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Abstract

This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for 

discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to 

most morphometry methods which assume one-to-one correspondence between subjects, FBM 

explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of 

subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, 

localized image features that need not be present in all subjects. Scale-space theory is applied to 

analyze image features at the characteristic scale of underlying anatomical structures, instead of at 

arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of 

their appearance, geometry, and relationship to subject groups, and is automatically learned from a 

set of subject images and group labels. Features resulting from learning correspond to group-

related anatomical structures that can potentially be used as image biomarkers of disease or as a 

basis for computer-aided diagnosis. The relationship between features and groups is quantified by 

the likelihood of feature occurrence within a specific group vs. the rest of the population, and 

feature significance is quantified in terms of the false discovery rate. Experiments validate FBM 

clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely 

available OASIS database. FBM automatically identifies known structural differences between 

NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is 

achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1).
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1. Introduction

Morphometry aims to automatically identify anatomical differences between groups of 

subjects, e.g. diseased or healthy brains. The typical computational approach taken to 

morphometry is a two step process. Subject images are first geometrically aligned or 

registered within a common frame of reference or atlas, after which statistics are computed 

based on group labels and measurements of interest (Kendall, 1989; Bookstein, 1989). 

Morpho-metric approaches can be contrasted according to the measurements upon which 

statistics are computed. Voxel-based morphometry (VBM) involves analyzing intensities or 

tissue class labels (Ashburner and Friston, 2000; Toga et al., 2001). Deformation or tensor-

based morphometry (TBM) analyzes the deformation fields which align subjects (Ashburner 

et al., 1998; Thompson et al., 2000; Chung et al., 2001; Studholme et al., 2006; Lao et al., 

2004). Object-based morphometry analyzes the deformation of specific pre-segmented 

anatomical structures of interest, e.g. cortical sulci (Mangin et al., 2004) or subcortical 

structures (Pohl and Sabuncu, 2009).

A fundamental assumption underlying most morphometry techniques is that inter-subject 

registration is capable of achieving one-to-one correspondence between subjects, and that 

statistics can therefore be computed from measurements of the same anatomical tissues 

across subjects. Inter-subject registration remains a major challenge, however, due to the 

fact that no two subjects are identical; the same anatomical structure may vary significantly 

or exhibit distinct, multiple morphologies across a population, or may not be present or 

easily identifiable in all subjects, e.g. in the case of different cortical folding patterns, or in 

the case of pathology. Coarse linear registration can be used to normalize images with 

respect to global geometrical differences, e.g. rotation and magnification, however cannot 

achieve precise alignment of fine anatomical structures. Deformable registration has the 

potential to refine the alignment of fine anatomical structures, however it is difficult to 

guarantee that images are not being over-aligned. Registration algorithms can be compared 

in terms of their ability to achieve overlap of segmented anatomical structures known to 

exist in healthy subjects (Klein et al., 2009; Hellier et al., 2003). Overlap measures are only 

a surrogate for registration accuracy, however, as different geometrical priors (e.g. fluid 

(Bro-Nielsen and Gramkow, 1996), elastic (Bajcsy and Kovacic, 1989)) will generally result 

in different registration solutions, which may simultaneously minimize volumetric overlap 

while remaining anatomically implausible. Furthermore, it is difficult to gauge registration 

performance when correspondence is ambiguous or non-existent. Consequently, it may be 

unrealistic and potentially detrimental to assume one-to-one correspondence, as 

morphometric analysis may be confounding image measurements arising from different 

underlying anatomical tissues (Bookstein, 2001; Ashburner and Friston, 2001; Davatzikos, 

2004).

Various approaches have been proposed to cope with the lack of one-toone correspondence 

when registering or modeling images of multiple subjects. Images can be automatically 

clustered or divided into distinct subsets based on image content (Blezek and Miller, 2006; 

Sabuncu et al., In Press), however the assumption of one-to-one correspondence is operative 

during clustering and within subsets. Image regions containing group-informative 

measurements can be identified in an automatic manner (Fan et al., 2007), however one-to-
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one correspondence is assumed at a local scale. Inter-subject or atlas-to-subject 

correspondence can be expressed in terms of valid correspondence plus a residual 

component (Baloch et al., 2007), where the residual represents unexplainable 

correspondence error. This technique cannot effectively represent the case where the same 

local anatomical region or structure bears multiple, distinct, modes of appearance, e.g. 

multiple folding patterns associated with the same gyrus in the cortex (Ono et al., 1990). The 

difficulty in achieving correspondence can be mitigated by considering pre-defined 

anatomical structures known to exist in most subjects (Mangin et al., 2004; Pohl and 

Sabuncu, 2009), however such structures may not be known a priori or may be unrelated to 

the particular group phenomena of interest. Individual subjects can be matched to multiple 

atlases (Klein and Hirsch, 2005), however it is unclear how this strategy can be adapted to 

identify group-related anatomical structure. Several authors propose relating subjects in 

terms of localized features, e.g. geometrical structures (Coulon et al., 2000; Thirion et al., 

2007), moment descriptors (Sun et al., 2007, 2008) or features combining local geometry 

and appearance (Toews and Arbel, 2007; Toews et al., 2009). Local features provide a 

mechanism for avoiding one-to-one correspondence throughout the image, particularly in 

the highly variable cortex (Sun et al., 2007; Toews et al., 2009).

Feature-based morphometry (FBM) is proposed specifically to avoid the assumption of one-

to-one inter-subject correspondence. FBM admits that correspondence may not exist 

between all subjects and/or throughout the image, and instead attempts to identify 

distinctive, localized patterns of anatomical structure for which correspondence between 

subsets of subjects is statistically probable. Such patterns are identified and represented as 

distinctive scale-invariant features (Lowe, 2004; Mikolajczyk and Schmid, 2004), i.e. 

generic image patterns that can be automatically extracted in the image by a front-end 

salient feature detector. A probabilistic model quantifies feature variability in terms of 

appearance, geometry, and occurrence statistics relative to subject groups. Model parameters 

are estimated using a fully automatic, data-driven learning algorithm to identify local 

patterns of anatomical structure and quantify their relationships to subject groups. The local 

feature thus replaces the global atlas as the basis for morphometric analysis. Scale-invariant 

features are widely used in the computer vision literature for image matching, and have been 

extended to matching 3D volumetric medical imagery (Cheung and Hamarneh, 2007; 

Allaire et al., 2008). FBM follows from a line of research in which generic object 

appearance is modeled in terms of a collection of independently occurring local features in 

photographic imagery (Fergus et al., 2006) and in 2D slices of the brain (Toews and Arbel, 

2007). FBM builds on this research, by extending the modeling theory to address group 

analysis and to operate in 3D volumetric imagery. FBM is generally applicable to arbitrary 

3D imagery and subject groups; here as an example application, we choose to validate FBM 

in the analysis Alzheimer's disease (AD), an important and heavily-studied neurological 

disease.

The remainder of this paper is organized as follows. Section 2 presents the FBM method, 

including the probabilistic model relating local image features to subject groups and the 

learning algorithm. Sections 3 and 4 outline a clinical validation of FBM in the context of 

differentiating between normal and probable Alzheimer's (AD) subjects, using the freely 
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available Open Access Series of Imaging Studies (OASIS) data set (Marcus et al., 2007). 

Section 5 follows with a discussion.

2. Feature-based Morphometry (FBM)

This section describes the image features and probabilistic modeling approach used in FBM. 

FBM begins with a set of subject images that have been spatially normalized via global 

linear registration in order to achieve coarse, approximate inter-subject alignment, e.g. affine 

registration to Talairach stereotaxic space (Talairach and Tournoux, 1988). The purpose of 

affine alignment is thus not to achieve one-to-one inter-subject correspondence, but rather to 

ensure that, when present, corresponding anatomical structures in different subjects are 

approximately aligned. Deformable registration is not desired, as the goal is to avoid over-

fitting and to preserve local image patterns that may reflect important group-related 

differences. FBM is a two-step process involving feature extraction followed by 

probabilistic modeling. Section 2.1 describes feature extraction, in which local image 

features are identified independently in individual subject images. Features are generic 

image regions localized both in image space and scale, which indicate the location and size 

of salient anatomical patterns. Section 2.2 describes probabilistic modeling, which focuses 

on quantifying the statistics of features across different subjects and with respect to subject 

groups. Model learning employs a robust clustering process in order to identify instances of 

the same image feature in different subjects. Each feature cluster represents observations of 

the same distinctive anatomical structure in different subjects, and FBM seeks to discover 

such structures which tend to co-occur with specific subject groups.

2.1. Extracting Local Image Features in Scale-Space

Images contain a large amount of information, and it is useful to focus computational 

resources on interesting or salient features, which can be automatically identified as maxima 

of a saliency criterion evaluated throughout the image. While saliency criteria can be 

designed to identify image ‘points’, e.g. corners (Harris and Stephens, 1988) or landmarks 

(Rohr, 1997), image patterns produced by natural anatomical structures have a characteristic 

scale or size which is independent of the image resolution, e.g. the width of sulci or the 

thickness of the corpus callosum. An effective approach is thus to identify features in a 

manner invariant to changes in image scale (Lindeberg, 1998; Lindeberg et al., 1999). This 

can be done by evaluating saliency in an image scale-space I(x, σ) representing the image I 

at location x and scale σ. The Gaussian scale-space is arguably the most common in the 

literature (Witkin, 1983; Koenderink, 1984), defined by convolution with the Gaussian 

kernel:

(1)

where G(x, σ) is a Gaussian kernel of mean x and variance σ, and σ0 represents the scale of 

the original image. The Gaussian scale-space arises as the solution to the heat equation when 

the image is modeled as a diffusion process (Koenderink, 1984), and can be derived from a 

set of reasonable axioms for scale-space generation including non-creation and non-

enhancement of local extrema, causality and invariance to translation, rotation and 

magnification (Lindeberg, 1998).
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Saliency in scale-spaces is commonly formulated in terms of derivative operators (Lowe, 

2004; Mikolajczyk and Schmid, 2004), which reflect changes in image content with respect 

to changes in location and/or scale 2. In this paper, for example, geometrical regions gi = {xi, 

σi} corresponding to local extrema of the difference-of-Gaussian (DOG) operator are used:

(2)

Use of the DOG operator in feature detection was popularized by the scale-invariant feature 

transform (SIFT) technique in 2D photographic imagery (Lowe, 2004), and the DOG 

operator has been shown to outperform other techniques in terms of detection repeatability 

(Mikolajczyk and Schmid, 2004). Each identified feature is a spherical region defined by a 

location xi, a scale σi, and the image measurements within the region, denoted as ai. Figure 1 

illustrates examples of scale-invariant features extracted in a 3D volume using the DOG 

operator, such features generally correspond to blob-like image structures. A variety of 

different saliency operators exist and can be used to extract scale-invariant features from 

different image characteristics, e.g. spatial derivatives (Mikolajczyk and Schmid, 2004), 

image phase (Carneiro and Jepson, 2003) or entropy (Kadir and Brady, 2001).

With regard to morphometric analysis, features extracted in a Gaussian scale-space are 

interesting for several reasons. Feature geometries reflect the locations and scales of natural 

anatomical structures in the image in a manner independent of image resolution, and 

analysis can avoid depending on arbitrary locations and scales determined by the particular 

imaging device used, e.g. using the entire image or single voxels. As features arise from 

derivatives or changes in image content, they typically correspond to distinctive image 

patterns whose presence or absence in an image can be established more readily than 

arbitrary image regions. Features are invariant to geometrical deformations including image 

translations, orientations and magnifications, and features corresponding to the same 

anatomical structures can thus be reliably extracted despite local tissue misalignments 

following initial coarse inter-subject or atlas-to-subject registration. Features are invariant to 

locally linear intensity changes, and the same anatomical structures can thus be robustly 

identified despite image intensity variations due to factors such as scanner non-uniformity, 

etc. Finally, features can be efficiently extracted in O(N log N) time and space complexity 

using image pyramid data representations (Lowe, 2004), where N is the size of the image in 

voxels.

2.2. Probabilistic Modeling of Features

While scale-invariant features can be robustly extracted despite intensity and geometrical 

changes, it is difficult to identify features arising from the same underlying tissue in 

different subjects. In general, such features vary in geometry and appearance from one 

subject to the next, and cannot be reliably extracted in all subjects, due to inter-subject and 

inter-group variability. The goal of probabilistic modeling is thus to identify features which 

2Gaussian derivative operators are also proposed to model receptive fields in biological vision systems (Young, 1987)
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do occur with statistical regularity in subsets of subjects, and to quantify their variability and 

informativeness with respect to subject groups.

Here, an individual feature is denoted as fi = {ai, αi, gi, γi}. ai is a vector of image 

measurements representing the image appearance of a local feature. αi is a binary random 

variable indicating whether ai represents the appearance of a valid feature instance or 

random noise. gi = {xi, σi} represents the geometry of a feature in terms of image location xi 

and scale σi. γi is a binary random variable indicating the presence or absence of geometry gi 

in a subject image.

Let F = {f1, . . . , fN} represent a set of N local features extracted from a set of images, where 

N is unknown. Let T represent a geometrical transform bringing features into coarse, 

approximate alignment with an atlas, e.g. a rigid or affine transform to the Talairach space 

(Talairach and Tournoux, 1988). Let C represent a discrete random variable of the group 

from which subjects are sampled, e.g. diseased, healthy. The posterior probability of (C, T ) 

given F can be expressed as:

(3)

where the first equality results from Bayes rule and the second from the assumption of 

conditional feature independence given (C, T ). The assumption of conditional independence 

is reasonable here, as inter-feature intensity dependencies are largely absent for features 

localized in scale and in space, and inter-feature geometrical dependencies are largely 

accounted for via knowledge of (T, C). To illustrate, consider the case of a pathology that 

tends to introduce a systematic bias into spatial normalization. Features fj and fj will 

generally exhibit bias-related dependencies, however variables (T, C) account for such 

dependencies, leaving fj and fj conditionally independent. In Equation (3), p(fi|C, T) 

represents the probability of a feature fi given (C, T), p(C, T) represents a joint prior 

distribution over (C, T) and p(F) represents the evidence of feature set F . The focus of 

modeling is on the conditional feature probability p(fi|C, T) which is expressed as:

(4)

(5)

Here, Equation (4) follows from the chain rule of probability, and Equation (5) follows from 

several reasonable conditional independence assumptions between variables. Feature 

appearance ai is conditionally independent of (gi, γi, C, T) given αi, and p(ai|αi) is a density 

over feature appearance ai given appearance validity αi. Appearance validity αi is 

conditionally independent of (gi, C, T) given the occurrence of a consistent geometry γi. 

p(αi|γi) thus represents a Bernoulli distribution over αi, as specified by γi = 0 and γi = 1. 

Feature geometry gi is conditionally independent of C given geometrical occurrence γi and 

global transform T , and p(gi|γi, T) is a density over gi conditional on (γi, T). Finally, feature 
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geometrical occurrence γi is conditionally independent of T given the group C, and p(γi|C) 

thus represents a Bernoulli distribution over γi for each subject group C.

2.2.1. Model Learning—Learning focuses on identifying clusters of features which are 

similar in terms of their group membership, geometry and appearance. Features in a single 

cluster represent different observations of the same underlying, group- related anatomical 

structure, and can be used to estimate the parameters of distributions in Equation (5). Figure 

2 illustrates an example of features in different subjects grouped into a cluster during model 

learning.

Preprocessing: Subject images are first aligned into a global reference frame, and T is thus 

constant in Equation (3). At this point, images have been normalized according to location, 

scale and orientation, and the remaining appearance and geometrical variability of 

anatomical structure can be described (Dryden and Mardia, 1998). Image features are then 

detected independently in all subject images as in Equation (2).

Clustering: For each feature fi, two different clusters or feature sets Gi and Ai are identified, 

where fj ∈ Gi are similar to fi in terms of geometry, and fj ∈ Ai are similar to fi in appearance. 

First, set Gi is identified based on a robust binary measure of geometrical similarity. 

Features fi and fj are said to be similar if their locations and scales differ by less than error 

thresholds εx and εσ. In order to compute geometrical similarity in a scale-independent 

manner, location difference is normalized by feature scale σi, and scale difference is 

computed in the log domain. Gi is thus defined for each fi as:

(6)

Here, thresholds εx and εσ represent the maximum acceptable deviation in the location and 

scale of a feature across subjects within normalized Talairach space. These can be set 

empirically or determined automatically; larger values may result in grouping geometrically 

different anatomical structures within a single model feature and produce a smaller overall 

feature set, smaller values will result in treating variations of the same anatomical structure 

as unique features and produce a larger feature set. In general, these thresholds can be set 

generously, as feature appearance will play an important role in sorting out ambiguities.

Next, set Ai is identified using a robust measure of appearance similarity, where fi is said to 

be similar to fj in appearance if the difference between their appearances is below a 

threshold εai. Ai is thus a function of εai and defined for each fi as:

(7)

where in this paper, ∥ ∥ represents the Euclidean norm between appearance vectors ai 

normalized to unit length, and reflects the assumption of independent and identically 

distributed image measurements in ai and aj. Note that while a single pair of geometrical 

thresholds (εx, εσ) applies to all features, εai is feature-specific and an optimal value is 

automatically determined for each feature such that:
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(8)

where Ci is the group associated with feature fi. εai is thus set to reflect the maximum 

permissible discrepancy in appearance such that the features are still more likely than not to 

arise from the same geometrically consistent, group-related anatomical structure. An 

important practical detail is to ensure that the ratio in Equation (8) is well-defined in the 

presence of sparse data, e.g. when . This can be done by adding small 

artificial counts to both the numerator and denominator of the ratio, a procedure referred to 

as Dirichlet regularization (Bishop, 2006).

Reduction: The intersection  represents a cluster of features which share a common 

geometry and appearance with fi, and arise from the same underlying anatomical pattern. 

Since clusters (Gi, Ai) are generated for all images features fi, many effectively correspond 

to the same feature cluster. A reduced set of model features is identified by discarding a set 

R of all features which are themselves elements of a larger cluster fi:

(9)

Reduction effectively compresses the set of raw features extracted in all subjects into a 

smaller, more meaningful set of model features, which represent probable inter-subject 

correspondences and can be used to quantify the relationship between anatomy and subject 

groups. Note that in general, a degree of partial overlap may exist between model features 

resulting from this reduction process, and more sophisticated feature reduction or clustering 

techniques could be potentially applied, e.g. structural group analysis (Coulon et al., 2000; 

Thirion et al., 2007). In the context of FBM, however, the distinctive appearance component 

of scale-invariant features aids significantly in disambiguating between different yet 

geometrically similar features, and partial overlap is rarely observed in practice.

2.2.2. Morphometric Analysis—The aim of FBM is to automatically discover group-

related anatomical structures, which can be used in order to guide further investigation into 

the anatomical basis for group differences or as disease biomarkers. The informativeness of 

a feature regarding group is quantified by the following likelihood ratio:

(10)

where fi = 1 is used as shorthand here to signify the event of positive feature occurrence (αi 

= 1, γi = 1). The ratio in Equation (10) represents the likelihood that fi co-occurs with group 

Ci vs. another different group C̄i. This ratio explicitly measures the degree of association 

between an image feature and a specific subject group, and lies at the heart of FBM analysis. 

Features can be sorted according to likelihood ratios to identify the anatomical structures 

most indicative of a particular subject group, e.g. healthy or diseased, and those with 

likelihood ratios near 1 can be disregarded as uninformative. As in Equation (8), Dirichlet 

regularization is applied to cope with sparse data when estimating the likelihood ratio.
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The statistical significance of the relationship between an individual feature and subject 

groups can be expressed using Fisher's exact test, where p-values are calculated from a 

contingency table of feature/group co-occurrence frequencies. Techniques such as 

Bonferroni correction or permutation testing (Nichols and Holmes, 2001) can be used to 

correct p-values for multiple comparisons to control the probability of committing a type I 

error. In scenarios such as FBM where the goal is to discover group-related features amid a 

high number of potential candidates, Bonferroni-type correction procedures which express 

the probability of any error may be unnecessarily conservative. In particular, the probability 

that a certain fraction of apparently group-related features arise by random chance may be 

relatively high, however this does not preclude the possibility of discovering a significant 

number of valid group-related features. An appropriate alternative here is the false discovery 

rate (FDR) (Benjamini and Hochberg, 2001), defined as the fraction of features falling 

below an uncorrected p-value threshold which represent false rejections of the null 

hypothesis, i.e. that features are statistically unrelated to subject groups. The FDR can be 

calculated using the method of Benjamimi and Hochberg (Benjamini and Hochberg, 2001) 

for subsets of features fi with the smallest uncorrected p-values.

2.2.3. Classifying New Subjects—The FBM framework can be used to identify group-

related features in new subjects and to classify new subjects according to group, a procedure 

potentially useful for computer-aided diagnosis. Classification begins by first aligning a new 

subject image into stereotactic space via T and extracting image features, as in the learning 

procedure. A set of model features F is then identified in the new subject in a manner similar 

to model learning, where a model feature fi is declared to be identified if an image feature fj 

in the new subject exists such that . 

Classification based on identified features can then be expressed as:

(11)

where C* is the optimal Bayes classification. In Equation (11), classification is primarily 

driven by the data likelihood ratio  based on the link between individual model 

features and groups as in Equation (10). Factor  represents the ratio of prior 

probabilities over subject group and transform. Note that thresholding the data likelihood 

ratio at 1 is generally ineffective for classification, as different subject groups generally 

occur with different frequencies in training and testing data, and produce different numbers 

of group-informative features. Instead, the prior probability ratio can be varied in order to 

balance the sensitivity/specificity rates of classification in a clinical setting.

3. Materials and Methods

FBM is a general technique that can be used to discover group-related anatomical structure 

in volumetric image sets. In order to validate FBM, we choose the example application of 

Alzheimer's disease (AD) analysis, as AD is a well-known, important, incurable 

neurodegenerative disease affecting millions worldwide, and is the focus of intense 
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computational research (Qiu et al., 2009; Kloppel et al., 2008; Duchesne et al., 2008; 

Marcus et al., 2007; Buckner et al., 2004).

Experiments use OASIS (Marcus et al., 2007), a large, freely available data set including 98 

normal (NC) subjects and 100 probable AD subjects ranging clinically from very mild to 

moderate dementia. All subjects are right-handed, with approximately equal age 

distributions for NC/AD subjects ranging from 60+ years with means of 76/77 years. For 

each subject, 3 to 4 T1-weighted scans are acquired, gain-field corrected and averaged in 

order to improve the signal/noise ratio. Images are aligned within the Talairach reference 

frame via affine transform T and the skull is masked out (Buckner et al., 2004).

The DOG scale-space (Lowe, 2004) is used to identify feature geometries (xi, σi). Feature 

appearances ai are obtained by cropping cubical image regions of side length  centered 

on xi, which are then scaled to (11×11×11)-voxel resolution. Voxel intensities are shifted to 

zero mean and normalized to unit length. Rotation invariance can also be achieved (Allaire 

et al., 2008), however this is omitted here as subjects are already rotation-normalized via T 

and further invariance reduces appearance distinctiveness. Spurious features will naturally 

arise from anatomical structure such as surfaces or tissue boundaries, which cannot be 

reliably localized in all spatial directions. These can be identified and discarded via an 

analysis of the 3 × 3 Hessian matrix H, calculated from derivatives of image intensity with 

respect to spatial coordinates about feature location and scale. Features for which the ratio 

 of the determinant vs. the cubed trace of H is low indicate degenerate patterns whose 

localization within the image is under-determined, and a threshold can be imposed based on 

this ratio to discard such features (Lowe, 2004). Approximately 800 features are extracted in 

each (176 × 208 × 176)-voxel brain volume.

For model learning, geometrical error threshold values used are empirically set to  and 

, these values are chosen generously in an attempt to include the natural range of 

variation of features across different subjects in normalized Talairach space. Further 

increasing these values increases the tendency to group geometrically similar yet different 

anatomical patterns into the same geometrical clusters, however the net effect on the set of 

model features resulting from learning is minimal, as ambiguities in geometrical clustering 

are resolved in a consistent manner in the subsequent stage of appearance clustering. 

Significantly decreasing these values, however, tends to fragment model features, as the 

maximum permissible geometrical variability is insufficient for effectively clustering 

features arising from the same underlying anatomical structure.

4. Results

To investigate discovery of group-related anatomical patterns, model learning is applied on a 

randomly-selected subset of 150 subjects (75 NC, 75 AD). Approximately 12K model 

features are identified via the learning processes, these are graphed in Figure 3. The solid 

curve in Figure 3 plots the occurrence frequency p(fi = 1|T) of features in the training set, 

which is proportional to the sizes of feature clusters identified during learning. Note that a 

large number of features occur infrequently and are observed in few subjects. In general the 

number of subject images required to obtain a good sampling is feature-specific and related 
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to the intrinsic feature occurrence frequencies; frequently occurring features can be 

repeatably observed and modeled from few subject images, while features arising from more 

subtle anatomical structure can only be observed in larger data sets.

The dashed curve in Figure 3 plots the likelihood ratio of feature occurrence in AD vs. NC 

subjects, along with several examples of AD- and NC-related features. A number of features 

identified occur frequently, yet bear little information regarding subject group (center of 

graph). A signifi-cant number are strongly indicative of either NC or AD subjects (extreme 

left or right of graph). Furthermore, the locations and scales of many strongly group-related 

features are consistent with brain regions known to differ between AD and NC groups, and 

their appearances can be interpreted in terms of established indicators of AD in the brain. 

For examples of AD-related features shown in Figure 3, feature (a) corresponds to 

enlargement of the extracerebral space in the anterior Sylvian sulcus; feature (b) corresponds 

to enlargement of the temporal horn of the lateral ventricle (and one would assume a 

concomitant atrophy of the hippocampus and amygdala); feature (c) corresponds to 

enlargement of the lateral ventricles. For NC-related features, features (1) (parietal lobe 

white matter) and (2) (posterior cingulate gyrus) correspond to non-atrophied parenchyma 

and feature (3) (lateral ventricle) to non-enlarged cerebrospinal fluid spaces.

Examples of the 8 most statistically significant AD-related and NC-related features are 

shown in Figures 4 and 5. In Figure 4, six of the eight most significant AD-related features 

correspond to established indicators of AD, independently identified in both hemispheres. 

Specifically, (a-l, a-r) represent the anterior poles of the enlarged lateral ventricles, (b-l, b-r) 

represent regions of atrophied white matter and (c-l, c-r) represent the enlarged temporal 

poles of the lateral ventricles. (d) represents the enlargement of the extracerebral space in the 

anterior Sylvian sulcus and (e) represents the enlargement of the posterior region of the right 

lateral ventricle. Figure 5 illustrates the eight most significant features associated with NC 

subjects. The 16 features in Figures 4 and 5 fall within the set of the 25 most significant 

group-related features, associated with a false discovery rate of 0.15. For these 25 features, 

21-22 could thus be expected to result from valid group-related image structure. Note that 

traditional morphometry methods can be used to identify differences in similar brain 

regions, for example the 2-sample t-test approach used in VBM shows differences between 

AD/NC groups in regions similar to Figure 4 (c-l, c-r) (Whitwell et al., 2007). Although 

traditional methods can identify regions in which voxel-level group differences occur, 

questions may remain as to the nature of these differences: are they due to systematic group-

related differences in spatial normalization (Bookstein, 2001)? Are they the result of 

multiple, distinct patterns of anatomy present in the region in different subjects? FBM 

focuses on identifying distinctive image features, that need not be present in all subjects and 

that tend to occur preferentially in subjects of similar groups, thereby providing a framework 

for addressing such questions.

FBM can also be used to classify new subjects in a computer-aided diagnosis scenario. An 

analysis of classification performance must take into account the clinical and demographic 

information of the experimental subjects, and the degree of AD-specific prior information 

incorporated into classification. In terms of demographic/clinical information, AD subjects 

exhibiting very mild dementia (i.e. bearing a clinical dementia rating (CDR) of 0.5) are more 
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difficult to discriminate from healthy subjects than those exhibiting mild or moderate 

dementia (i.e. CDR=1 or 2), and several approaches restrict classification to mild AD 

(Kloppel et al., 2008; Duchesne et al., 2008). Furthermore, elderly subjects are more easily 

confused with AD subjects due to the appearance of normal age-related atrophy, and 

imposing age limits generally improves classification (Kloppel et al., 2008). In terms of 

prior information, classification can generally be improved by focusing on specific 

measurements or regions of interest (ROIs) known to be implicated in AD, e.g. pre-

segmented grey matter maps (Kloppel et al., 2008) or the medial temporal lobe region 

(Kloppel et al., 2008; Duchesne et al., 2008). Classification rates as high as 0.92 have been 

achieved using the classic support vector machine (SVM) method (Cortes and Vapnik, 

1995) on intensity data in the medial temporal lobe region (Duchesne et al., 2008), and 

perfect classification has been achieved from measurements such as the entorhinal cortex 

thickness and the hippocampus volume (Desikan et al., 2009).

Classification here is performed in a leave-one-out manner, where each OASIS test subject 

in turn is kept aside and classified using an FBM model trained on all other subjects. Note 

that the training subjects and thus the learned model features vary from one trial to the next, 

however by inspection the most significant group-related model features are consistently 

identified across trials, e.g. those shown in Figures 4 and 5. While FBM model learning 

makes use of all 198 OASIS subjects (minus the test subject), classification results are 

reported on 3 different divisions of test subjects, in order to illustrate the effect of age and 

the severity of clinical diagnosis on classification performance:

1. Subjects aged 60-80 years, mild AD (CDR=1) (66 NC, 20 AD), a scenario similar 

to (Kloppel et al., 2008).

2. Subjects aged 60-96 years, mild AD (CDR=1) (98 NC, 28 AD), to illustrate 

classification of elderly subjects.

3. Subjects aged 60-80 years, both mild and very mild AD (CDR=1 and 0.5) (66 NC, 

69 AD), to illustrate classification of very mild AD.

The receiver operating characteristic (ROC) curves these three divisions are plotted in 

Figure 6. Division 1) results in an equal error classification rate (EER) 3 of 0.80. A slightly 

higher classification rate of 0.81 is reported in a similar scenario using the SVM-based 

method (Kloppel et al., 2008), although a direct comparison cannot be drawn as the 

underlying data sets are different, and AD severity categories are defined differently. In 

(Kloppel et al., 2008) for instance, mild AD is defined by Mini Mental State Examination 

(MMSE) score ≥ 20 with mean MMSE = 23.5, and in OASIS (Marcus et al., 2007) by 

CDR=1, with corresponding mean MMSE = 20.8, stdev = 3.7. Note also that the work of 

(Kloppel et al., 2008) makes use of AD-related measurements in the form of grey matter 

maps, while FBM operates on features extracted throughout the brain and subcortical 

regions. For divisions 2) and 3), classification rates drop to EER = 0.70 and 0.71, 

3The EER is a threshold-independent measure of classifier performance, defined as the classification rate where misclassification rates 

for AD/NC subjects are equal. Here, the EER is achieved at a data likelihood value of , and a classification rate 

of 0.76 is obtained at .
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respectively, demonstrating the difficulty in classifying subjects that are elderly or exhibit 

very mild AD. A rate of EER = 0.65 is obtained for leave-one-out trials on all 198 OASIS 

subjects, where classification errors are largely due to younger subjects with very mild AD 

and elderly NC subjects.

To our knowledge, classification results have not yet been reported on the OASIS data in a 

comparable image-based classification scenario, and we attempted a baseline image-based 

classification experiment using the popular SVM method, see details in Appendix A. 

Classification was unsuccessful despite investigating various combinations of SVM kernels 

and image preprocessing steps, speaking to the difficulty of image-based classification. Note 

that while affine-aligned OASIS subject images are used here, more effective SVM 

classification of AD/NC subjects has been reported using deformable image alignment (Lao 

et al., 2004; Duchesne et al., 2008). While SVMs are useful for classification, they require 

additional interpretation to explain the link between anatomical tissues and groups (Lao et 

al., 2004). The primary advantage of FBM is the ability to automatically identify distinctive, 

group-related anatomical patterns that may not be present in all subjects, in addition to the 

ability to classify new subjects.

5. Discussion

This paper presents and validates feature-based morphometry (FBM), a new, fully data-

driven technique for discovering group-related anatomical structures in volumetric images. 

The primary difference between FBM and other morphological analysis techniques is that 

FBM explicitly addresses the situation where one-to-one inter-subject correspondence does 

not exist between all subjects, due to disease or anatomical variability. This is achieved by 

modeling the image as a collage of local scale-invariant features that need not occur in all 

subjects, which provides a mechanism to avoid confounding analysis of tissues which may 

not be present or easily localizable in all subjects. FBM is based on learning a probabilistic 

model of local, scale-invariant features which reflect group-related anatomical 

characteristics. A clinical validation is performed on a set of 198 NC and probable AD 

subjects from the large, freely available OASIS data set (Marcus et al., 2007). Anatomical 

features consistent with established differences between NC and AD brains are 

automatically discovered in a set of 150 training subjects. The significance of features 

identified is quantified in terms of the false discovery rate (FDR), and analysis shows that a 

sizable set of group-related features can be identified with a low FDR. FBM is potentially 

useful for computer-aided diagnosis, and leave-one-out trials achieve a classification rate of 

EER = 0.80 for subjects aged 60-80 years exhibiting mild AD (CDR=1) in a scenario similar 

to recent work (Kloppel et al., 2008). To our knowledge, classification results for similar 

methods where measurements or regions of interest are not known a priori have not yet been 

published for the OASIS data set, however the OASIS data set is freely available and 

comparison with other techniques in the literature will be possible.

FBM does not replace current morphometry techniques, but rather provides a 

complementary approach which is particularly useful in the situation where one-to-one inter-

subject correspondence is ambiguous or difficult to achieve. For this reason, FBM has the 

potential to become widely used in contexts such as neurological disease analysis, where 
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this is often the case. The work here considers group differences in terms of feature/group 

co-occurrence statistics, however most features do occur (albeit at different frequencies) in 

multiple groups, and traditional morphometric analysis on an individual feature basis is a 

logical next step in further characterizing group differences. In terms of FBM theory, the 

model could be adapted to account for disease progression in longitudinal studies, to aid in 

understanding the neuroanatomical basis for progression from mild cognitive impairment to 

AD for instance. Thresholds on permissible geometrical error εx and εσ are currently fixed to 

reasonable empirical values. Experimentally, the same significant group-related model 

features are consistently identified using larger thresholds (e.g. εx = 1.0, εσ = ln 1.8), 

however they tend to become fragmented for lower thresholds (e.g. below εx = 0.4, εσ = ln 

1.4). Optimal values could potentially be estimated automatically from data, and it is 

possible that spatially varying threshold may offer improved modeling, e.g. allowing for 

greater geometrical variability in the cortex. Many different types of scale-invariant features 

other than DOG features have been developed, these could be incorporated into FBM to 

discover a greater variety of group-related anatomical patterns and to improve classification. 

Finally, a future experiment will be to assess the repeatability of features identified in 

different FBM models trained on independent image sets, this will require a principled 

means of comparing sets of model features derived from different data sets.

A. Details of SVM Experiments

SVM classification trials were performed on random training/testing set divisions of the 

OASIS data, with images preprocessed using Gaussian-smoothing with blurring kernels of 

standard deviation (0, 1, 2, 4 voxels). RBF and Linear SVM kernels were tested. The Linear 

SVM kernel is defined by a single parameter C relating to the error margin, the RBF kernel 

is defined by parameters C (as in the Linear kernel) and γ which controls the width of the 

kernel. Exhaustive searches were performed in order to determine optimal parameter values. 

Classification was unsuccessful; the SVM was not capable of learning a viable decision 

boundary and in all trials defaulted to guessing the most frequent group label in the training 

set. A maximum classification rate of ≈ 0.5 was thus obtained here for approximately equal 

numbers of AD and NC test subjects.
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Figure 1. 
Illustrating scale-invariant features extracted in an MR volume. Circles represent the 

locations and scales of features in (a) a coronal slice and (b) an axial slice. Solid circles 

indicate features present in both slices, dashed circles indicate features present in a single 

slice. Note how feature scales reflect the spatial extent of the underlying anatomical 

structures, e.g. the width of sulci or ventricles. Here, features are extracted using the DOG 

operator (Lowe, 2004) and features shown are located within 2 voxels of the corresponding 

slice through in the 3D volume.

Toews et al. Page 18

Neuroimage. Author manuscript; available in PMC 2015 February 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
White circles represent features in different subjects which are similar in terms of their 

appearance, geometry and group membership. These features are considered to arise from 

the same underlying group-related anatomical structure and grouped into a single cluster in 

model learning. The features shown here are identified in 10 of 75 Alzheimer's subjects and 

in none of 75 normal control subjects.
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Figure 3. 

The dashed curve plots the likelihood ratio  of feature occurrence in AD vs. NC 

subjects sorted in ascending order, low values indicate features associated with NC subjects 

(lower left) and high values indicate features associated with AD subjects (upper right). The 

solid curve plots feature occurrence probability p(fi = 1|T), which is proportional to the 

cardinality of model feature clusters identified during learning. Note a large number of 

frequently-occurring features bear little information regarding AD or NC (center of graph). 

Examples of highly NC-related (1-3) and AD-related (a-c) features are shown, along with 

their associated likelihood ratios.
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Figure 4. 
Examples of the eight most significant AD-related features, shown in sagittal and coronal 

slices. The feature occurrence frequencies within 75 AD and 75 NC subjects and associated 

uncorrected p-values are given. Out of eight features, six represent similar anatomical 

regions identified independently in left and right hemispheres. All represent 

neuroanatomical regions known to be affected by AD.
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Figure 5. 
Examples of the eight most significant NC-related features, shown in sagittal and coronal 

slices. The feature occurrence frequencies within 75 AD and 75 NC subjects and associated 

uncorrected p-values are given. Most features lie near the mid-sagittal plane (1-6), and 

reflect stable un-atrophied cortical (1-3) or sub-cortical (4-6) structure. Feature (7) 

represents an anatomical pattern reflective of natural age-related atrophy, feature (8) 

represents a distinctive cortical fold.
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Figure 6. 
ROC curves for leave-one-out classification divisions. Maximum classification accuracy is 

achieved in 1) for subjects with mild AD (CDR=1) and within 60-80 years of age (solid 

curve, EER = 0.80). Including 2) elderly subjects or 3) very mild AD cases both result in 

reduced classification performance.
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