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Abstract
In this work, we investigated the effect of the regional variability of the hemodynamic response on
the sensitivity of Granger causality (GC) analysis of functional magnetic resonance imaging
(fMRI) data to neuronal causal influences. We simulated fMRI data by convolving a standard
canonical hemodynamic response function (HRF) with local field potentials (LFPs) acquired from
the macaque cortex and manipulated the causal influence and neuronal delays between the LFPs,
the hemodynamic delays between the HRFs, the signal to noise ratio (SNR) and the sampling
period (TR) in order to assess the effect of each of these factors on the detectability of the neuronal
delays from GC analysis of fMRI. In our first bivariate implementation, we assumed the worst
case scenario of the hemodynamic delay being at the empirical upper limit of its normal
physiological range and opposing the direction of neuronal delay. We found that, in the absence of
HRF confounds, even tens of milliseconds of neuronal delays can be inferred from fMRI.
However, in the presence of HRF delays which opposed neuronal delays, the minimum detectable
neuronal delay was hundreds of milliseconds. In our second multivariate simulation, we mimicked
the real situation more closely by using a multivariate network of four time series and assumed the
hemodynamic and neuronal delays to be unknown and drawn from a uniform random distribution.
The resulting accuracy of detecting the correct multivariate network from fMRI was well above
chance and was up to 90% with faster sampling. Generically, under all conditions, faster sampling
and low measurement noise improved the sensitivity of GC analysis of fMRI data to neuronal
causality.
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INTRODUCTION
Investigation of effective connectivity in brain networks, i.e. the causal influence one
neuronal system exerts over another (Friston, 1995), is being increasingly recognized as an
important tool for understanding brain function in neuroimaging studies employing
functional magnetic resonance imaging (fMRI). One approach to investigation of effective
brain connectivity that has gained prominence of late is Granger causality (GC) analysis. It
is based on the principle of temporal precedence, wherein, if the knowledge of the past
temporal evolution of the signal from a region of interest (ROI) A increases the
predictability of the future temporal evolution of the signal in another ROI B, then A is said
to Granger-cause B (Granger, 1969). This approach has been mathematically formalized
using vector autoregressive (VAR) models, initially using electroencephalographic (EEG)
data (Kus, Kaminski, & Blinowska, 2004; Blinowska, Kus, & Kaminski, 2004; Kaminski,
Ding, Truccolo, & Bressler, 2001). Later, this approach was successfully applied to fMRI
data for investigating brain networks underlying sensory (Stilla, Deshpande, Laconte, Hu, &
Sathian, 2007; Deshpande, Hu, Stilla, & Sathian, 2008; Stilla, Hanna, Mariola, Deshpande,
Hu, & Sathian, 2008), motor (Deshpande, LaConte, James, Peltier, & Hu, 2009; Abler, et
al., 2006) and cognitive tasks (Roebroeck, Formisano, & Goebel, 2005). Various
implementations of GC have been reported which include bivariate (Roebroeck, Formisano,
& Goebel, 2005), multivariate (Deshpande, Hu, Stilla, & Sathian, 2008), time-domain
(Abler, et al., 2006) and frequency-domain (Deshpande, LaConte, James, Peltier, & Hu,
2009) analyses. GC offers certain distinct advantages over other approaches for
investigating effective connectivity such as structural equation models (SEM) (Zhuang,
LaConte, Peltier, Zhang, & Hu, 2005) and dynamic causal models (DCM) (Friston,
Harrison, & Penny, 2003). First, unlike SEM and DCM, GC only requires the pre-
specification of the regions of interest (ROIs) and does not make any assumptions about the
connections between them. Second, it has the potential to work with a large number of
ROIs, the constraint being that the number of temporal acquisitions must be greater than the
number of ROIs: this constraint is easily satisfied in typical fMRI experiments. Third, it is
based on temporal precedence, which is intuitively linked to the concept that brain function
typically requires a causal chain of events involving multiple regions. Finally, being a
stochastic model, it allows for the complexities involved in brain interactions which can
sometimes be oversimplified by deterministic models such as DCM.

Notwithstanding the advantages that GC offers over other approaches, there are certain
fundamental unanswered questions about the applicability of GC to fMRI. First, fMRI
measures signals that result from smoothing of the neuronal activity by the hemodynamic
response function (HRF) and down-sampling due to the speed of MR acquisition; these
signals are not direct measures of neural activity. It has been shown that the shape and
magnitude of the HRF varies across brain regions and individuals (Aguirre, Zarahn, &
D’Esposito, 1998; Silva & Koretsky, 2002; Handwerker, Ollinger, & D’Esposito, 2004).
Only a part of this variance is attributable to neuronal activity and various other factors such
as vasculature differences, baseline cerebral blood flow, hematocrit, alcohol/caffeine/lipid
ingestion, partial volume imaging of veins, global magnetic susceptibilities, slice timing
differences and pulse or respiration differences (Buxton, 2002; Levin, et al., 1998; Levin, et
al., 2001; Noseworthy, Alfonsi, & Bells, 2003; Handwerker, Ollinger, & D’Esposito, 2004)
are responsible for the variability of the HRF. Therefore, HRF variability has the potential to
confound the inference of neuronal causality from fMRI data. As a remedy to this, previous
studies have suggested that the modulation of Granger causality between the fMRI time
series as a function of the experimental context be investigated (Roebroeck, Formisano, &
Goebel, 2005). According to this reasoning, such modulation would rule out HRF variability
as the sole factor determining the results since, generally speaking, neuronal activity, and
not the various other factors contributing to HRF variability listed above, is modulated by
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the experimental context (exceptions to the above rule, such as experiments involving
anesthesia, exist). This approach is useful, but limits the applicability of GC to tasks which
involve modulating an experimental context and excludes tasks which employ a single
experimental context and resting state. It also limits the interpretation of the causal
connections obtained from GC analysis to those paths which change with experimental
context.

In this work, we performed simulations in order to quantitatively characterize the effect of
HRF variability on fMRI-based GC analysis in terms of physiological parameters such as
neuronal and hemodynamic delays and experimental parameters such as repetition time (TR)
of the MR data acquisition and the signal to noise ratio (SNR) of the fMRI data. In doing so,
we also investigated the minimum detectable neuronal delay using GC analysis of fMRI in
the face of variation in the above factors of interest. The general framework for the
simulations was as follows: The ground truth for the causal relationships between interacting
brain regions was provided by electrophysiological signals, specifically local field potentials
(LFPs) acquired from the relevant ROIs in the brain, because they have the temporal
resolution to capture the scale at which causal neuronal relationships occur and are a direct
measure of neuronal activity. Subsequently, the neuronal data were smoothed by the HRF
and down-sampled to produce simulated fMRI data. This strategy is in agreement with our
understanding of the physiological basis of the fMRI signal (Logothetis, Pauls, Augath,
Trinath, & Oeltermann, 2001). By manipulating the properties of the HRF, the amount of
neuronal delay, TR and the presence or absence of measurement noise, the corresponding
effects on inferences obtained from fMRI-based GC analysis were evaluated.

METHODS
We illustrate the effect of HRF confounds on fMRI-based GC analysis, using both bivariate
and multivariate models, within the framework described in the previous section. In order to
make the simulations realistic, we utilized three channels of LFP signals recorded at a
sampling frequency of 1 KHz from the macaque lateral intraparietal area during a reach and
saccade task (the data are freely available in the Chronux database: www.chronux.org). This
is a significant difference from previous approaches (e.g., Roebroeck, Formisano, & Goebel,
2005), which have assumed the realizations of autoregressive processes to represent the LFP
signals. The mathematical synthesis of simulated signals provides the advantage of choosing
model parameters in order to manipulate the causal relationship between the time series.
However, the model parameters also impose a uniform structure on the simulated signals,
which is rarely observed in real world signals. For example, the diagonal elements of the
autoregressive model impose a uniform spectral power in the simulated signals which can
influence the statistical significance of Granger causality obtained from surrogate data
(Pandit & Wu, 1983) in a favorable way and hence overestimate the performance of GC
analysis in relationship to that obtained from real data. In this work, we circumvented the
disadvantage using two strategies. In the first approach, a single channel of real LFP data,
x(n), was chosen and a simple delay was introduced to obtain the other time series, y(n).
Accordingly,

(1)

where dn is the neuronal delay. Supposing we assume that x(n) and y(n) correspond to LFPs
from neuronal populations X and Y, respectively, this approach assumes that the neuronal
activity at X simply replicates at Y after a temporal delay of dn ms and that the contribution
of intrinsic dynamics at Y is zero. In the second approach, we relaxed the above condition
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and assumed that the activity at Y is a weighted sum of its own intrinsic dynamics which is
unrelated to X plus the delayed influence from X. Accordingly,

(2)

In this formulation, x(n) was obtained from a single channel of the real LFP data and
yintrinsic(n) was obtained by randomizing the phase of a different channel of real LFP data.
Thus, the intrinsic dynamics of Y not only had a magnitude spectrum different from that of
X, it was also not causally related to X. Therefore, the causal relationship between X and Y
was determined by both the neuronal delay, dn, and the factor C, which controlled the
strength of the causal influence exerted by X on Y. We varied C from 0.5 to 0.9 in steps of
0.2. When C=0.5, the contribution from the causal influence and intrinsic dynamics was
equal and hence represents a weak causal influence because 50% of the phase in y(n) was
drawn from a random process. On the other hand, C=0.9 represents a strong causal influence
from X to Y. C=1 represents the case of a simple neuronal delay shown in Eq.1. This
simulation framework provided the capability to manipulate the causal relationship between
the time series in addition to investigating the variability of HRF. Also, the inherent causal
relationships between the recorded LFP time series was not a factor in our simulations since
the causal relationships were artificially induced independently for each channel of the
recorded data. Using real LFP data, however, overcame the disadvantage of the uniform
structure of the signal obtained from synthetic data, thus enabling our simulations to better
mimic the real world scenario.

The Bivariate Case
In the bivariate implementation, we obtained x(n) and y(n) using both the simple delay and
simple delay plus intrinsic dynamics approaches described above such that x(n) had a causal
influence on y(n). The neuronal delay, dn, was varied from 1 ms to 1000 ms in steps of 5 ms.
x(n) and y(n) were convolved with canonical HRFs, h1(n) and h2(n) respectively, obtained
from two gamma functions with standard parameters as used as in SPM2 (Friston, Holmes,
& Ashburner, 1999), such that h1(n) lagged h2(n) by a hemodynamic delay of dh which
assumed values of 0.5 s and 2.5 s. The choice of the range of the hemodynamic delay is in
agreement with previous studies (Handwerker, Ollinger, & D’Esposito, 2004) which have
shown that the normal range of physiological variability, calculated by using the offset
between the canonical HRF and the measured HRF from different regions, has an empirical
upper limit of 2.5 s with a mean around 0.5 s. Though HRF variability across both subjects
and brain regions is around 4 s, inter-regional variability within the same subject, which is
more relevant to Granger causality analysis, is in agreement with our assumptions. Each of
the gamma functions used in the HRFs is a function of the scale parameter θ and shape
parameter k. The shape parameter of the first gamma function is a ratio of the delay of the
response to its dispersion and determines the shape of the HRF peak. The hemodynamic
variability across brain regions is mainly characterized by the variability of a combination of
factors, primarily, the time to peak and onset time (Handwerker, Ollinger, & D’Esposito,
2004). Thus, by varying the shape parameter for the first gamma function, we were able to
introduce a hemodynamic delay dh between the HRFs which simultaneously changed the
time to peak and onset time of h2(n) such that it was ahead of those of h1(n). Consequently,
the hemodynamic delay opposed the direction of neuronal delay, which represents the worst-
case scenario in which the hemodynamic confounds could affect fMRI-based GC analysis.
The opposite case, wherein the hemodynamic delay aids the neuronal delay, is also plausible
since it has been shown that the measured HRF can lead or lag the canonical HRF with the
lead limit being 2.5 s and the lag limit being 1.5 s. However, we only consider the case
where in the hemodynamic delay opposes the neuronal delay since it has the most
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confounding effect on the inference of GC from fMRI. Though the magnitude of GC
inferred from fMRI could be contaminated if the HRF delay aids the neuronal delay, the
direction of the causal influence is accurately determined in this case in contrast to the case
when the HRF delay opposes the neuronal delay. Hence, we consider the latter case here.
The signals resulting from the convolution of the LFP time series with the HRFs were down-
sampled to obtain simulated fMRI time series x′ (n) and y′ (n) at TRs of 0.5, 1, 1.5 and 2
seconds, respectively. Let Cd represent the dominant Granger causal influence from x′ (n) to
y′ (n) obtained by subtracting the influence from y′(n) to x′(n) from that of x′(n) to y′(n). The
individual causal strengths between x′ (n) and y′ (n) were obtained using the vector
autoregressive model as in Deshpande et al (Deshpande, Hu, Stilla, & Sathian, 2008). Due to
smoothing by the HRF, both x′ (n) → y′ (n) and y′ (n) → x′ (n) may be significant when the
neuronal influence is from x′ (n) to y′ (n), in which case x′ (n) → y′ (n) is likely to be higher
than y′ (n) → x′ (n) (Roebroeck, Formisano, & Goebel, 2005). Calculating the dominant
directional influence tests whether this is indeed the case. Subsequently, both x(n) and y(n)
were convolved with identical canonical HRFs h1(n) and the resulting time series were
down-sampled to obtain simulated fMRI signals x″ (n) and y″ (n). Let Co represent the
dominant Granger causal influence from x″ (n) to y″ (n). Subsequently, we ascertained the
mean (μ) and standard deviation (δ) of the empirical null distributions obtained from the GC
analysis of surrogate data derived by randomizing the phase of the simulated fMRI data
(Theiler, Eubank, Longtin, Galdrikian, & Farmer, 1992; Deshpande, Hu, Stilla, & Sathian,
2008). We defined parameters ρo and ρd as given below in order to characterize the
detectability of the neuronal delay in the absence and presence of hemodynamic confounds,
respectively.

(3)

(4)

ρo (or ρd) characterizes the distance between Co (or Cd) and the mean of the empirical null
distribution in terms of its standard deviation. As long as ρo (or ρd) is greater than 3, i.e. the
GC obtained from simulated fMRI is three standard deviations away from the mean of the
null distribution, we can be confident that the corresponding causal influence will be
recognized as a significant one. The greater the value of ρo (or ρd), the greater is the
robustness and reliability of the causal influence derived from fMRI. If ρo (or ρd) were to be
less than 3 for any dn (or dh) and greater than 3 for the following neuronal delays, the
corresponding neuronal delay dmin, defined as the point of inflection, would represent the
minimum detectable delay using fMRI-based GC. ρo and ρd were obtained from all the
channels and trials of the LFP data available in the Chronux database using both the simple
delay and simple delay plus intrinsic dynamics approaches described above. The above
procedure was repeated with the addition of measurement noise such that the resulting
simulated fMRI time series had an SNR of 1. In order to determine the SNR, defined as the
ratio of the signal power to the noise power, the signal power was first calculated by
obtaining the sum of the amplitude squares of each simulated time series normalized by its
length. Subsequently, the noise time series was generated using MATLAB’s inbuilt random
number generator such that it matched the power of the simulated time series data. The
signal and noise time series were then added to obtain the noise corrupted simulated data
with SNR equal to one.
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The Multivariate Case
In the multivariate implementation of the simulations using simple delay, we sliced each
LFP time series x(n) into three parts, x1(n), x2(n) and x3(n) with lengths l1, l2 and l3 ms,
respectively, and as shown in Fig. 1 such that x1(n) began d2 ms after the end of x3(n) and
x2(n) began d1 ms after the beginning of x3(n). Accordingly, x1(n) leads x2(n) by l3− d1+ d2
ms and x2(n) leads x3(n) by d1 ms. Time series x4(n) was defined to begin at l3 ms and end at
l2+d1 ms. Consequently, x4(n) leads x2(n) by l3− d1 ms and x1(n) leads x4(n) by d2 ms. Due
to the above-mentioned delays between the time series, we should obtain the network in Fig.
2 as the ground truth from the neuronal data. This scheme was designed to incorporate a
mediated influence from x1(n) to x3(n) via x2(n) which should not be inferred as a direct
connection from x1(n) to x3(n) in fMRI data since x1(n) and x3(n) did not have an overlap.
Also, in addition to a direct connection from x1(n) to x2(n), a mediated path via x4(n) must
be inferred since x1(n) leads x4(n), which in turn leads x2(n). Since these types of situations
are commonly observed in brain networks, we felt that it was important to model them in
our multivariate simulations.

In the multivariate implementation of the simulations using simple delay plus intrinsic
dynamics approach, x1(n), x2(n), x3(n) and x4(n) were first obtained from a single LFP
channel as was done in the simple delay approach. Subsequently, y1(n), y2(n), y3(n) and
y4(n) were defined as follows

(5)

Where  was obtained by randomizing the phase of a separate LFP channel for each j
which was different from the one used to obtain x1(n).

The delays between the time series were picked from a uniform random distribution with
lower and upper limits of 1 ms and 500 ms, respectively, subject to the constraint that it
should preserve the basic structure of the network given in Fig. 2. Similar to the bivariate
case, x1(n)/y1(n), x2(n)/y2(n), x3(n)/y3(n) and x4(n)/y4(n) were smoothed by HRFs h1(n),
h2(n), h3(n) and h4(n), respectively, with the shape parameter of each of the HRFs chosen
such that the time to peak and onset time assumed random values varying from 0 to 2.5 ms.
The resultant time series were down-sampled to achieve TRs of 0.5, 1, 1.5 and 2 s,
respectively. As before, the choice of the limits of the hemodynamic variability was dictated
by its normal physiological range (Handwerker, Ollinger, & D’Esposito, 2004). For
simulations with simple delay plus intrinsic dynamics, two cases were considered. In the
first case, the parameter C was assigned deterministic values of 0.5,0.7 and 0.9 as in the
bivariate case. In the second case, C assumed a random value between 0.5 and 1.
Randomization of the neuronal delay, proportion of intrinsic dynamics and hemodynamic
variability mimics real situations where in the precise values for these parameters are
typically not available during neuroimaging experiments and it is difficult to dissociate the
neuronal and hemodynamic factors contributing to HRF variability. Measurement noise was
added to the fMRI time series such that the resulting fMRI time series had an SNR of 1. The
procedure described above was repeated 10,000 times in order to adequately sample the
random distributions used for the neuronal and hemodynamic delays. The number of times
the correct multivariate network was ascertained from fMRI was determined and the
corresponding percentage accuracy was calculated. The above procedure was repeated by
considering each channel of LFP data x(n).
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RESULTS AND DISCUSSION
The Bivariate Case

Without HRF Confound—The detectability of the neuronal delay, dn, from GC derived
from fMRI as characterized by ρo is shown in Fig. 3 (simple delay) and Fig. 4 (simple delay
plus intrinsic dynamics) as a function TR and noise. The corresponding points of inflection
are shown in Table.1. The error bars indicate the standard deviation of ρo obtained across
different LFP channels. It can be seen that, in the absence of opposing hemodynamic delays,
ρo was well above the threshold for all TRs even in the presence of noise for a simple delay.
This indicates that GC derived from fMRI was sensitive to even tens of millisecond delays
in the corresponding neuronal data. However, the sensitivity decreased with longer TRs,
shorter neuronal delays and the presence of measurement noise. Noise and slower TR also
stunted the rate of increase of ρo with increasing neuronal delay. Similar inferences can be
drawn for the case of simple delay plus intrinsic dynamics shown in Fig. 4, though unlike
Fig. 3, ρo was below the threshold of 3 for tens milliseconds of neuronal delays (Table.1). In
addition, it can be inferred from Fig. 4 that weaker causal influences with higher proportion
of intrinsic neuronal dynamics (i.e. lower values of C in Eq.2) decreased the sensitivity of
GC. It is noteworthy that ρo peaked in the absence of noise (and abruptly jumped in the
presence of noise) around 500 ms for a TR of 0.5 s (Figs. 3 and 4), indicating that when the
neuronal delay and the sampling period were exactly matched, there was a type of resonance
effect where in the sensitivity of GC derived from fMRI was high. This is agreement with
the theoretical analysis of Wei (Wei, 1982) showing that matching the scale of causal
influence and sampling increases the sensitivity of GC.

In the literature, skepticism exists about the ability of GC derived from fMRI to detect
neuronal delays which are typically an order of magnitude lesser than the TR of fMRI
acquisition. However, our results seems to indicate that though the sensitivity of fMRI-based
GC measures diminishes with decreasing neuronal delay, in the absence of HRF confounds,
it could indeed be used to infer neuronal causality reliably. Below, we provide an intuitive
argument as to why this might be the case.

Given an LFP time series x(n) and HRF h1(n), the corresponding unsampled fMRI time
series is given by x″(n) = x(n) * h1(n), where ‘*’ represents the convolution operation.
Consequently, if x(n) were to be shifted by d ms, then we have x(n−d) * h1(n) = x″(n−d).
Since convolution is a form of temporal aggregation, it has the potential to make the
unidirectional causal influence from x(n−d) to x(n) to appear as a bidirectional influence
between x″(n) and x″(n−d). This has been theoretically illustrated by Wei (Wei, 1982)
wherein it is shown that temporal aggregation increases the instantaneous correlation
between the time series which in turn “leaks” into the causal domain making causality
appear bidirectional. As a proof of principle, the instantaneous correlation is less and the
inferred causality is unidirectional, if one of the two time series were to be a white noise
process (Wei, 1982). However, as noted before, the influence x″(n) → x″(n−d) will be less
than x″(n−d) → x″(n). Thus, the dominant Granger causal influence from x″(n−d) to x″(n)
would still be inferred from fMRI. Downsampling both x″(n) and x″(n−d) by a factor of M,
we obtain x″(Mn) and x″(Mn−Md). It is known that scaling the time index by a factor of M
stretches frequency and contracts time (Crochiere & Rabiner, 1983). Therefore, the delay
between the down-sampled fMRI time series x″(Mn) and x″(Mn−Md) appears to be less than
that between the original LFP time series x(n) and x(n−d) with increasing M, i.e. longer TR.
However, it is critical to note that d was still a factor determining the delay relationship
between the fMRI time series. Also, as reported before (Wei, 1982), systematic sampling
preserves the direction of causal influence between the variables, though it weakens the
magnitude of the relationship between them. The above arguments provide an intuitive
explanation for our findings in Fig. 3. Also, preliminary experimental evidence suggests that
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latency differences between BOLD data obtained from the right and left visual hemifields
reflects the corresponding latency differences in stimulus timing even when the left and right
stimuli were barely separated by approximately 100 ms (Katwal, Gatenby, Gore, & Rogers,
2009). Though further experimental research is needed in order to support the preliminary
experimental evidence as well as the predictions of our simulations, the discussion presented
above provides an intuitive argument in support of our findings.

With HRF Confound—Fig. 5 and Fig. 6 illustrate the effect of TR and noise on the
detectability of the neuronal delay, dn, from GC derived from fMRI as characterized by ρd,
in the presence of hemodynamic delays of 0.5 opposing the neuronal delay, for the case of
simple delay and simple delay plus intrinsic dynamics, respectively. The corresponding
figures for a hemodynamic delay of 2.5 are shown in Fig. 7 and Fig. 8. The negative values
of d indicate that, contrary to the expected dominant Granger causal influence from x′ (n) to
y′ (n), the inferred direction of causality was from y′ (n) to x′ (n). This corresponds to the
situation where in the opposing hemodynamic delay confounded the inference of true
causality from fMRI data. In this situation, the point of inflection, defined as the neuronal
delay at which mean ρd is greater than 3 and continues to remain so for increasing neuronal
delays, is critical and is shown in Table.1.

It is to be noted that the minimum detectable neuronal delays in the presence of opposing
HRF confounds given in Table.1 must be only interpreted approximately and no significance
should be attached to their exact numerical values. This is because the significance of the
causal paths obtained from surrogate data depend on the spectral power in the individual
time series, since surrogate data are obtained by retaining the magnitude spectrum of the
original time series with only its phase spectrum randomized. The AR model of linearly
mixed data is given by a similarity transformation of the original AR matrices and hence is
dependent on the spectral power in individual time series (Pandit & Wu, 1983).
Consequently, different LFP channels had slightly different points of inflection, as is evident
from the standard deviation of the curves in Figs 3–8, since they had different spectral
signatures. However, it is to be noted that the range of the standard deviation did not
significantly change the point of inflection. Therefore, inferences of significant paths which
have large values of ρd will not be affected, though this issue does have a bearing on those
values near the threshold (Pandit & Wu, 1983). Consequently, the point of inflection
obtained from a different set of experimental data is likely to be numerically different,
though its order of magnitude will be similar. In order to shed more practical value to the
point of inflection, we have shown in Table.1 how it varies as we raise the threshold from
ρd=2 (very liberal) to ρd=4 (very conservative).

Figs 5 and 7 indicate that for the case of causality induced by a simple delay, neuronal
delays which were hundreds of milliseconds were detected even in the worst-case scenario
of hemodynamic delays opposing the neuronal delays. Also, comparison of Figs 5 and 6
with Figs 7 and 8 shows that increasing the hemodynamic delay from 0.5 s to 2.5, which are
the approximate mean and upper limits of the observed HRF variability reported before
(Handwerker, Ollinger, & D’Esposito, 2004), respectively, expectedly raised the point of
inflection. However, the dual presence of lower causal influence due to higher proportion of
intrinsic dynamics and HRF delay of 2.5 s makes GC applied to fMRI less useful because
the corresponding point of inflection was close to or greater than 1 s.

It is counterintuitive that the causal influence inferred from fMRI data for neuronal delays
which were hundreds of milliseconds could still be accurate in the presence of opposing
hemodynamic delays of up to 2.5 s. Since convolution is a linear time-invariant operation, a
temporal shift of the HRF should correspondingly shift the resultant simulated fMRI time
series, which would destroy the neuronal causality in fMRI data since the hemodynamic
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delays are an order of magnitude greater than neuronal delays. However, our results suggest
that the above reasoning is not entirely true. The answer to this apparent contradiction lies in
the subtlety of what exactly constitutes a hemodynamic delay. As shown by previous studies
(Handwerker, Ollinger, & D’Esposito, 2004), the variability of the HRF across brain regions
mainly arises from differences in the shape of the peak, most notably, the time to peak and
onset time. As described before, this translates to a variation in the shape parameter of the
canonical HRF and we still expect the total duration of the HRF to remain relatively
constant. This scenario is not mathematically equivalent to a temporal shift of the HRF and
hence the effect of HRF variability on fMRI-based GC analysis was less severe than
expected.

The Effect of Noise—The results from Figs. 5–8 reinforce the conclusions obtained from
Figs. 3–4, that slower sampling and presence of measurement noise reduce the sensitivity of
GC obtained from fMRI to shorter neuronal delays. In addition, the differences between the
points of inflection obtained with and without noise decreased with increasing TR. This can
be explained by the fact that measurement noise is an error between what is measured and
what ought to be measured and hence may not be affected to a great extent by the rate of
measurement which is represented by the TR. Therefore, the effect of TR was greater on the
data in the absence than in the presence of noise. Also, measurement noise is known to
introduce spurious causalities (Nalatore, Ding, & Rangarajan, 2007) which may reduce any
advantage that might have been gained by sampling faster, as a consequence of which the
effect of noise was greater at faster TRs. However, it is noteworthy that more than the point
of inflection, noise had a greater effect on the rate of increase of ρd with increasing neuronal
delay. It can be seen from Figs 3–8 that once past the point of inflection, the detectability of
the neuronal delays improved dramatically with increasing dn in the absence of noise as
compared to in the presence of noise.

The Multivariate Case
The network shown in Fig. 2 was correctly inferred from LFP data with 100% accuracy.
This is to be expected since the causal structure in the LFP data was artificially introduced.
The corresponding fMRI networks with randomized neuronal and hemodynamic delays
were detected with accuracies shown in Table.2. As in the bivariate case, the robustness of
fMRI-based GC analysis decreased with increasing TR and intrinsic dynamics. It is
noteworthy that the accuracy of detecting each of the paths in the multivariate network
individually, i.e. the accuracy of detecting a path in the bivariate case, was higher (Table.3)
compared to the accuracy of simultaneously detecting all of the paths correctly (Table.2).

The bivariate simulations provided a guideline for choosing scan parameters such as TR
given the fact that the neuronal delays and proportion of intrinsic dynamics in the
neurophysiological system under investigation and the achievable SNR of the fMRI time
series were known a priori under the worst-case assumption that the hemodynamic delays
opposed the neuronal delays. In contrast, during real experimental situations, researchers
typically investigate multivariate brain networks and are constrained by the SNR provided
by the scanner, the TR dictated by the requirement of whole brain coverage and the short
scanning time available, and the intrinsic dynamics, neuronal and hemodynamic delays
inherent in the neurophysiological system under investigation. Therefore, the detection
accuracies reported here are critical to determine the confidence that can be placed in
multivariate GC networks derived from fMRI, given the SNR, TR and unknown neuronal
and hemodynamic delays which are assumed to be in their normal physiological range.
Implicit in the randomization of neuronal and hemodynamic delays is the assumption that,
contrary to the bivariate case, they may not always oppose one another. Therefore the
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multivariate case mimicked the real experimental situations better than the bivariate case,
though the latter characterized the constraints and limits of fMRI-based GC analysis.

Although the purpose of the multivariate simulation was to mimic the real situation as
closely as possible, the performance of fMRI-based GC analysis in an actual experiment
may be better or worse than predicted by us due to the factors outlined below. First, the
differences in HRF onset times and time to peak in experimental data may be driven by the
underlying neuronal causality and may not always be hemodynamic in nature. Therefore,
neuronal causality may explain part of the variance in HRFs across brain regions and hence
the situation in experimental data may not be as dire as the one assumed in our simulations
where in the hemodynamic and neuronal delays opposed each other in the bivariate case and
their variances were mutually exclusive and derived from uniform random distributions in
the multivariate case. Second, in experimental data, measurement noise is added only once
during the acquisition while in our simulations, it was already present in the LFP data in
addition to what we added to the simulated fMRI data. Consequently, the effective SNR of
our simulations may be worse than what it seems. Given the above factors, the performance
of fMRI-based GC analysis on experimental fMRI data may be better than in our
simulations. Contrarily, certain situations may make GC analysis of fMRI perform poorer
than in our simulations. For example, pathological conditions may cause extreme
discrepancies in HRFs of certain brain regions. David and colleagues (David, et al., 2008)
recently reported a situation wherein the hemodynamic response of one of their ROIs in a rat
model of absence epilepsy showed an extreme inconsistency by peaking approximately 5 s
after the HRFs of other regions and taking more than 30 s as compared to other ROIs to
return to baseline. Expectedly, they were not able to infer the correct directionality of the
causal influence from raw fMRI data without deconvolving the HRF. Our simulations
exclude such situations where in the HRF variability is outside the normal physiological
range. If such a situation were to arise, the performance of fMRI-based GC analysis will be
worse than that predicted by our simulations. However, in case such a situation is expected
in an experimental setting involving a pathological population as in David, et al. (2008),
then it is a good idea to obtain simultaneous electrophysiological data to accurately estimate
the HRF and deconvolve it before applying Granger causality analysis.

CONCLUSIONS
In this work, we performed simulations in order to investigate the effects of hemodynamic
variability on GC analysis of fMRI data with respect to TR, measurement noise in the data,
strength of causal influence and the underlying neuronal delay. We have demonstrated the
following: First, in the absence of HRF variability, even tens of milliseconds of neuronal
delay can be inferred from GC analysis of fMRI. Second, in the presence of HRF delays
which oppose neuronal delays, the minimum detectable neuronal delay may be hundreds of
milliseconds. Third, in the more realistic scenario of unknown neuronal and hemodynamic
delays within their normal physiological range, the accuracy of detecting the correct
multivariate network from fMRI is well above chance and up to 90% with faster sampling.
Generically, under all conditions, faster sampling and low measurement noise improved the
sensitivity of GC analysis of fMRI data.
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Figure 1.
Schematic showing the procedure to derive the four time series of the multivariate network
from a single channel of LFP data, x(n). x1(n), x2(n), x3(n) and x4(n) represent the four time
series derived from x(n) and d1 and d2 represent the inherent neuronal delays in the
simulated system governing the relationship between the four time series
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Figure 2.
The multivariate network expected to be obtained from the time series x1(n), x2(n), x3(n) and
x4(n)
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Figure 3.
Variation of ρo, which determines the detectability of the neuronal influence in the absence
of HRF confounds, as a function of neuronal delay dn, TR and noise for the case of simple
delay. The black line represents the statistical threshold of ρo=3
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Figure 4.
Variation of ρo, which determines the detectability of the neuronal influence in the absence
of HRF confounds, as a function of neuronal delay dn, TR and noise for the case of simple
delay plus intrinsic dynamics. The black line represents the statistical threshold of ρo=3.
Blue, red and black curves represent C values of 0.5, 0.7 and 0.9, respectively
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Figure 5.
Variation of ρd, which determines the detectability of the neuronal influence in the presence
of HRF confounds, as a function of neuronal delay dn, TR and noise for the case of simple
delay. The hemodynamic delay dh=0.5 s opposed the neuronal delay dn. The black line
represents the statistical threshold of ρd=3
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Figure 6.
Variation of ρd, which determines the detectability of the neuronal influence in the presence
of HRF confounds, as a function of neuronal delay dn, TR and noise for the case of simple
delay plus intrinsic dynamics. The hemodynamic delay dh=0.5 s opposed the neuronal delay
dn. The black line represents the statistical threshold of ρd=3. Blue, red and black curves
represent C values of 0.5, 0.7 and 0.9, respectively.
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Figure 7.
Variation of ρd, which determines the detectability of the neuronal influence in the presence
of HRF confounds, as a function of neuronal delay dn, TR and noise for the case of simple
delay. The hemodynamic delay dh=2.5 s opposed the neuronal delay dn. The black line
represents the statistical threshold of ρd=3
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Figure 8.
Variation of ρd, which determines the detectability of the neuronal influence in the presence
of HRF confounds, as a function of neuronal delay dn, TR and noise for the case of simple
delay plus intrinsic dynamics. The hemodynamic delay dh=2.5 s opposed the neuronal delay
dn. The black line represents the statistical threshold of ρd=3. Blue, red and black curves
represent C values of 0.5, 0.7 and 0.9, respectively.
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