
Local White Matter Geometry from Diffusion Tensor Gradients

Peter Savadjieva,b, Gordon L. Kindlmannc, Sylvain Bouixb, Martha E. Shentonb,d,a, and Carl-
Fredrik Westina
a Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA,
USA
b Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA, USA
c Department of Computer Science and Computation Institute, University of Chicago, Chicago, IL,
USA
d Laboratory of Neuroscience, Department of Psychiatry, VA Boston Healthcare System, Harvard
Medical School, Brockton, MA, USA

Abstract
We introduce a mathematical framework for computing geometrical properties of white matter fibres
directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor
field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame
of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to
define scalar indices (or measures) that describe the local white matter geometry directly from the
diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar
indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in
vivo data. Finally, we illustrate their applicability to a group study on schizophrenia.

Keywords
Diffusion Tensor Imaging; Magnetic Resonance Imaging; Fibre Geometry; Rotation Tangents; Fibre
Dispersion; Fibre Curving; Schizophrenia

1 Introduction
Despite the advent of high angular resolution diffusion imaging techniques, diffusion tensor
imaging (DTI) data continues to be commonly acquired and utilized in a variety of studies in
neuroscience and medicine, in particular in clinical settings (e.g. [21,31]). Empirically
established connections to biological tissue properties make DTI a uniquely powerful imaging
modality. These connections are apparent when the diffusion tensors are mapped to well
understood scalar metrics, such as the trace of the diffusion tensor (the average of its
eigenvalues), which has been linked to ischemic stroke detection [36], or the anisotropy of the
tensor, which has been related to the microstructural organisation of white matter tissue [11].
The introduction of the tensor model in diffusion MRI [7] led to the now well established use
of tensor-derived scalar measures such as trace and fractional anisotropy (FA) as biologically
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meaningful descriptors of the structure in a tensor field (e.g. [5,6,29,39]). In addition, a rich
set of increasingly sophisticated and abstract tensor analysis methods based on Euclidean (e.g.
[1,8,27]) or Riemannian (e.g. [10,38,23,22,28,2,14,3]) geometry has been developed. These
methods introduced a variety of metrics that quantify tensor similarity (between two tensors)
and variation (within a tensor field), which have been incorporated in several different
applications such as tractography, tensor field segmentation, regularization, interpolation.

In [19], Kindlmann et al. emphasised the need to develop models for diffusion tensor field
analysis in terms of biologically meaningful parameters. They introduced a framework for
expressing the six degrees of freedom of a diffusion tensor in terms of shape and
orientation. At each location in a tensor field, they built an orthonormal reference frame with
three shape-based components, called invariant gradients, which describe variations in tensor
shape, and three orientation-based components, called rotation tangents, which capture
variations in tensor orientation.

In this article, we use the framework of Kindlmann et al. [19] to perform a differential analysis
of diffusion tensor fields, leading to novel methods for the recovery of white matter geometrical
indices, directly from the tensor data. By isolating the portion of the gradient of the tensor field
corresponding to local variation in tensor orientation, and by projecting it onto a coordinate
frame of tensor eigenvectors, we achieve an eigenframe-centered representation of local tensor
field configurations. Given that the principal eigenvector generally represents the dominant
orientation of the underlying fibre population [24], this allows us to define measures of fibre
curving and fibre dispersion.

Since our analysis is a differential one, based on tensor field gradients, it allows us to
characterize white matter beyond the single voxel scale. At the same time, we compute white
matter geometry based on information intrinsic to the data, instead of requiring prior
tractography as in e.g. [9]. This makes the approach independent from errors in the tractography
process, and from the need for establishing explicit point correspondences along tracts where
tangent vector differences are to be computed. It also makes the approach consistent with the
idea of differential geometry based “stains” proposed by Basser in [5], where he argues that in
addition to measures based on individual tensors, the information found in patterns of tensors
and their differential structure may yield new insights into tissue organisation, structure and
function.

Such insights can be obtained by applying our scalar indices to the study of local fibre
organisation in the context of population studies. As a proof-of-concept, we carry out a group
study on schizophrenia, where we find differences in local fibre geometry between patients
and normal controls. Schizophrenia is considered to be a disease that affects white matter
connectivity in the brain [4,15], and results in subtle but important changes in the white matter
[4,15,21]. Although the exact nature of these changes is still not entirely clear, our scalar indices
may be useful to detect and quantify those changes that affect white matter geometry. Of course,
the study of other diseases affecting the white matter may benefit from these methods as well.
Other potential applications, to be pursued in future work, include the use of the indices in
tractography, e.g. as geometrical priors, as well as in a context of registration as geometrical
landmarks.

White matter geometry has been the topic of several methodology studies in diffusion MRI,
and has been applied to tasks such as tractography, regularization, white matter tract clustering
and segmentation, e.g. [13,9,12,34,25]. Many of these methods first perform tractography and
then compute geometrical properties (e.g., curvature and torsion) of the recovered tracts. They
typically reparametrize the reconstructed tracts using a representative geometric model, or they
approximate Frenet’s formulas for the differential geometry of curves [26] by computing

Savadjiev et al. Page 2

Neuroimage. Author manuscript; available in PMC 2011 February 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



tangent vector variations along curves. Tractography, however, is an non trivial process that
depends on a multitude of parameters, and any flaws in the tractography will inevitably be
reflected in the subsequent analysis. Furthermore, most research on white matter geometry is
concerned with the geometry of individual curves. When needed, the geometry of sets of curves
is often obtained by mapping individual curves to an average representation, e.g. [12,25]. This
mapping may often result in the loss of structural information, and it may often involve heuristic
decisions in the choice of corresponding tract points or segments, fibre similarity measures,
etc.

A more formal treatment of the geometry of 3D curve sets in a diffusion MRI context is
presented in [35,32]. The key idea there is to compute locally three curvature functions which
describe how the tangent vector changes along the curve and in directions orthogonal to it. A
drawback of this method is a computationally intensive implementation which requires the
optimal fitting of a local geometric model to the data. Nevertheless, the idea of considering
tangent vector variations not only along a curve, as in the classical Frenet equations [26], but
also across ensembles of curves, is a very compelling one. For example, the degree to which
a population of curves varies in a direction orthogonal to the tangent may be a basis for
quantifying the extent to which the curves deviate from parallelism, and for defining a notion
of fibre fanning, or dispersion. This idea is one of the motivations of the work presented here.

2 Mathematical model
2.1 Rotation tangents: background

Our method is based on the mathematical framework developed in [19,20]. Let F: ℝ3 ↦
Sym3 be a diffusion tensor field, such that F(x) = D, a diffusion tensor with components Dij.
Here Sym3 denotes the set of symmetric tensors (D = DT) in ℝ3 ⊗ ℝ3. Consider the tensor
rotation function ψ which rotates D with rotation matrix R ∈ SO3, the group of rotations on
ℝ3:

(1)

In [19], the rotation tangent Φp (D) associated with eigenvector ep (p ∈ {1, 2, 3}) of diffusion
tensor D is defined as the change of tensor value due to infinitesimal rotations around ep:

(2)

where Rep(φ) denotes rotation by angle φ around ep. The partial derivative with respect to the
rotation angle φ is measured at φ = 0 in order to approximate an infinitesimal rotation.

The rotation tangent Φp (D) is a second order tensor onto which the tensor field gradient ∇F
(x) can be projected, in order to obtain three spatial gradients of orientation [19]:

(3)

Here “:” is the tensor contraction operator (analogous to the vector dot product), Φ ̂p are unit-
norm rotation tangents, and ∇φ ̂p are vectors that indicate in ℝ3 the direction in which the tensor
orientation around eigenvector ep varies the fastest.
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In our work, gradient computations are performed as described in [19] and as implemented in
[17], through a convolution-based approach which follows closely the method proposed by
Pajevic et al. in [27]. We construct kernels that represent the partial derivatives of a separable
uniform cubic B-spline. The linearity of convolution and differentiation makes possible the
computation of the partial derivatives of the tensor field.

2.2 Scalar geometric indices: overview
The work presented in [35,32] argues for the representation of white matter fibre geometry
(and that of sets of 3D curves in general) in terms of local coordinate frames. The idea is to
capture the differential geometry of 3D curves by measuring changes in the tangent vector
orientation in three mutually orthogonal directions provided by the tangent, normal and bi-
normal vectors of a local coordinate frame. The projection of the change of tangent vector
orientation in these three directions results in three curvature functions which characterize
locally the differential geometry of 3D curve sets.

Motivated by this approach, in this paper we consider the projection of the three ∇φ ̂p (3) into
the local coordinate frame provided by the tensor eigenvectors. One can form a total of nine
such projections ∇φ ̂p · eq, p, q ∈ {1, 2, 3}. We choose the eigenframe as a projection basis due
to the biological significance of tensor eigenvectors. It is commonly accepted that the principal
eigenvector is aligned with the underlying white matter fibre tract in voxels where the diffusion
anisotropy is strong enough (e.g. [24]). We can thus relate patterns of tensor organisation to
the geometry of white matter fibres.

Given the assumption that e1 represents the local fibre tangent direction, one can establish
correspondences between observed tensor configurations and local fibre configurations. For
example, ∇φ ̂2 · e1 and ∇φ ̂3 · e1 measure tangential change in tensor orientation (i.e. change in
the tensor field seen by an observer displacing locally in the direction parallel to e1), which is
analogous to the classical Frenet curvature, or the tangential curvature [35], of the underlying
fibre. On the other hand, the projection of ∇φ ̂2 and ∇φ ̂3 in the plane spanned by e2 and e3
measures fibre orientation changes in directions orthogonal to e1. This is analogous to the
normal and bi-normal curvatures of [35]. Finally, tensor rotations around e1, captured by
∇φ ̂1, would correspond to fibre twist.

Figure 1 illustrates a variety of local tensor configurations characterized by orientation change,
for the nine possible combinations of tensor rotation around an eigenvector ep observed in the
direction of another eigenvector eq. For each example configuration, the projection ∇φ ̂p · eq
will result in a high value (the specific values for p and q are indicated for each case).

Figure 2 illustrates these projections on a 2D synthetic diffusion tensor field with gradients in
tensor orientation (Fig. 2(a)). The dataset is constructed to have three vertical regions of tensor
rotation, one around each eigenvector. In this example, tensor trace and FA are kept constant
throughout the field, while tensor mode increases linearly from top to bottom (see [19] for a
definition of tensor mode). Note how the projections shown in Fig. 2(b,c,d) are dependent on
tensor shape. For instance, ∇φ ̂p · e1 has lower values in the bottom left part of Fig. 2(b), where
the tensors have a cylindrical shape. This is because rotations around e1 do not produce a
significant change in the tensor field when the tensors are nearly cylindrical (with λ2 ≈ λ3).
Similarly, rotation around e3 has little effect on tensors with a nearly disk shape (with λ2 ≈
λ3), and ∇φ ̂3 and its eigenframe projections go to zero, as can be seen in the upper right part
of Fig. 2(d).
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2.3 Dispersion and curving indices
We formalize the above observations by defining a local scalar index of fibre curving, , and
a local scalar index of fibre dispersion, :

(4)

(5)

Here “:”is the tensor contraction operator, and ⊗ represents the outer product (also known as
the tensor product). The indices in (4) and (5) combine the rotation tangents ∇φ ̂2 and ∇φ ̂3 into
a single second order tensor (∇φ ̂2 ⊗ ∇φ ̂2 + ∇φ ̂3 ⊗ ∇φ ̂3), which is then projected onto another
second order tensor that represents the fibre tangent direction in the case of the curving measure
(4), or the plane orthogonal to that direction in the case of (5). The use of outer products and
tensor contractions sidesteps the sign ambiguity inherent in both the eigenvectors and the
rotation tangents of [19].

Figures 3 and 4 illustrate the dispersion  and curving  indices, respectively, on one dispersing
and one curving synthetic tensor dataset, where the tensors have all the same three eigenvalues.
The dispersing tensors are aligned radially with respect to an origin, whereas the tensors in the
curving field are tangent to a series of concentric circles with a common center (origin). In Fig.
3, the dispersion index is higher near the origin of the fanning, and decreases with distance.
The same effect is observed in Fig. 4 with the curving index. With both measures, the origin
itself is a singular point since the tensor orientation there is ill-defined. One may also note that
the two measures are rotationally-invariant. In these examples, if the curving index is computed
on the dispersing field, or the dispersion measure is computed on the curving field, the result
is zero except in the regions of large tensor orientation changes near the origin, which may be
interpreted as either curving or dispersion. Note that the two measures are not mutually
exclusive.

As seen in Fig. 2, the value of projections of the form ∇φ ̂p · eq is modulated by tensor shape.
The dispersion and curving indices are consequently also modulated by tensor shape, and this
effect is examined further in Section 3.1.1, where the indices are computed on synthetic tensor
data with varying FA, mode, and norm (see [19] for a definition of tensor norm). In order to
define mathematically the relation between tensor shape and our geometrical indices, in
Appendix II we expand (3) and present a derivation that links the dispersion and curving
measures to the spatial derivatives of tensor elements D12 and D13. Thus, our indices measure
rates of change of tensor orientation (the tensor eigenvectors) weighted by the tensor shape
(the eigenvalues). It is known that the off-diagonal tensor elements represent the correlation
of diffusion in the x, y and z directions [5,30]. As presented in Appendix II, computing our
indices amounts to measuring directional changes in these correlations.

In this paper, we do not propose measures involving ∇φ ̂1. Unlike the geometry captured by
∇φ ̂2 and ∇φ ̂3, tensor rotations around e1 do not reflect a change in the fibre tangent direction.
Rather, they capture rotations of the diffusion profile around the fibre tangent. Such rotations
may be particularly sensitive to noise, and their biological meaning is not immediately clear.
We thus leave their study for future work.
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3 Experiments and results
3.1 Synthetic data validation

3.1.1 Variation with respect to tensor shape—We computed the curving (4) and
dispersion (5) indices on the synthetic datasets shown in Fig. 5. They all have the same
eigenvector geometry as the dataset in Fig. 2, with the same three vertical regions of rotation,
one for each eigenvector. In this figure, we examine the effect of varying tensor FA, mode,
and norm. In each row of Fig. 5, we vary linearly one of these three tensor properties, while
keeping the other two constant. As expected, the fanning tensor configurations in the central
and right-hand side vertical bands have a high dispersion index. The immediately adjacent
regions exhibit a high curving index, which is consistent with the underlying geometry. Since
the measures are not mutually exclusive, some locations can have both high dispersion and
high curving indices.

3.1.2 The case of crossing voxels—The behaviour of our measures in the presence of
fibre crossings is illustrated in detail with synthetic data in Appendix I. The diffusion tensor
is a voxel-averaged quantity, which has a complex dependence on tissue structure especially
in voxels with a non-uniform distribution of fibre directions [30]. For example, in the case of
voxels with fibre crossings, the primary eigenvector corresponds to an average fibre direction
(e.g. [8]), which may be quite different from the direction of either one of the crossing fibre
populations. This direction depends on factors such as the angle between the crossing fibres
and the relative volume fraction occupied in the voxel by each population. Because of all these
effects, the tensor field may change dramatically in the vicinity of and within fibre crossings.
As illustrated in Appendix I, such changes may be viewed as changes in dispersion and curving
within the tensor field.

3.2 In vivo data validation
Diffusion-weighted images were acquired on a 3T scanner (General Electric Company,
Milwaukee, WI, USA) using an echo planar imaging (EPI) sequence, with a double echo option
to reduce eddy-current related distortions. To reduce the impact of EPI spatial distortion, an 8
Channel coil and ASSET with a SENSE-factor of 2 were used. The acquisition consisted in
51 directions with b= 900 s/mm2, and 8 baseline images with b= 0 s/mm2. The scan parameters
were: TR=17000 ms, TE=78 ms, FOV=24 cm, 144 × 144 encoding steps, 1.7 mm slice
thickness. A total of 85 axial slices covering the whole brain were acquired.

As discussed earlier, our measures assume that e1 reflects the predominant direction of the
underlying fibre population. To ensure the validity of this assumption, we compute values for
the dispersion and curving indices only in voxels where the linear anisotropy measure [39] is
higher than a threshold, set to 0.1 in our experiments. This thresholding excludes mainly voxels
with cerebro-spinal fluid or grey matter.

Section 2 discusses that in addition to reflecting fibre geometry, the geometric indices are also
modulated by tensor size and tensor shape. In the following set of experiments, in order to
ensure that the results reflect only fibre geometry in terms of changes in tensor orientation, we
impose two different constraints on the data. The first constraint is a weaker one, and consists
in normalizing the diffusion tensors by dividing each tensor by its norm. This normalization
results in unit-norm tensors and thus removes the effect of tensor size, but does not affect tensor
shape. The second constraint is a stronger one, and consists in removing the influence of tensor
shape by setting the eigenvalues of all tensors as follows1: λ1 = 0.0012, λ2 = λ3 = 0.0005

1These values were chosen to be representative of a typical tensor in a relatively anisotropic part of the human white matter such as
certain U-fibres [30].
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mm2/s. Following this step, every tensor is divided by its norm. The net effect of this
normalization is to transform all tensors to cylinders with identical shape and unit norm. This
transformation modifies radically the data and results in the loss of structural information
through the removal of planar anisotropy [39]. However, it also results in robustness to noise
which may randomly interchange e2 and e3 in cases of high linear anisotropy, when λ2 and
λ3 are both small and nearly equal. The main reason for performing this normalization,
however, is to demonstrate that in practice, tensor shape does not strongly affect the computed
indices.

Each of these normalizations were carried out as a preprocessing step, prior to computing the
geometric indices, in two separate experiments. When the dispersion and curving indices are
computed on data normalized by tensor size, we will refer to them as “size-normalized
dispersion” (with acronym SD) and “size-normalized curving” (with acronym SC),
respectively. When they are computed on data normalized by tensor shape and size, as in the
second constraint above, we will refer to them as “shape-normalized dispersion” (with acronym
SHD) and “shape-normalized curving” (with acronym SHC), respectively. For the latter
normalization, the names do not include “size” for brevity, and also because shape is the
stronger normalization factor. We will continue to use the terms “dispersion” and “curving”
when no specific normalization is implied.

3.2.1 Results with size-normalized dispersion and curving: SD and SC—As
described above, prior to computation of the geometric indices, each tensor was divided by its
norm, in order to remove any dependence on tensor size in the results. After computation of
the indices, standard streamline tractography [18] was run to help visualize in three dimensions
the behaviour of the indices relative to well-known fibres. The resulting tracts were colored
with the pre-computed scalar indices, as shown in Fig. 6. Note how the SD index captures the
local fanning of fibres passing through the internal capsule in Fig. 6(a) . The fibres run parallel
in the bottom part of the green box in Fig. 6(c) and the SD index is low. In the upper part of
the box, however, the fibres fan, which is characterized by higher index values. While assessing
visually these results, it is important to remember that fibre dispersion is a 3D phenomenon.
Thus, for example, the area of high SD seen in the internal capsule (c) corresponds to fibre
fanning orthogonal to the image plane. Finally, note that the SC index results in Fig. 6(b,d) are
also consistent with the geometry of the recovered fibre tracts.

3.2.2 Results with shape-normalized dispersion and curving: SHD and SHC—In
this experiment, the effects of both tensor shape and size on the results were removed by
modifying in a preprocessing step the diffusion tensors as described above. After computation
of the geometrical indices, streamline tractography was run to help visualize in three
dimensions the behaviour of the indices, in the same manner as in Fig. 6. The resulting tracts
were colored with the pre-computed indices and are shown in Fig. 7. Note that there are no
apparent differences with the results in Fig. 6, which is an qualitative indication that in vivo,
tensor shape does not appear to have a major influence on the geometric indices.

3.3 Group study on schizophrenia
We carry out a group study on schizophrenia as a proof-of-concept to demonstrate the
applicability of our indices in a population study context. Diffusion MRI data from 20 normal
controls (NC) and 23 schizophrenic patients (SZ) was acquired as described in Section 3.2. All
subjects in both groups are right-handed males, and all subjects in the SZ group are chronic
schizophrenia patients. For the NC group, the age range is 21–55 years (mean 40.35 years,
standard deviation of 11.83 years). For the SZ group, the age range is 22–55 years (mean 44.26
years, standard deviation of 9.94 years). The deep white matter structures were segmented in
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regions of interest (ROIs) by registering the ICBM-DTI-81 atlas [16] with the diffusion
baseline of each subject using non-linear registration [18].

We computed dispersion (5) and curving (4) indices in ROIs that segment the anterior part of
the corona radiata (CR), as well as the uncinate fasciculus (UF), in both hemispheres. A slice
through each ROI is illustrated in Fig. 8. The CR is characterized by dispersion, whereas the
UF is a curving tract. We thus hypothesized that the dispersion index in the CR case and the
curving index in the UF case may reveal certain population differences.

We computed the indices on data that was normalized by tensor size, as described in Section
3.2. The results are presented in the left column of Fig. 9. We repeated the same experiment
with tensor shape and size normalization, also described in Section 3.2. The results are
presented in the right column of Fig. 9.

The difference between the NC and SZ populations is significant in the anterior CR, in the
cases of both SD and SHD, as shown in Fig. 9(a,b). The curving indices in Fig. 9(c,d) and (g,h)
show a trend towards the SZ group having higher index values in the UF, and lower values in
the CR. Thus, the population differences are reflected mainly in the dispersion index (both SD
and SHD) in the anterior CR. As for the curving indices, they both reveal an interesting left
vs. right asymmetry in the UF. The significant difference observed in the anterior CR is
consistent with earlier studies of the white matter in the frontal lobe, which report reduced
fractional anisotropy in schizophrenia patients [21].

It is important to note that neither the dispersion nor the curving indices are expected to be
increased or decreased uniformly over the brain in patients as compared to controls. Rather,
the effect is expected to be different depending on the region of interest. A region which
normally shows a high level of dispersion or fanning in controls, such as the CR, might have
its level of dispersion reduced because of white matter abnormalities. Conversely, a tightly
bundled tract in normals that has very low dispersion may have an increased dispersion value
in schizophrenics. We carried out a repeated Measures Analysis of Variance (ANOVA) test
and found a significant Diagnosis × ROI interaction (F(1,41) = 14.82, p<0.001) in the case of
size-normalized dispersion (SD) results, indicating that the difference between the SZ and NC
groups was different for the CR compared to the UF region. With shape-normalized dispersion
(SHD), the Diagnosis × ROI interaction is also significant: F(1,41) = 4.409, p=0.042. Because
of that, we carried out independent t-tests in each ROI to determine levels of significance.

The comparison between results obtained with and without shape normalization shows once
again that in practice, our measures reflect the underlying fibre geometry and are not strongly
influenced by non-geometrical factors. This is not surprising, since in order to obtain these
measures, information is integrated over a local neighborhood, and local variations in shape
are probably too weak and too noisy in order to modulate significantly strong and consistent
variations in tensor orientation over that neighborhood.

These results are very preliminary, and further study is required before clinical significance
claims can be made. For instance, a better ROI definition scheme may be required.
Nevertheless, these results serve as a proof-of-concept and demonstrate that geometrical
indices can recover population trends.

4 Discussion
In this paper, we proposed two scalar measures of fibre geometry, each of which combines
projections of the form ∇φ ̂p · eq. In principle, it is possible to use individually each of the nine
projections illustrated in Fig. 1 as a separate scalar measure. Here, we focused on the combined
measures rather than on their individual “building blocks”, because they provide results that
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are more stable and easier to interpret. Other combinations that were not examined in this paper
may be of interest as well, and are a topic of future work. For example, ∇φ ̂2 · e2 and ∇ φ ̂3 ·
e3 are sub-types of dispersion configurations that are probably common at interfaces of fibre
tracts with different orientations. A measure that combines these two building blocks may
therefore be useful to detect such interfaces.

As discussed throughout the paper, the geometric indices are dependent both on tensor
orientation as well as tensor shape. Given the focus of this paper on white matter geometric
features, a question that arises naturally is to what extent the proposed measures compute actual
fibre geometry, as reflected in the change of tensor orientation, and to what extent they reflect
changes in tensor shape, which may be related to fibre geometry, or to other factors such as
changes in extracellular diffusion, partial voluming effects etc. Answering this question in the
case of in vivo data is a difficult problem, since there is not an accepted method of isolating
the geometry component of the diffusion tensor data from other, non-geometrical information
(although previous work has attempted to solve the problem in the case of high-angular
resolution diffusion imaging (HARDI) data, e.g. [33]). In this paper, we did not provide a
conclusive answer to this question. However, we provided empirical evidence to indicate that
in practice, in the case of in vivo data, the measures compute essentially only fibre geometry
and are not significantly influenced by non-geometrical information. As shown in Sections 3.2
and 3.3, the results with tensor shape normalization are strikingly similar to those obtained
without it.

The advantage of not performing shape normalization as described in Section 3.2, is that no
artificial constraints are imposed on the data. On the other hand, shape normalization has the
advantage of removing the spatially varying shape component of the tensor field, which may
help the interpretation of correlations between the geometric indices and tensor shape metrics,
such as FA. We plan to explore such correlations in future work. The specific values chosen
in Section 3.2 for the normalized eigenvalues are of course only one set among many other
possible choices.

Another question that may arise is why not simply compute the derivatives of the principal
eigenvector field, instead of computing more complex tensor gradients, as proposed in this
paper. Due to the sign ambiguity of tensor eigenvectors, derivatives of the principal eigenvector
field are not well defined. Furthermore, the full tensor contains more information that only the
principal eigenvector, and this additional information is likely to be valuable. For example, in
the case of disk-shaped tensors, the principal eigenvector direction is not particularly
meaningful. The weighting by tensor shape intrinsic to our indices will automatically take the
uncertainty in the model into account and will reduce the computed dispersion or curving
measure.

Another issue that merits consideration is that of scale. Currently, our measures work at a single
scale determined by the spatial extent of the B-spline kernels used to compute tensor derivatives
(see Section 2.1). However, fibre geometries such as dispersion and curving can be measured
and described at various different scales. For example, the fanning of a structure such as the
cortico-spinal tract occurs at a larger scale than the fanning of a U-fibre that parts to reach
neighbouring gyri. It would appear then that a multi-scale approach may be well-suited for
modeling fibre geometry. This is a topic for future investigation.

This paper focuses on the diffusion tensor model, which, as presented in the introduction
(Section 1), has several biologically relevant properties and is still in wide use by the
neuroscientific community. With the increased interest in HARDI methods seen in recent years,
however, we intend in future work to generalize the ideas exposed in this paper to higher order
tensor models.
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5 Summary and conclusion
This paper introduced novel scalar indices of white matter dispersion and curving, based on a
differential analysis of the diffusion tensor field. Since the indices are computed directly from
the tensor field, without requiring prior tractography, they simplify the geometrical analysis
of white matter and make it insensitive to possible tractography errors. Throughout the paper,
we illustrated the indices on a variety of synthetic and in vivo examples. We also demonstrated
the utility of the indices in the context of a population study on schizophrenia. Traditionally,
clinical DTI studies focus on anisotropy, but our results demonstrate that geometrical measures
may also be important. In our population study, the region-based comparison results clearly
depend on factors such as the quality of white matter segmentation. We will address this issue
as part of more detailed clinical comparison studies in the future. Finally, we intend to address
applications in fibre tractography and DT image registration, as well as the extension of our
indices to a multi-scale framework.
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Appendix I
In this appendix, we illustrate the behaviour of the curving and dispersion measures in the
presence of fibre crossings in synthetic data.

A 2D dispersing tensor field F1 was created in a 30 × 50 voxel grid, by setting the orientation
of the principal eigenvector of each tensor to an angle θ = tan−1(y/x) where x and y are the
position coordinates of the voxel in the grid. The eigenvalues of each tensor were set to λ1 =
0.0012, λ2 = 0.0004, λ3 = 0.0002, in units of mm2/s. These values were chosen as representative
of a typical diffusion tensor measured in a relatively anisotropic region of the human white
matter such as the U-fibres [30].

A second diffusion tensor field F2 consisting of horizontally aligned tensors was created over
the grid, with tensor eigenvalues identical to those in the first field. The DWI signal from each
tensor field was computed using the Stejskal-Tanner equation [37], and the signals of both
fields were added:

(6)

where b is a constant (the b-value) set to 900 s/mm2, g is a set of 100 isotropically distributed
gradient directions, and ω0 is a scalar spatial weighting function used to control the shape of
the band of crossing tensors. In our model, S1 and S2 are constants with a value ranging between
0 and 1 which determine the proportion to which each tensor field contributes to the resulting
combined signal Sadd. The resulting combined tensor field was recovered from Sadd through
least-squares tensor estimation (see e.g. [39]).

To ensure that the crossing field F2 was defined only over a horizontal band over the top part
of the grid, with a smooth edge, the weight ω0 in (6) was set to 1 in voxels within the band, to
0 in voxels outside the band, and to a sigmoid profile y = 1/(1 + e−x) over the band’s edge.

This combination is illustrated schematically in Fig. 10, which shows some of the direction
lines with which the principal eigenvectors of F1 and F2 are aligned, as well as the result of
multiplying F2 with the weighting function ω0.

We carried out two experiments, with results presented in Figs. 11 and 12. For the first one
(Fig. 11), the value of S1 in (6) is set to 0.7, and that of S2 is set to 0.3, so that most of the
contribution comes from the fanning field F1. In the second experiment (Fig. 12), S1 is set to
0.3, and S2 = 0.7.

In both experiments, we observe complex variations in the resulting tensor field, which are
detected by the curving and dispersion measures. For example, in Fig. 11, there is a decrease
in the dispersion measure near the edge of the crossing band, due to the progressive increase
of the crossing field F2 strength, which reduces the variation of orientation present in F1. The
same edge behaviour produces a different result with the curving measure . The bottom part
of the dataset consists only of the contribution of F1 and therefore lacks curving. The
progressive increase of the strength of F2 over the edge of the crossing band induces a curving
in the resulting field of principal eigenvectors, which is detected by .

In Fig. 12, even though the underlying fields F1 and F2 are the same as in Fig. 11, the differences
in the relative contribution produce subtle but important changes in the resulting crossing field,
which are reflected accordingly by the curving and dispersion measures. Both of these figures
can be explained in terms of changes in the principal eigenvectors, but it is important to
remember that the measures are computed using the full tensor information.
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Appendix II
In our work, we develop indices that measure local changes in tensor orientation, which we
relate to geometrical properties of the white matter. In this appendix, we derive the equations
that link our geometrical indices to the components of the underlying diffusion tensor field.
Since we are interested in local changes in the tensor field, we derive expressions that involve
local spatial derivatives of tensor components. To do so, we work with tensor D at location x
in the tensor field F, and we fix as a basis for ℝ3 the three tensor eigenvectors at F(x), i.e., ℰ
= {e1, e2, e3}. Expressed in basis ℰ, an arbitrary vector v will have components x1, x2, x3, i.e.,
[v]ε = [x1, x2, x3]. In the following, basis ℰ is not always denoted but is always implied.

For a concise notation, we introduce the variables Rp = [Φ ̂p(D)]ε and G = [∇F(x)]ε to symbolize
the matrix representations in basis ℰ of the rotation tangent Φ ̂p and of the spatial gradient of
F, respectively. Recall from Section 2.1 that Φ ̂p(D) is the rotation tangent of D associated with
eigenvector ep (p ∈ {1, 2, 3}). In the following, we use Einstein notation, where a repeated

index implies summation over that index, e.g. . We will also use the
spatial gradient of F, which is a third order tensor [19]:

(7)

We begin by expanding (3) as a matrix expression:

(8)

Expressed in basis ℰ, the projections of the form ∇φ ̂p·eq, p, q ∈ {1, 2, 3} for a particular pair
{p, q} are simplified. For example,

(9)

As defined in Eqs. (20)–(22) in [19],

(10)

where ⊗ denotes the tensor product of two vectors. Thus, for example, the matrix
representation of Φ ̂2(D) in basis ℰ is given by [19]:
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(11)

By combining this definition for R2 with (9), we obtain

(12)

where the last step is allowed by the symmetry of the diffusion tensor.

In a similar fashion, one can derive the other possible combinations of ∇φ ̂p·eq:

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)
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(21)

The definition in (4) and (5) of the curving and dispersion measures uses only some of these
terms. In particular, these measures depend on the three partial derivatives of D12 and D13, but
not on derivatives of D23. We observe the following.

Curving
The curving measure depends on the projections in (16) and (19), i.e. on ∂D13/∂x1 and ∂D12/
∂x1. Given the construction of our derivation where the basis of ℝ3 is the principal eigenframe,
taking a partial derivative with respect to x1 is equivalent to a partial derivative in the direction
of e1, the principal eigenvector. D13 represents the correlation of diffusion in the e1 and e3
directions, and D12 represents the correlation of diffusion in the e1 and e2 directions (e.g. [5,
30]). Thus, the curving measure  measures the change along e1 in the correlation between
diffusion along e1 and diffusion along the other two orthogonal directions.

Dispersion
Similarly, the dispersion measure depends on ∂D12/∂x2, ∂D12/∂x3, ∂D13/∂x2, and ∂D13/∂x3.
Thus it measures the change in the plane orthogonal to e1 of the same correlations as above.

Note that instead of simply summing the projections involved in each measure, the formulation
in (4) and (5) is equivalent to summing the squares of these terms, followed by the square root.
This is equivalent to computing a norm and removes dependence on the sign of each term. For
example, for the case of the dispersion index ,

(22)

A similar expansion can be written for the curving index :

(23)

Of course, these definitions for  and  in (22) and (23) are given with respect to basis ℰ. The
advantage of the rotation tangent based definitions in (4) and (5) is that they are not dependent
on a specific basis choice.
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Fig. 1.
Examples of local tensor field configurations that show a high value for a particular projection
of the form ∇φ ̂p · eq.
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Fig. 2.
(a) A 2D synthetic diffusion tensor field. (b,c,d) Results of projecting ∇φ ̂p onto the local tensor
eigenframe, with pixel intensities proportional to the projection result. Red: ∇φ ̂p · e1. Green:
∇φ ̂p · e2. Blue: ∇φ ̂p · e3.
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Fig. 3.
(a) A downsampled visualization of a 100 × 100 synthetic diffusion tensor dataset. Here the
color coding represents the orientation of the principal eigenvector - green denotes a horizontal
orientation, blue denotes a vertical one. (b) The dispersion measure . (c) The curving measure

.
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Fig. 4.
(a) A downsampled visualization of a 100 × 100 synthetic diffusion tensor dataset, with the
same color coding as in Fig. 3 (a), (b) The dispersion measure . (c) The curving measure .
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Fig. 5.
Each line shows the dispersion ( ) and curving ( ) measures on a synthetic tensor dataset with
the same eigenvector geometry but varying FA (top row), varying mode (middle row) and
varying norm (bottom row).
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Fig. 6.
Streamline DT tractography colored by SD index (a,c) and SC index (b,d). Red indicates high
index values. The T2-weighted image is shown in the background for reference. The region in
the green box is discussed further in the text. (a) and (b) are displayed from an oblique angle
for a better viewing of the tract geometry.
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Fig. 7.
Results obtained on shape-normalized tensor data. Streamline DT tractography colored by
SHD index (a,c) and SHC index (b,d). Red indicates high index values. The T2-weighted image
is shown in the background for reference.
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Fig. 8.
Sagittal slices through the right hemisphere, with the ROIs overlaid on an FA map. The results
reported in Fig. 9 (a,b) pertain to the anterior corona radiata ROI, shown in light green in (a).
Those presented in Fig. 9 (c,d) pertain to a segmentation of the uncinate, which combines the
light and dark green ROIs in (b). Note the ROIs are 3D volumes, only a slice through which
is visible here.
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Fig. 9.
Scatter plots of mean index value for the anterior part of the corona radiata (CR) and for the
uncinate fasciculus (UF). Left column: size-normalized indices. Right column: shape-
normalized indices. Blue: NC. Red: SZ. Horizontal black lines: population mean. The error
bars indicate ± 1 standard deviation. L: left hemisphere. R: right hemisphere. The p-values are
computed with a two-sample T-test, and those that satisfy a significance threshold of 0.05 are
given in red font.
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Fig. 10.
A schematic illustration of the geometry of synthetic fields F1 and F2, which are combined
according to (6) in order to produce a field of synthetic crossing tensors. F2 is illustrated after
multiplication by weighting function ω0, which results in a band in the upper part of the dataset
with a smooth edge with a sigmoid profile.
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Fig. 11.
The crossing tensor field, overlaid on the computed dispersion measure  (top row) and curving
measure  (bottom row). The field is visualized with the principal eigenvectors (left column)
and with ellipsoids (right column). The signal mixing parameters are set to S1 = 0.7, S2 = 0.3-
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Fig. 12.
The crossing field and the geometrical indices visualized as in Fig. 11. Here the crossing field
is obtained with S1 = 0.3 and S2 = 0.7.
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