A and B that receive
common input from, or are intervened by, an unmodeled region C.
Early applications of G-causality to fMRI data were aimed at
counteracting the problems with overly restrictive structural models
by employing more permissive structural models in combination with
a simple dynamical model (Goebel et al., 2003; Valdes-Sosa, 2004;
Roebroeck et al., 2005). We developed the technique of Granger
causality mapping (GCM') to explore all regions in the brain that
interact with a single selected reference region using GCA of fMRI time
series. By employing a simple bivariate model containing the
reference region and, in turn, every other voxel in the brain, the
sources and targets of influence for the reference region can be
mapped. We showed that such an ‘exploratory’ mapping approach
can form an important tool in structural model selection (Roebroeck
et al., 2005). Although a bivariate model does not discern direct from
indirect influences, the mapping approach locates potential sources of
common input and areas that could act as intervening network nodes.
Other applications of GCA to fMRI data have considered full
multivariate models on large sets of selected brain regions that can
model indirect influences within those sets. Valdes-Sosa et al. (2004,
2005b) applied these models to parcellations of the entire cortex in

1 It is unfortunate and confusing that our original definition of the acronym GCM as
Granger causality mapping (Goebel et al., 2003; Roebroeck et al., 2005) is used in the
discussed comment (Friston, 2009) as Granger causality modeling, since ‘mapping’
expresses a fundamental and distinguishing characteristic of the way we apply
Granger causality without employing a restrictive structural model.
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conjunction with sparse regression approaches that enforce an
implicit structural model selection within the set of parcels. In
Deshpande et al. (2008) a full multivariate model was estimated over
25 ROIs (that were found to be activated in the investigated task)
together with an explicit reduction procedure to prune regions from
the full model as a structural model selection procedure.

The need for a more permissive structural model selection
approach is illustrated by the work of David et al. In their study,
fMRI was used to map the hemodynamic response throughout the
brain to seizure activity, where ictal and inter-ictal states were
quantified by the simultaneously recorded EEG. This showed wide-
spread changes throughout the brain, including seven structures with
an increased cerebral blood volume (CBV) signal during seizures (first
somatosensory cortex (S1BF), thalamus, striatum, cerebellum, me-
dulla oblongata, pons and retrosplenial cortex) and five deactivated
structures. Only three of these structures were selected by the authors
as the crucial nodes in the network that generates and sustains seizure
activity, and thus worthy of further analysis: S1BF, thalamus and
striatum. One cannot stop but wonder whether such a greatly
simplified structural model is a justifiable decision given both the
rich data set at hand and indications in the existing literature that
generation and maintenance of seizure activity in the employed rat
model involves other brain regions, such as frontoparietal cortex (e.g.,
Danober et al., 1998). It would be interesting to see whether a
preliminary structural model selection step using a technique like
GCM (on a small part of the data, not to be reused) would lead to a
better justified set of selected regions. More generally, one of the
strengths of the fMRI technique (and its analysis by statistical
parametric mapping) is that it captures the large number of brain
areas involved in many perceptual, cognitive or motor tasks.
Therefore, it seems appropriate that connectivity models and
structural model selection procedures consider those large number
of areas, rather than fitting and comparing very simple structural
models.

These considerations indicate that an important distinction must
be made between exploratory and confirmatory approaches, espe-
cially in structural model selection procedures for brain connectivity.
Neither approach is fundamentally wrong or right; rather they have a
different but complementary goal. Exploratory techniques, like GCM,
use information in the data to investigate the relative applicability of
many models. As such, they have the potential to detect ‘missing’
regions in structural models. Confirmatory approaches, like DCM, test
hypotheses about connectivity within a small set of models assumed
to be applicable. Sources of common input or intervening causes are
taken into account in a multivariate confirmatory model, but only if
the employed structural model allows it. A confirmatory connectivity
model can no more detect a missing region than a general linear
model can detect a missing regressor.

Dynamical models in brain connectivity: G-causality and DCM

In addition to their different approach to structural model
selection, there are subtle but important differences in the dynamical
model employed by GCM and DCM. It has been claimed (Friston,
2009) that DCM employs a state-space model that embeds ‘true’
causality (in the form of a generative model of how the data are
caused), whereas the GCM employs a statistical model of correlations
in the data. However, both dynamical models can be given a state-
space formulation; in both cases the inference on parameters employs
statistics - be they confirmatory or exploratory, Bayesian or classical -
and in both cases estimation is dependent on variance and correla-
tions in the data. We will argue that, rather, the important distinctions
between DCM and GCM are in a deterministic versus a stochastic
dynamical model and in the physical interpretation of its variables.

GCM derives its name from Granger causality or G-causality,
proposed by Clive Granger (Granger, 1969, 1980) and partially based

upon earlier ideas of Norbert Wiener (Wiener, 1956). The aim is to
give an operational definition of what ‘causality’ or ‘influence’ could
mean for observations, structured in time, for multiple variables of
interest. In economics, the variables of interest might be interest rates,
employment numbers and the federal budget deficit. In neuroscience
the variables could be invasive electrode recordings, intracranial EEG,
non-invasive EEG, MEG or fMRI time series from different parts of the
brain. The general idea of G-causality is that variable A G-causes
another variable B if the prediction of B's values improves when we
use past values of A, given that all other relevant information is taken
into account. Two more things need to be specified when we want to
apply this idea to our data: (i) which model we use to make
predictions and (ii) what ‘all other relevant information’ is. The
second point is dealt with in the structural model selection process
that entails the selection of a reasonable set of relevant variables (e.g.,
voxels, channels or ROIs), as we discussed above. The most common
answer to the first point is the linear autoregressive (AR) model for
discretely sampled data. The AR model is a simple model that can
flexibly represent a wide range of signal dynamics, auto- and cross-
correlation patterns and spectral characteristics, and is easy to
estimate from data records. However, G-causality is definitely not
tied exclusively to the standard linear AR model. It can be equally well
instantiated in non-linear models (Freiwald et al., 1999) and time-
varying models for non-stationary data (Hesse et al., 2003), and it can
be framed in terms of non-parametric spectral factorization (Dhamala
et al., 2008). In addition, G-causality has been extended to Markov
processes and more general stochastic processes, based on Martingale
theory (Aalen and Frigessi, 2007) and to continuous-time signal
models (Florens and Fougere, 1996). Nonetheless, it will be
informative to compare the class of linear stochastic models (LSM),
of which the AR model used in GCM is a special case, with the
DCM signal model to see that their crucial differences are actually
subtle.

Both the LSM and DCM can be given a state-space formulation
(Fig. 2). In a state-space representation the relations between
measured variables y; (e.g., f/MRI data) and exogenous input variables
uy (e.g., stimulus functions) are modeled through unobservable state
variables z;. State-space representations generally consist of two sets
of equations. The transition equations or state equations describe the
evolution of the dynamic system over time, capturing relations
among the hidden state variables z; themselves and the influence of
exogenous inputs uy. The observation equations or measurement
equations describe how the measurement variables y; are obtained
from the hidden state variables z; and the inputs uy. The LSM model
accommodates equivalent representation of the general class of
autoregressive moving average models with exogenous inputs
(ARMAX models, Reinsel, 1997). Connectivity modeling of neuroi-
maging data involves the estimation of the elements in the
coefficient matrices (A, B! and C in Fig. 2) from measurements y[t]
and, possibly, the inputs u[t]. The state-space representation makes
the subtle but important differences between GCM/LSM and DCM
insightful.

The first important difference in modeling signal dynamics is that
LSMs employ linear stochastic transition equations, whereas those in
DCMs are bi-linear and deterministic. The stochastic term in the LSM
transition equation allows for variation in the state variables that
cannot be explained by the inputs u[t]. In fact, in the case of a purely
autoregressive model, exogenous inputs are absent and all signal
variation is modeled as driven by uncorrelated stochastic processes
(called ‘innovations’). This forces all dynamic and spectral complexity
in the observed signals to be represented in the model parameters. It
is exactly this property of comprehensive and flexible representation
of signal dynamics and spectral properties that has made autore-
gressive models a popular tool in analyzing complex biophysical
signals (Bernasconi and Konig, 1999; Ding et al., 2000; Kaminski et al.,
2001; Harrison et al., 2003; Brovelli et al., 2004). In contrast, the
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Fig. 2. State-space representations of dynamic connectivity models. The state-space representations for a linear stochastic model (LSM, often employed in Granger causality analysis
and in GCM) and a dynamic causal model are shown and compared with respect to their mathematical properties. In a state-space representation the relations between measured
variables y; and, possibly, exogenous input variables uy are modeled through unobservable state variables z;. The individual variables vary over time and are summarized into
vectors: u=(uy, ..., uy), z= (21, ..., z.), y= (¥1, ..., Yn). State-space equations generally consist of two sets of equations. The transition equations or state equations describe the
evolution of the dynamic system over time, capturing relations among state variables z; themselves and the influence of exogenous inputs uy. The observation equations or
measurement equations relate the measurement variables y; to the state variables z; and inputs u. Connectivity modeling of neuroimaging data involves the estimation of the
elements in the coefficient matrices A, B! and C from measurements y[t] and, possibly, inputs u[t]. Whereas a linear stochastic model employs linear stochastic transition equations,

those in dynamic causal modeling are bi-linear and deterministic.

transition equation in DCM for fMR], as it is used widely to date, does
not have a stochastic term. As a consequence, any and all signal
dynamics that it can capture is limited to the signal subspace spanned
by the assumed inputs. In other words, it assumes that all neural
population dynamics can be captured without error from the chosen
inputs and the transformation of that input in its ‘flow’ through the
DCM network. The exogenous inputs mostly have a very simple form,
such as a stimulus function that represents the presence or absence of
a visual stimulus or level of experimental manipulation, such as
attention left vs. right. The incapability of DCM to model signal
variations beyond those implied by the exogenous inputs makes its
connectivity estimation highly dependent on the exact number and
form of the assumed inputs and the form of the structural model.
Although the particular instantiation of DCM widely used to date (and
used by David et al.) is indeed deterministic, stochastic extensions to
DCM have been in development very recently (Friston et al., 2008;
Daunizeau et al., 2009). These developments clearly have the
potential to eliminate one of the differentiating aspects of LSMs and
deterministic DCMs and bring the models even closer together.
Interestingly, the inclusion of noise in the state equations makes
inference on stochastic DCMs usefully interpretable in the stochastic
framework of G-causality, reinforcing our point of the importance of
this framework. In addition, a stochastic version of DCM could
potentially provide an increased robustness to certain kinds of
structural model misspecification that we have discussed above,
such as unmodeled (or poorly modeled) sources of input to the
system. However, this robustness is likely to be very limited,
especially when the misspecification of structural models is more
comprehensive than the omission of additional exogenous inputs. The
inclusion and estimation of state noise is not a viable proxy to the
actual inclusion of the right nodes in a structural model (or the
consideration thereof in an exploratory or model-comparison
framework).

The second important difference in modeling signal dynamics is
that in DCM the state variables are given a definite physical
interpretation within a generative model of the data. For every
selected region a single state variable represents the neuronal or
synaptic activity of a local population of neurons and (in DCM for
BOLD fMRI) four or five more (Stephan et al., 2007) represent
hemodynamic quantities such as capillary blood volume, blood flow

and deoxy-hemoglobin content. All state variables (and the equations
governing their dynamics) that serve the mapping of neuronal activity
to the fMRI measurements y[t] (including the observation equation)
can be called the observation model. Most of the physiologically
motivated generative model in DCM for fMRI is therefore concerned
with an observation model encapsulating hemodynamics. In contrast,
in LSM/GCM the state variables may or may not have a definite
physical interpretation, depending on the particular representation
chosen. However, in the most straightforward representations LSM
state variables are very simple functions of the measurements y[t]. In
its standard formulation, LSM/GCM does not use a biophysical model
of hemodynamics. In short, the LSM observation model amounts to a
linear combination of the state variables at the same moment in time
(hence: static), whereas the observation model in DCM is non-linear
and dynamic. Thus, investigating the observation model in DCM for
fMRI and what it affords in terms of connectivity modeling will be
important in the comparison of the dynamical models in DCM and
GCM.

The observation model in DCM for fMRI is a biophysical model of
hemodynamic coupling largely based on the Balloon model (Buxton et
al.,, 1998) and Windkessel model (Mandeville et al., 1999). The
parameters in this model, such as transit time and autoregulation, are
estimated conjointly with the parameters quantifying neuronal
connectivity. Thus, the forward biophysical model of hemodynamics
is ‘inverted’ in the estimation procedure to achieve a deconvolution of
fMRI time series and obtain estimates of the underlying neuronal
states. The inversion of the observation model to achieve hemody-
namic deconvolution of fMRI time series is an important aspect of
DCM that we will discuss further below. It is important to note that
the specific biophysical model for the interactions between neuronal
states (neurodynamics) on one hand and the model for the
hemodynamics (the observation model for fMRI) on the other hand
largely dictate which of these models will absorb given aspects of the
observed data. For instance, if there are delayed coherent variations
between variables in the observed data and the hemodynamic model
has much more affordance for delays than the neurodynamic model
(as is the case in DCM), then the delay will be put into the
hemodynamics in the fitting of the model. Not because it is a fact of
the world that all delays are hemodynamic, but because the
experimenter has implicitly assumed that to be true.
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In order to compare the LSM model in GCM with the bi-linear
deterministic model of neurodynamics in DCM, one would have to
equate their observation model. Essentially, this is what David et al.
did. They applied G-causality analysis (GCA) to deconvolved fMRI
time series, obtained by the same hemodynamic deconvolution
procedure that is implicit in DCM. If the deconvolution procedure
succeeds (which might not always be the case, as we discuss
below), it mathematically inverts the effect of hemodynamic
processes on fMRI signals and uncovers the hidden neuronal
population dynamics. By applying G-causality analysis to decon-
volved fMRI time series, the stochastic dynamics of the LSM are
augmented with the complex biophysically motivated observation
model in DCM. This step is crucial if the goal is to compare the
dynamic connectivity models and draw conclusions on the relative
merits of linear stochastic models (estimating G-causality) and
bilinear deterministic models. The results of this controlled direct
comparison and comparison to the gold standard iEEG analyses are
highly informative. The GCA analysis after deconvolution in
particular is very convincingly in accordance with the gold standard
iEEG analyses (David et al., 2008, their Figs. 4, lower right, and 7),
strongly supporting the value of stochastic dynamical models and
G-causality in brain connectivity analysis. In contrast, the final result
of DCM analysis of the same data shows less correspondence with
the gold standard, not identifying the direct influence of S1BF on
the thalamus (David et al., 2008, their Figs. 5D and 7). The
differences in successful capture of the direct and indirect influence,
after deconvolution, are likely due to the difference between a
deterministic and stochastic dynamical model, since the observation
model was effectively equated. Two further notes can be made.
First, David et al. did not use the bi-linear part of the standard DCM
model (except for influence of the inputs on the ‘self-modulation’ of
the neural state dynamics), thereby effectively fitting a linear
version of DCM that does not allow modulation of connectivity by
experimental conditions (in this case: ictal and inter-ictal states).
Second, this trivariate near-linear DCM was compared to a set of
bivariate tests performed with the LSM. In short, however, the
results in David et al. show that the stochastic dynamics model of
GCM potentially outperforms the deterministic dynamics model in
DCM in a confirmatory analysis when both are given the same
observation model.

A y(t) = s,(t) @ h(t) + e(t)
_31(t)
_Sz(t)
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Hemodynamic deconvolution

fMRI is an indirect measure of neuronal and synaptic activity. The
physiological quantities directly determining signal contrast in fMRI
are hemodynamic quantities such as capillary blood flow and the local
ratio of oxygenated and de-oxygenated hemoglobin. The distorting
effects of hemodynamic processes on the temporal structure of fMRI
signals and, more importantly, the difference in hemodynamics in
different parts of the brain form a severe confound for dynamic brain
connectivity models. Particularly, the delay imposed upon fMRI
signals with respect to the underlying neural activity is known to
vary between subjects and between different brain regions of the
same subject (Aguirre et al., 1998). In our work, we have acknowl-
edged this confound and set out clear limits to the interpretation of
Granger causality maps in the face of inhomogeneous hemodynamic
processes over the brain. We have suggested that, at the very least,
modulation of G-causality between fMRI time series by experimental
context (e.g., a higher level of G-causality during attention to colour
than during attention to motion) should be sought to give credibility
to these analyses (Roebroeck et al., 2005). It is unfortunate that were
David et al. applied GCA to original fMRI time series, they did not take
note of these recommendations and did not investigate the modula-
tion of G-causality between ictal and inter-ictal states.

The hemodynamic deconvolution approach inherent in DCM goes
a step beyond our suggested approach, and tries to ‘undo’ the adverse
effects of hemodynamic convolution. It is useful to look more closely
at deconvolution operations and clarify the assumptions that go into
them. A simple linear deconvolution operation will serve to illustrate
the relevant points that generalize to model-based non-linear
deconvolution as used in DCM. A (forward) convolution operation
involves three signals: the output y(t), an fMRI time series, is obtained
as a convolution of the input s(t), neuronal population activity, and
the convolution kernel h(t), often termed the hemodynamic response
function (HRF) in fMR], as illustrated in Fig. 3A. Deconvolution entails
obtaining an estimate of either the input s(t) or the convolution
kernel h(t) from knowledge of the other two factors in the
convolution, among which is the output y(t), possibly contaminated
with additive noise. Since convolution is a commutative operation,
there is no principle difference in the mathematics involved in
obtaining the input s(t) or the convolution kernel h(t). The main

B h,'(t) = dconv(s,(t), y(t) )
h,'(t) = dconv(s,(t), y(t) )

0 5 10 15 20 25 30
time (seconds)

Fig. 3. Deconvolution and its dependence on assumptions on the involved signals. (A) An illustration of the coupling between an fMRI signal y(t) and an underlying neuronal
population activity signal s;(t), modeled as a linear convolution by an impulse response h(t), the hemodynamic response function (HRF). In this simulation example, the observed
fMRI signal y(t) is coupled to power in the 40 Hz component s;(t) that can be obtained from a neurophysiological measurement (such as EEG, in blue in the background with its
spectrogram below). An additional 12 Hz component s,(t) increases in power 2 s prior to the 40 Hz component and has a shorter duration. (B) The result of deconvolution estimates of
the unobservable impulse response h(t) with two different assumptions on the input. When 40 Hz power is the assumed input of hemodynamic convolution, a deconvolution estimate
h,’(t) is obtained that closely approximates the ‘true’ impulse response h(t). However, when 12 Hz power is assumed to be coupled to the fMRI signal an estimate h,’(t) is obtained

that strongly deviates from the actual impulse response.
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practical difference is in the type of information required: to be able to
estimate h(t) one needs to know s(t) (or make strong assumptions on
its form) and vice versa. It is this requirement for knowledge of - or
very strong assumptions on the form of - the other convolving
element that can lead to errors in a deconvolution procedure. A
simulation example illustrates such errors, arising in a deconvolution
estimate h(t) of the HRF when the assumptions on the input s(t) are
incorrect (Fig. 3B).

David et al. performed two deconvolution operations to obtain
estimates of neuronal source signals for their regions of interest to use
in G-causality analysis. Using the band-limited (4-20 Hz) power of
simultaneously collected EEG as the input and the recorded fMRI
signal as output, the convolution kernel characterizing the HRF in
each area was computed. The same input signal, derived from three
EEG scalp electrodes, was used for all brain regions. This estimation
was further constrained by the biophysical model of hemodynamics
inherent in DCM, modified to account for the fact that an iron contrast
agent was used in the fMRI imaging, giving it a stronger weighting for
cerebral blood volume (CBV). The first deconvolution step showed a
surprisingly extreme discrepancy of the estimated HRF in S1BF,
peaking seconds later and lasting more than 30 s longer than that of
other regions. In the second step, the deconvolved HRFs for S1BF,
striatum and thalamus from the first step and the local CBV signal was
used to deconvolve the hidden neuronal activity for each of the
structures. Because of the dependency upon the HRF identified in step
one, this second deconvolution step is crucially dependent upon the
availability of the simultaneous EEG signal and on the decision of
which aspect of that signal to use as the ‘input’. Moreover, possible
errors in the estimate of the local HRFs in the first step (see Fig. 3B)
will propagate to the estimated neuronal source signals, in turn
biasing connectivity estimates on these source signals. In DCM the
two deconvolution steps are performed implicitly and conjointly with
the estimation of connectivity parameters at the neuronal source
level. However, the assumptions and information that go into the
estimation procedures and, prominently, the need for knowledge of
the input are the same.

The decision to use 4-20 Hz EEG power as input might well be
justified. It characterizes the overall EEG signal power increase that
accompanies seizure episodes and might be a good measure of
increased neuronal firing and synaptic activity that demands
increased metabolism. However, the precise coupling of hemody-
namics and local metabolism with neuronal and synaptic activity is
complex and partially unknown (Logothetis et al., 2001; Niessing et
al., 2005). Moreover, in the great majority of applications of DCM to
fMRI a simultaneously recorded EEG signal is not available. In this case
the input to the hemodynamic convolution is entirely dependent on
the assumed exogenous inputs u[t] that mostly have a simple discrete
step-function form representing the presence of stimuli and the level
of experimental conditions (e.g., memory load or attention condition).
The neuronal population activity of brain structures that are not
directly influenced by exogenous inputs is determined in DCM by the
influence of other brain regions in the structural model. Thus, to some
degree, successful deconvolution in DCM is also dependent on a
veridical structural model, which once again highlights the impor-
tance of robust structural model selection procedures.

To our opinion, hemodynamic deconvolution might indeed
improve the possibilities of fMRI-based connectivity estimates, but
the assumptions that go into it deserve further investigation and
scrutiny. The work of David et al. strongly supports the need for an
independent measurement of neuronal and synaptic activity such as
simultaneously acquired EEG. However, which part of this EEG signal
should be considered to ‘drive’ the hemodynamic and metabolic
processes that underlie BOLD and CBV signals deserves careful
consideration. More generally, undoing the effects of hemodynamic
convolution will require detailed knowledge of the biophysical
mechanisms involved, which remain a topic of intense research.

Modeling brain connectivity: a synthesis

Any model is necessarily an abstraction; it cannot contain the full
reality in all its detail. That is what makes it tractable and useful as a
model. This is nicely paraphrased in a famous statement from Box and
Draper (1987), p424: “Essentially, all models are wrong, but some are
useful.” However, that is not the end of our endeavor; it is the
beginning, as another version of the statement makes clear (Box and
Draper, 1987), p74: “Remember that all models are wrong; the
practical question is how wrong do they have to be to not be useful.”
We have argued here that useful models for brain connectivity have
well justified assumptions, both in their structural model and in their
dynamical model. The structural model should include all brain
structures relevant to the task as informed by prior knowledge and
exploratory analysis of a part of the data (not to be reused in later
confirmatory steps). A biophysically motivated forward model of
hemodynamics may be useful in dynamical models for connectivity
analysis of fMRI data. However the hemodynamic deconvolution
implied in the ‘inversion’ of these forward models is crucially
dependent on (i) the availability of and assumptions on hidden
information (the input) and (ii) the accuracy of the employed
biophysical model of hemodynamics.

The brain is an immensely complex system that is neither linear,
nor deterministic; neither bivariate, nor predictable. The abstractions
and choices to be made in useful models of brain connectivity are
therefore unlikely to be accommodated by one single ‘master’ model
that does better than all other models on all counts. However, the
considerations above do set out clear paths for development of
connectivity models in cognitive neuroimaging. Development of
connectivity models that can flexibly adjust the amount of parameters
and prior assumptions in the structural and dynamical models could
be very useful. Such models would force investigators to explicitly
specify where they constrain their modeling effort by prior knowl-
edge and assumptions and where they inform model selection by
exploratory analysis of the data. Models that combine the stochastic
dynamics of LSM with complex biophysical observation models as
used in DCM, along with exogenous inputs, could form a useful step
towards lifting the limitations of each individual model class. Finally,
the discussion of hemodynamic deconvolution of fMRI data clearly
points to the need for an independent measurement of neuronal and
synaptic activity such as simultaneously acquired EEG. Future
modeling efforts that enter such additional signals as measurement
variables with their own observation model, rather than as exogenous
inputs, would offer important advantages.

In any future development or evaluation of the relative advantages
of current models, one should keep in mind that models are only as
good as the assumptions that go into them. The choice for a
confirmatory or exploratory approach or a domain specific versus a
general model cannot be justified by claiming that confirmatory
statistics on domain specific models are the only road to truth.
Thorough review and discussion of the relative merits of different
brain connectivity models can only lead to a balanced account of these
issues and to developments that bring the field forward.
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