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Abstract

Currently, most studies that employ dynamic causal modeling (DCM) use random-effects (RFX)
analysis to make group inferences, applying a second-level frequentist test to subjects’ parameter
estimates. In some instances, however, fixed-effects (FFX) analysis can be more appropriate. Such
analyses can be implemented by combining the subjects’ posterior densities according to Bayes’
theorem either on a multivariate (Bayesian parameter averaging or BPA) or univariate basis
(posterior variance weighted averaging or PVWA), or by applying DCM to time-series averaged
across subjects beforehand (temporal averaging or TA). While all these FFX approaches have the
advantage of allowing for Bayesian inferences on parameters a systematic comparison of their
statistical properties has been lacking so far.

Based on simulated data generated from a two-region network we examined the effects of signal-
to-noise ratio (SNR) and population heterogeneity on group-level parameter estimates. Data sets
were simulated assuming either a homogeneous large population (N=60) with constant
connectivities across subjects or a heterogeneous population with varying parameters. TA showed
advantages at lower SNR but is limited in its applicability. Because BPA and PVWA take into
account posterior (co)variance structure, they can yield non-intuitive results when only
considering posterior means. This problem is relevant for high SNR data, pronounced parameter
interdependencies and when FFX assumptions are violated (i.e. inhomogeneous groups). It
diminishes with decreasing SNR and is absent for models with independent parameters or when
FFX assumptions are appropriate. Group results obtained with these FFX approaches should
therefore be interpreted carefully by considering estimates of dependencies among model
parameters.

Introduction

Standard analysis in functional magnetic resonance imaging (fMRI) aims at mapping brain
regions specifically involved in a cognitive context or in processing a given stimulus. There
is, however, growing interest in understanding how these patterns of activation arise by
analyzing regional interactions aka connectivity analysis (Stevens, 2009). In addition to
extending our knowledge about how information is processed in the brain, understanding the
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interactions between regions may also be of clinical relevance as converging evidence
suggests that dysconnectivity may be a major cause for symptoms encountered in patients
suffering from neurological and psychiatric disorders such as primary progressive aphasia
(Sonty et al., 2007), schizophrenia (Stephan et al., 2006) or depression (Mayberg, 2003). It
is, therefore, vital to employ and further develop techniques that enable non-invasive in vivo
assessment of interregional connection strengths.

Several methods are currently used to reveal details of information processing in a neural
network. These methods are in general divided into two groups: functional connectivity and
effective connectivity (Friston, 2002). Functional connectivity describes statistical
dependencies between regional time series using different approaches (e.g. (Beckmann et
al., 2005; Biswal et al., 1996)). Functional connectivity analyses, however, do not allow for
inferences about the direction or causality of a connection as they are based on a purely
correlative measure. Determining causality requires an analysis of the effective connectivity
which is, most commonly, defined as the influence of one neural system over another
(Friston et al., 1995). In contrast to functional connectivity, a specific causal model has to be
defined a priori. 1dentifying the participating brain regions is commonly accomplished based
on standard fMRI activation mapping. Connection strengths between these brain regions are
then inferred, given measured fMRI data, using statistical models that embody an
anatomically motivated structure of the network (Penny et al., 2004b; Ramnani et al., 2004).
As a consequence, effective connectivity methods are strongly hypothesis-driven and require
considerable a priori knowledge.

A number of methods to analyze effective connectivity in fMRI have been proposed,
including Structural Equation Modeling (SEM; (Mclntosh and Gonzalez-Lima, 1991;
Mclntosh and Gonzalez-Lima, 1994)), Granger causality (GC; (Goebel et al., 2003;
Granger, 1969, 1980)) and, most recently, dynamic causal modeling (DCM; (Friston et al.,
2003)). Here, we focused on DCM, a method successfully applied to neuroimaging and
electrophysiological data, as diverse as fMRI (Friston et al., 2003; Stephan et al., 2008),
EEG and MEG (David et al., 2006) and local field potentials from invasive recordings
(Moran et al., 2009). Critically, DCM uses a hierarchical approach that includes a model of
the (hidden) neuronal processes of interest and a forward model that translates neuronal
activity into predicted measurements. In DCM for fMRI, neuronal population activity is
linked to region-specific BOLD activity using a biophysical model of the haemodynamic
response (Friston et al., 2000; Stephan et al., 2007) based on the Balloon model (Buxton and
Frank, 1997; Buxton et al., 1998).

Model estimation within DCM employs Bayesian inversion resulting in a multivariate
posterior probability distribution of the estimated model parameters, given measured fMRI
data and a specific a priori model (including priors on the parameters). Posterior density
analysis then allows for straightforward inferences about model parameters at the single
subject level (e.g. (Mechelli et al., 2003; Stephan et al., 2005)).

For group-level analysis of model parameters, however, several approaches are available.
The most common method is to enter the subject-specific parameter estimates of interest
into a second-level random-effects (RFX) analysis. This method corresponds to a linear
model of subject-specific posterior mean estimates aka maximum a posteriori (MAP)
estimates and assumes homogenous intra-subject variance across the population. Because it
is simple and robust, RFX analysis has found widespread application (e.g. (Fairhall and
Ishai, 2007; Grefkes et al., 2008 ; Leff et al., 2008; Noppeney et al., 2006; Siman-Tov et al.,
2007; Smith et al., 2006)). There exist other hierarchical models for group analyses that
combine intra- and inter-subject variance (Mumford and Nichols, 2006) either in a
frequentist (Beckmann et al., 2003; Friston et al., 2005) or in a Bayesian framework
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(Woolrich et al., 2004). However, these methods have, to our knowledge, not yet been
applied in the context of DCM and we have therefore not included them in the present study.

In addition to this RFX analysis, a number of fixed-effects (FFX) methods exist. A
straightforward approach applicable in the special case of identical stimulus timings across
subjects, is based on DCM of the BOLD time series averaged across subjects (Kasess et al.,
2008). This is effectively an analysis of an “average” subject and allows for posterior
density assessment as performed in single—subject analysis. Alternatively, (Garrido et al.,
2007) suggested the use of a fully Bayesian FFX approach where the subject-specific
posterior distributions are combined according to Bayes’ theorem (Neumann and Lohmann,
2003). Such a Bayesian approach has several interesting features. In contrast to null
hypothesis testing based on maximum likelihood parameter estimates in frequentist
analyses, the Bayesian approach delivers the parameter’s full posterior density, thus
allowing one to directly assess the conditional probability that the parameter exceeds a
certain threshold or lies in a particular range. Another advantage of the Bayesian approach is
that the precisions of the multivariate subject-specific parameter estimates are also taken
into account. A third possible FFX approach would be to perform univariate Bayesian FFX
group analysis, disregarding posterior between-parameter correlations (Neumann and
Lohmann, 2003).

It is important to note that in this simulation study all methods (RFX and FFX) are applied
to the parameter distributions of a given model whose parameters may vary across the group
(for the inhomogenous population studied below) but whose overall structure remains
constant. In contrast, in analyses of empirical group data, an optimal model for the group has
to be selected first before inferences about any parameters can be made. There exist both,
FFX and RFX, approaches for model selection at the group level (Stephan et al., 2009)
which evaluate the evidence of the competing models (Penny et al., 2004a). These methods,
however, are not subject of this particular study which focuses on inference about
parameters, not model structure, and assumes that an optimal model is already known or
selected.

Whereas the large majority of previous DCM studies have used RFX group analyses of
model parameters, these are not always preferable to an FFX approach. The choice between
FFX and RFX analyses depends on the assumptions about variability that are most
appropriate for the scientific question of interest (Wilk and Kempthorne, 1955). Whenever
the mechanism of interest, encoded by a specific model parameter, is likely to be a random
variable in itself, and the error variance thus reflects both observation noise and variation of
the mechanism across subjects, an RFX procedure is mandatory. This is the case, for
example, when examining higher cognitive functions that can be implemented in different
ways (Price and Friston, 2002) or when studying patient groups that are heterogeneous with
regard to the pathophysiological processes involved (Stephan et al., 2006). In contrast, when
the mechanism (parameter) of interest can be assumed to exist as a fixed variable in the
population (e.g. processing of low-level visual features in V1), it is perfectly appropriate,
and indeed statistically more efficient, to employ an FFX procedure and treat all of the
variability in the data as observation noise.

When an FFX analysis is appropriate to address the question of interest, it has two major
advantages compared to an RFX analysis. First, it is statistically more efficient because it
operates on a much larger dataset (all measured data points across subjects, as opposed to
the set of subject-specific parameters). Secondly, it provides a single posterior density for
the entire group and thus enables one to make Bayesian inferences about the parameter
itself, given the data; in contrast, this is impossible with classic non-Bayesian RFX
approaches. What is less clear, however, is whether the different implementations of FFX
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methods described above have particular advantages or disadvantages in practice. To date,
no systematic evaluation of their statistical properties has been performed. Given the
growing number of DCM studies that report group results and the increasing use of
Bayesian group analyses in DCM (for EEG, see (Garrido et al., 2007); for fMRI, see
(Stevens et al., 2007) and (Acs and Greenlee, 2008)), it would be important to assess the
impact of the above FFX methods on group inferences.

Therefore, the aim of this study was to yield quantitative results on group analysis
performance comparing the following three FFX methods: (1) full Bayesian averaging based
on the multivariate posterior parameter distribution (referred to as Bayesian parameter
averaging, “BPA”), (2) a Bayesian analysis where posterior covariances are ignored and the
posterior probability distributions are effectively treated in a univariate fashion (posterior
variance-weighted averaging, “PVWA?”), and (3) initial averaging of the time series across
subjects (temporal averaging, “TA”). For comparison, a classic RFX analysis (“RFX”) was
performed. Our comparisons were based on simulated data with known parameter values
across a wide range of signal-to-noise ratios (SNR). In addition, the effects of inter-subject
variability were investigated in the context of large sample populations (N = 60) and smaller
subsamples (N = 15) as commonly encountered in current fMRI studies.

Materials and Methods

Dynamic Causal Modeling

In short, DCM for fMRI models the activity in a set of interconnected neuronal populations
using a set of coupled bilinear first order differential equations where zis a vector of
regional neural population activities:

Z :Az+ZuiB(i)z+Cu o

This system of equations allows for activity within a region to be driven not only by the
activity of other regions (matrix A) but also directly by external inputs ¢ (matrix C).
Furthermore, DCM allows for context-dependent changes in interactions between regions
(matrices BY). Note that equation 1 exclusively describes neuronal processes; the resulting
BOLD signal is separately modeled for each region using a system of nonlinear differential
equations characterized by six hemodynamic parameters per region (Stephan et al., 2007).

The neuronal and hemodynamic parameters are jointly estimated using a Bayesian inversion
scheme, given the measured BOLD data ) and the prior densities of the model parameters,
which define the general structure of the network. This inversion results in a multivariate
posterior parameter distribution which not only allows for inference about individual
parameters, but also for assessment of statistical dependencies (i.e. posterior correlations)
between different parameters (c.f. (Stephan et al., 2007)). These parameter distributions are
assumed to be multivariate Gaussian, i.e. they are fully characterized by the parameters’
means and covariances. This has previously been shown to be an appropriate assumption for
fMRI data (Chumbley et al., 2007).

Group analysis methods

Currently, several methods for group-level analysis of single-subject dynamic causal models
exist. Most commonly used is a classical RFX analysis that is based on the sole use of the
posterior mean estimates or maximum a posteriori estimates (MAPs; (Friston et al., 2003)).
This classic analysis uses the same “summary statistics” approach as is commonly used for
group analyses in statistical parametric mapping (Penny and Holmes, 2004): subject-specific
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parameter estimates of interest are entered into a second-level frequentist test, e.g. a £test.
The only difference is that for DCM the parameter estimates are maximum a posteriori
(MAP) estimates, not maximum likelihood estimates as in SPM. Notably, this approach does
not account for dependencies among parameters and assumes that the variance of the single
subject parameter estimates is homogenous across the population. This method will be
denoted as “RFX” analysis throughout the paper.

Concerning FFX methods, there is a well-known fully Bayesian procedure that does account
for these two subject-specific properties when forming a joint posterior for the entire group
(Lee, 1989). This fixed-effects procedure has been applied previously for fMRI activation
maps based on the general linear model (Neumann and Lohmann, 2003). Effectively, this
procedure treats the posterior distribution of one subject as the prior for the next subject. The
resulting posterior, in turn, acts as the prior for the next subject and so on, resulting in the
following expression for the group joint posterior

N
pOy1s- . nyy) < p(O) 1_'[111 i)
TN
o P(9|YI)[IZP (vil6) @)

N
o< p(Olyr,y2) U3P (il®)

Note that this procedure is commutative, i.e., it does not depend on the order of subjects.
Under Gaussian assumptions about the densities (as in DCM) this procedure is significantly
simplified, and the above expression is reduced to a form where subject-specific conditional
parameter densities are weighted by their precision and summed across subjects (c.f.
(Garrido et al., 2007; Neumann and Lohmann, 2003)):

N
p= ATV A
N ! @®)
A= YA
i=1

-1

with u;being the posterior mean of the 77 subject and Ai:Zi the inverse posterior
covariance or precision matrix. Note that A not only represents the precisions of model
parameters (on its diagonal) but also how strongly parameters are interdependent (off-
diagonal elements of A).

Under Gaussian assumptions about priors and likelihoods, the joint posterior probability o(&
| ya...ya) In EQ. 2 is also Gaussian with a posterior mean x and a posterior covariance
matrix A1 . Note that this type of Bayesian averaging is not to be confused with Bayesian
model averaging (e.g. (Trujillo-Barreto et al., 2004)) where the posterior distributions of
different models are combined by weighting with the respective model evidence. The
method used here is applied to one model only, fitted to the data from several subjects
(typically, this model would be chosen using a Bayesian model-selection procedure; c.f.
(Penny et al., 2004a) or (Stephan et al., 2009)). In order to prevent confusion, we will refer
to the present method as “Bayesian parameter averaging”, or BPA, throughout the paper.
The RFX analysis described above and BPA can be viewed as representing extremes of
spectrum of the averaging methods where intra-subject variances and covariances are either
completely ignored (RFX) or fully incorporated (BPA).
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At this point it may be instructive to illustrate this issue by examining the products of
Gaussians as they appear in BPA and show how different parameter distributions can affect
the outcome. As can be seen from Eq. 3 both the diagonal (variance) and off-diagonal values
(covariances) of the covariance matrices influence the mean of the resulting Gaussian. Fig. 1
shows four examples of these effects, using two bivariate Gaussian probability distributions,
where each distribution is characterized by its mean [m,, my] and covariance matrix; for
simpler interpretation, the covariance (off-diagonal element) is normalized to give a
posterior correlation coefficient (PCC), ranging from —1 to 1. In the case of multiplying two
bivariate Gaussian distributions with different means but identical covariance (fig. 1A), the
resulting mean [my, my] is equal to the arithmetic average [my;+myp, My1+my,]/2. As can
be deduced from Eq. 3, the PCC of the resulting distribution is unchanged while the variance
in x- and y-direction is reduced. If, however, both distributions exhibit different
dependencies or covariances (fig. 1B, C and D), then the resulting distribution will be
shifted away from the arithmetic mean. In fig. 1B it can be seen that, in the case of differing
precisions the resulting distribution will be shifted towards the Gaussian with the higher
precision. Additionally, depending on the covariances of the two Gaussians, the range of
their means may no longer contain the posterior mean resulting from Eq. 3. For example in
fig. 1B, the posterior mean my, is —0.27, even though both my; and my, are zero. A perhaps
even more counterintuitive effect is shown in fig. 1C and 1D where covariances of identical
value but opposite sign cause a pronounced deviation of the posterior mean from my; and
my,, despite identical precisions.

A second FFX method for group-level inference about DCM parameters is to perform
univariate Bayesian parameter averaging (Neumann and Lohmann, 2003) where each MAP
estimate is weighted by its posterior variance while covariances between parameters are
ignored; in other words, only the diagonal elements of the posterior covariance matrices are
used in this approach. In order to not confuse it with the multivariate case (i.e. BPA), this
method will be referred to as “posterior variance-weighted averaging” or PVWA.

A third FFX option is to average BOLD time-series across subjects before applying DCM,
resulting in a single model that represents an “average” subject (Kasess et al., 2008; Li et al.,
2008). As for the other two FFX methods, this approach allows one to make group
inferences based on a single posterior density for the entire group. Although this method is
the simplest and the computationally most efficient, it is only applicable when stimulus
timing is identical across subjects. This method will be referred to as “temporal averaging”
or TA throughout this paper.

Simulated network

Our aim was to evaluate the different DCM averaging methods in terms of estimation
accuracy when applied to known parameters with pronounced interdependencies or
covariances as they are frequently encountered in biological systems (Gutenkunst et al.,
2007). Additionally, we examined the influence of varying observation noise and population
heterogeneity. For this purpose, we generated simulated data using a two-region DCM
consisting of the supplementary motor area (SMA) and the primary motor cortex (M1)
(Kasess et al., 2008). The original measurements were performed on a 3 Tesla Medspec
scanner (Bruker Biospin, Germany) using gradient-recalled EPI with a TE of 40ms and a TR
of 300ms (Kasess et al., 2008). The paradigm consisted of brief finger movements that
subjects either executed (motor execution) or imagined (motor imagery); finger movements
were preceded by an acoustic countdown lasting 10 seconds. 28 different models were tested
and compared by Bayesian model selection; the best-performing model formed the basis for
the simulations within the current study (fig. 2). Note that this model is particularly well
suited for the present methodological study since the recurrent use of the same inputs
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induced considerable parameter interdependencies (the posterior correlations ranged from
-0.82t0 0.81).

In this simulation study the population size was initially chosen to be 60 subjects. Since this
is high compared to typical fMRI sample sizes, we subsequently performed our analyses
using a subsampling approach in which subsamples of 15 subjects were drawn repeatedly
out of the population of 60 (see below). TR and TE were identical to the original data sets.
The model equations (i.e. the neuronal equation described by Equation 1 and the
hemodynamic equations described in (Stephan et al., 2007) were integrated at a temporal
resolution of 100 ms.

The primary aim of this study was to evaluate the performance of the different FFX group
analysis approaches under different levels of noise when the underlying assumptions were
valid, i.e. model parameters were indeed fixed effects in the population and thus all
variability was due to observation noise. We therefore generated data sets with eight
different levels of additive Gaussian observation noise, resulting in a range from very low to
very high signal-to-noise-ratios (SNRs): 0.05, 0.2, 0.5, 1, 2, 5, 10 and 50. SNR was defined
as the ratio of the standard deviations of the noise free signal and the noise process. The
noise was included in our data by adding it to the noise-free simulations. Note that the range
of SNRs used for these simulations is rather wide and includes values that are both
unrealistically low and high for fMRI. We chose this wide range of values to demonstrate
more clearly the behavior of the different methods and explore their behavior for extreme
SNR constellations as well.

A second aim was to investigate the performance of FFX methods when their underlying
assumption is violated, i.e. when the parameter of interest is not a fixed effect in the
population but a random variable. Therefore, we used a generative model in which
connection strengths were treated as random effects, and thus varied stochastically across
subjects, by adding zero-mean Gaussian noise processes to the parameter values shown in
fig 2 such that each parameter was varied independently from the others. This variation left
the mean population parameters unchanged and parameters uncorrelated across the
population. For endogenous connections (i.e. non-zero off-diagonal elements of the A
matrix in Equation 1) the variance of the Gaussian noise was chosen such that there was
approximately a 5% chance for each connection strength of changing sign. Stimulus-related
connections, i.e. modulatory inputs (B matrices) and driving inputs (C matrix), were less
strongly varied (half the standard deviation) in order to avoid inverse stimulus effects. The
temporal scaling parameter (i.e. the value of the diagonal of the A matrix) and
haemodynamic parameters were kept constant.

In summary, analyses were performed using (i) eight different levels of Gaussian
observation noise and (ii) parameters that were either constant or varied randomly across the
synthetic “subjects” yielding a homogeneous and a heterogeneous population, respectively.
This resulted in a total of 16 different sets of data, each comprising 60 single-subject data
sets. All data sets were generated using the simulation routine “spm_dcm_create” as
provided by SPM5 and no confounding effects where added.

Model inversion was performed using the Bayesian inversion scheme of the DCM software
as implemented in SPM5. The same model structure was defined as used for generating
simulated data sets and all prior densities were set to their default values
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Results of the different averaging procedures were compared by calculating the total
absolute deviation, i.e. the L1 norm, of the group-averaged parameter estimates from the
true population mean:

p
D=) "l -uj| @
=

where wis the true population mean of the /-th parameter and ; is its estimate as calculated
by one of the four averaging methods (RFX, BPA, PVWA, and TA).

In order to further assess the resulting group parameter distributions, we also examined the
posterior correlation matrices of estimates obtained by BPA and TA, respectively. These
posterior group correlation matrices were compared to two different quantities: (i) the
median of the posterior single-subject correlations across subjects and (ii) the correlations
among subject-specific MAPSs across the population. With this approach it is possible to
assess how group correlations are related to single-subject posterior correlations and how
single-subject MAPs are affected by posterior single-subject correlations. Note that this
analysis is not meaningful for the PVWA approach, where posterior covariances are
ignored.

Subsample analysis

Results

It seems clear that a group size of 60 subjects is unrealistically high for a typical fMRI
study. All averaging methods were therefore also evaluated for subsamples of 15 subjects.
100 samples were generated by randomized selection of 15 out of the 60 subject data sets
(without replacement), and the connectivity parameter averages were calculated for each
subsample using the different averaging methods as described above. In the case of temporal
averaging the BOLD series were averaged for each subsample and a model was estimated
for each of the 100 composite time series. Connection strengths were compared to the true
parameter values of the corresponding subsample based on D (Equation 4) and the median
as well as the inter-quartile range of deviations across subsamples were calculated.
Furthermore, PCCs derived from BPA and TA, as well as the correlation of the MAPs and
the median single-subject posterior correlations were calculated for each subsample. Then
the medians across subsamples of all four correlation coefficient matrices were compared.

Population results

Results for data sets from the simulated homogenous population where the assumptions of
FFX analyses were met (i.e. parameters were identical across the group and all variability
was due to observation noise) showed a similar average deviation for RFX, BPA and PVWA
approaches (fig. 3A). Temporal averaging yielded considerably less deviation from the true
parameter values at low SNR-levels due to the fact that the SNR-level increases by the
square root of the number of subjects when averaging the data across multiple subjects. In
our study this was a factor of approximately eight which was in good agreement with the
shift in SNR levels. Overall deviations decreased with higher SNR as expected and leveled
off at SNRs greater than 5, above which all averaging approaches showed almost identical
performance.

The analysis for the simulated inhomogeneous population where the FFX assumptions were
violated (i.e. model parameters varied randomly across subjects) showed considerably less
convergent results (fig. 3B). As expected, results for the classic RFX analysis (whose
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assumptions about parameters being random effects were appropriate for this data set) were
similar to the homogeneous dataset. Temporal averaging results were also similar to the
homogenous case. At low SNRs, BPA showed better results than RFX and PVWA. With
SNR levels above 1, however, BPA results began to deviate more strongly from the true
parameter values, while RFX and TA results moved closer to the true values. PVWA
showed intermediate performance with a less drastic deviation at high SNRs than Bayesian
parameter averaging. Figure 3C and D show the same results for a smaller sample size (see
subsample section below).

The seemingly counterintuitive behavior of BPA with increasing SNR is directly related to
the fact that BPA takes into account the posterior covariance structure: a progressive
increase in noise (i.e. decreasing SNR) will tend to render any posterior parameter
distribution less correlated. In other words, low SNR mitigates the effects of parameter
interdependencies or posterior covariances, whereas at high SNR these covariances can have
a profound impact on products of Gaussians. Compare fig. 1, where panels C and D
represent the case of shifting from a high SNR case to a low SNR case.

In the following we will investigate the behavior of the different averaging methods in more
detail, focusing on the case of the heterogeneous population. Fig. 4 shows the detailed
results for two parameters, namely the modulation of the connection from SMA to M1 by
motor imagery (fig. 4A), and the endogenous connection strength from M1 to SMA (fig.
4B). The true mean parameter values are indicated by the dashed horizontal line and single-
subject estimations are shown be grey “x”-marks. It can be seen that for low SNRs, single-
subject intrinsic and modulatory connection strengths are underestimated yielding group
averages closer to zero for all approaches. This is the expected effect of the zero-mean
shrinkage priors in DCM defined for these types of connection. Direct stimulus inputs (not
shown here) do not show such a clear trend as they have less precise priors and thus exert
less shrinkage. Fig. 4A shows that while the estimation accuracy improves with increasing
SNR for TA, PVWA and RFX, for SNRs greater than 2 the group-estimate of connection
strength provided by BPA increasingly underestimates the mean of the parameter
distribution even though the single-subject estimates were quite accurate. Moreover, for
SNRs greater than 5, the average of the modulatory connection lies outside the actual range
of the individual parameter estimates. In the case of the endogenous connection (fig. 4B),
however, the deviation is less pronounced and shows an opposite trend towards
overestimation (in absolute terms) of connection strengths. It is important to note, however,
that the type of connection is not a general indicator for the direction of bias in BPA. In
contrast, PVWA in both cases tends to underestimate connection strength at high SNRs.

Fig. 5 shows the distribution of single-subject PCCs for all nine model parameters
(including the temporal scaling factor o) in case of the homogeneous (lower left triangle)
and the heterogeneous population (upper right triangle). Each subplot contains the results for
all eight SNR levels (increasing from left to right) displayed as box-and-whisker plots. For
reasons of clarity, outliers are not shown. It can be seen that in the homogeneous case PCCs
(lower left triangle) exhibited much less variation across subjects compared to the
heterogeneous population (upper left triangle). In the latter case, not all parameter
combinations displayed a monotonic decrease of PCC variability with increasing SNR.
Instead, for a few parameter combinations, PCC variability was enhanced with increased
SNR or showed non-monotonic behavior for others.

Note that although PCCs from the heterogeneous population exhibited much stronger
scattering as compared to PCCs from the homogeneous population, correlation medians
were similar for both types of data sets (see also left column of fig. 6). As expected, most
PCC medians showed an increase in parameter interdependencies with increasing SNR (c.f.
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fig. 1C and 1D). Additionally, the inter-subject variability in parameter values leads to
posterior distributions with more heterogeneous correlation structures. Together, these
properties explain the seemingly counterintuitive BPA results for the group average in fig. 3.

BPA as well as TA yield a single multivariate Gaussian parameter distribution for the whole
group that is characterized by the group posterior mean (e.g. fig. 4A and B) and the group
posterior correlation matrix. For the homogeneous population, the median correlation across
subjects (fig. 6A, left panel) exhibited strong single-subject correlations. As these
correlations were consistent across subjects (fig 5, lower triangle) BPA showed a very
similar group correlation matrix (fig. 6A, right panel). Fig, 6A, centre panel, shows that, for
a perfectly homogenous population, correlations of the MAPSs across subjects are induced by
single-subject correlations. The median correlation matrix of the heterogeneous population
(fig. 6B, left panel) was similar to that of the the homogeneous population (fig. 6A left panel
and also fig. 5). As parameters were randomly varied and thus uncorrelated across subjects,
MAPs (fig 6B, middle panel) showed no significant correlation across the population. BPA
(fig. 6B, right panel) displayed less strong correlations, but similarities with the median PCC
matrix were still observable. In case of TA, correlations were very similar to the median
correlation matrix for both populations.

Subsample analysis

The subsampling analysis (fig. 3C and D) yielded results that were very similar to the
analysis of the whole population (fig. 3A and B). Again, for homogeneous subpopulations
all methods showed decreasing error for higher SNRs, and variation across subsamples were
small. Note that the shift to lower SNRs for TA was smaller due to the reduced sample size
(N=15). In case of the heterogeneous subpopulations, however, BPA again showed
increasing deviations at high SNRs and a better performance at low SNR, as was the case for
the whole population. As expected, these deviations varied considerably across subsamples
(see the range of deviations represented by the error bars in fig. 3C, D). Median correlations
across subsamples were similar to the full population analysis shown in fig. 6.

Discussion

In this study, we analyzed four common methods for making group inferences about DCM
parameter estimates. Of particular interest were the results of different FFX methods that
enable Bayesian inference by analysis of a group posterior density as compared to a classic
RFX analysis which allows only for testing the null hypothesis i.e. obtaining the data given
that the respective parameter (or contrast of parameters) does not differ from the
hypothesized value which is, most commonly, zero. The properties of the different methods
were investigated using simulated data sets with known model parameters. Although the
emphasis of the present investigation was on comparing different FFX procedures, it is
worth noting that the classic RFX procedure employed by most current DCM group studies
showed robust performance, both for homogenous and heterogeneous groups. As mentioned,
this RFX procedure assumes constant intra-subject variability of the parameter estimates
across the population as only the MAPs are taken into account. There exist, however various
models that do combine inter- and intrasubject variance to infer group statistics (Mumford
and Nichols, 2006). In the classical setting (Beckmann et al., 2003) calculating the group
statistics comes down to a sum of the parameter estimates weighted by the sum of the inter-
and intrasubject variance. From this it is clear that the group estimate should lie between our
RFX approach and the PVWA method. The Bayesian RFX approach (Woolrich et al., 2004)
is based on prior assumption about the group statistics. As pointed out previously, a
hierarchical Bayesian RFX approach might be a more informed way of inferring group
statistics (Garrido et al., 2007). However, such a method has not yet been implemented for
DCM.
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Our study demonstrated that DCM group results were consistent across methods when
dealing with a homogeneous group, i.e. when the assumptions of FFX analyses were valid.
TA performed best (in terms of showing the smallest deviations between parameter
estimates and true parameter values); this is caused by the implicit SNR-enhancing
preprocessing step due to data averaging (over subjects) prior to parameter estimation. BPA,
classic RFX analysis and PVWA vyielded similar parameter estimates.

For a heterogeneous group where parameters varied across subjects (thus violating the FFX
assumption that the parameter is a fixed effect in the population and all variability is due to
observation noise), BPA results showed a noticeable bias compared to the results of the
other methods and the true mean parameter values (figs. 3 and 4). This bias, however,
depended on the degree of observation noise and only became obvious for SNRs greater
than 2. We were able to relate this effect to two different causes (fig. 5). The first one is an
increase in parameter interdependencies with increasing SNR (c.f. fig. 1C and 1D).
Additionally, the inter-subject variability in parameter values resulted in posterior
distributions with heterogeneous correlation structures.

Since BPA as well as TA produce group densities, we also investigated the resulting group
posterior correlation matrices. These posterior correlations imply dependencies amongst the
parameters of the model. In simple terms, the posterior variance of a parameter relates to the
range in which the parameter can be varied without inducing a large change in the objective
function. In other words, large posterior variances imply that the parameter estimate is not
very certain given the data and a priori information. Furthermore, if two parameters show a
strong posterior covariance then changing either of these parameters has a similar impact on
the objective function. The structure of the posterior covariance matrix itself depends on a
number of factors, e.g. the predefined model structure, including location and temporal
nature of inputs, the structure of the connectivity matrix as well as the strength of the
connections. Most importantly for the present study, as described above, an increase in noise
(i.e. a decrease in SNR) diminishes interdependencies amongst parameters. This is reflected
by our simulation results as BPA performs better than PVWA and RFX analyses for SNR-
levels below 1 (fig. 3).

All findings were replicated for smaller sample sizes using population subsampling. In
addition, subsampling showed that BPA is highly dependent on the specific sample and may
therefore be susceptible to outliers at smaller sample sizes. This is in contrast to (Neumann
and Lohmann, 2003) who proposed that this method should be robust against outliers.
However, they restricted their analysis to univariate data which in our case also showed
much less dependency on the subsample.

To our knowledge, this study provides the first systematic analysis of different group
analysis methods for DCM parameter estimates. A study by (Garrido et al., 2007) which
focused on the consistency in model selection across subjects, also briefly commented on
inter-subject variability for parameter estimates (using MANOVA they found that these
estimates were consistent across subjects). They did not, however, provide a systematic
comparison of different FFX analysis procedures nor did they consider different noise levels
or different population heterogeneities, thus providing no conclusions about the relative pros
and cons of different group analysis methods.

As pointed out in the introduction, the choice between RFX and FFX approaches ultimately
boils down to one’s assumptions whether the mechanism of interest, encoded by a specific
model parameter, exists as a fixed effect in the population or randomly varies across
subjects. If an FFX analysis is an appropriate option, it can have several advantages over a
classic RFX analysis, including the use of the group posterior density for Bayesian
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inference. Our analyses show that the three different FFX methods display different
performance depending on the level of noise and whether or not the FFX assumption is
fulfilled (i.e. the parameter exists as a fixed effect in the population). Although the temporal-
averaging approach has advantages at lower SNR, it is limited in its applicability because
the timing of stimuli has to be the same across subjects which excludes self-paced
paradigms and experiments where stimulus presentation is depending on subject responses
or post- experimental classifications of trials (e.g. remembered vs. forgotten items).
Furthermore, TA may prove problematic when pronounced non-linearities exist in the
system of interest, either in the hemodynamic forward model (Stephan et al., 2007) or at the
level of neuronal interactions (Stephan et al., 2008), especially in a heterogeneous
population. BPA as well as PVWA do not have these restrictions and account for intra-
subject covariance and variance, respectively. However, in high SNR settings and when
FFX assumptions are violated (i.e. parameters are not fixed effects in the population), the
latter property may cause biased parameter estimates. It is therefore recommended that such
results are interpreted with care and in the light of the subject-specific posterior covariances
amongst model parameters. Fortunately, the latter are easily obtained as they are
automatically estimated as part of the Bayesian model inversion.

In summary, while the primary goal of our study was a comparison of FFX methods in the
context of DCM, it is also informative with regard to performance differences between RFX
and FFX methods in general because we systematically included simulations that either
assumed parameters to be fixed or random across the population (i.e. homogenous or
heterogeneous populations). Our simulations showed that RFX analysis performed robustly
in all situations (Fig. 3A-D); for low SNRs, however, TA was superior in all scenarios
considered (Fig. 3A-D). PVWA performed very similar to RFX when the population was
homogenous (Fig. 3A,C); however, with heterogeneous populations, PVWA only showed
comparable performance to RFX under low SNR conditions but performed less well than
RFX for high SNR data (Fig. 3B,D). A stronger difference was found for BPA: this method
displayed considerably poorer performance than RFX (and all other methods) at high SNRs
when the population was heterogeneous (Fig. 3B,D) but, on the other hand, worked better
than RFX at very low SNR (and similarly well as TA) in the same setting. For homogenous
populations BPA was equivalent to RFX at all SNRs (Fig. 3A,C). This summary highlights
that despite the bias observed in some situations, BPA is not necessarily an inappropriate
method. BPA does not perform worse than other FFX or RFX methods when (i) FFX
assumptions are appropriate (i.e. parameters are fixed effects in the population), (ii)
parameter interdependencies are absent, or (iii) SNR is low. In fact, for very low SNR and
inhomogeneous populations it showed better performance than almost all other methods and
was only rivaled by TA (Figure 3A,C). Ultimately, the choice between the different methods
studied in this paper should be informed by the investigator’s assumption about the
heterogeneity of the population, the assumed SNR level and whether or not she/he wishes to
obtain Bayesian inference about the posterior densities of the parameters (which is possible
for TA, PVWA and BPA but not for classic RFX). The analyses presented in this paper
hopefully assist the reader in making this choice.
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Fig. 1.

Product of two Gaussians: Shown are contour plots of two bivariate Gaussian distributions
(thin lines) and the resulting product (bold lines). In all four plots both distributions have
zero mean in'y and +/-0.2 in x-direction and a variance of 0.1 in y and 0.01 in x. In (A), (B)
and (C) the left Gaussian is kept constant with a PCC=0.8 whereas the right Gaussian has a
PCC of 0.8, 0.98 and -0.8 respectively. (D) shows the same data as (C) with a lower PCC of
+/-0.4. The resulting PCC and the mean in x and y direction are also shown. Dashed lines
mark the arithmetic mean as recovered in RFX analysis.
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Simulated network: (A) Motor network as found in (Kasess et al., 2008). Note that
modulatory parameters are half of the value published by (Kasess et al., 2008) due to a
change in scaling across SPM versions. (B) During the 10 second countdown “C” subjects
prepared for execution or imagination “I” of a brief finger tapping task “T.
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Comparison of group analysis methods: The upper two panels show the deviation of the
different averaging methods with respect to the original parameters as a function of the SNR
of the simulated data. (A) shows results for the homogeneous population and (B) shows
results for the heterogeneous population. (C) and (D) show the range of deviations for 100
subsamples of size N=15 for the homogeneous and the heterogeneous case, respectively.
Error bars are plotted to show the median and the inter-quartile range across the subsamples.
Alternating grey and white patches are shown in order to better distinguish the different

SNRs.
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Single parameter comparison: (A) Estimation of a single parameter (modulatory influence of
motor imagery on the connection SMA — M1) as a function of the SNR. Coloured solid
lines represent different averaging methods (colour scheme as in fig. 3). Single-subject
MAPs for a given SNR are marked by “x”. The box on the right side shows the true model
parameters distribution. The dashed black line marks the mean of the model parameter. (B)

Analogous results for the feedback connection from M1 to SMA.
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Fig. 5.

Correlation coefficients: Plots show the posterior single-subject correlation coefficients of
model parameters for the homogeneous (lower left half) and the heterogeneous (upper right
half) population. Each box-plot shows distribution of PCCs for 8 different SNRs (see fig. 3).
SNR increases from left to right. Blue boxes show median and inter-quartile range. Outliers
are not shown for reasons of clarity. Each column and row corresponds to one parameter.

Neuroimage. Author manuscript; available in PMC 2010 March 14.



syduiosnuel Joyiny sispun4 JINd adoin3 ¢

syduosnuelA Joyiny sispun4 DA @doing ¢

Kasess et al.

Page 21

Median PCC MAPs Bayesian

L b k|
b b e

(A)

Constant

(B)

-0.5

Variable

Fig. 6.

Group correlations calculated by different methods (left to right): (i) median posterior
correlations across subjects, (ii) correlation of MAPs and (iii) BPA. The upper row (A)
depicts the case of the homogeneous population whereas the lower row (B) represents the
heterogeneous population. The results for SNR=50 are shown. Rows and columns of each
matrix are in the same order as in fig. 5.
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