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Abstract
Complex tasks often require the memory of recent events, the knowledge about the context in which
they occur, and the goals we intend to reach. All this information is stored in our mental states. Given
a set of mental states, reinforcement learning (RL) algorithms predict the optimal policy that
maximizes future reward. RL algorithms assign a value to each already-known state so that
discovering the optimal policy reduces to selecting the action leading to the state with the highest
value. But how does the brain create representations of these mental states in the first place? We
propose a mechanism for the creation of mental states that contain information about the temporal
statistics of the events in a particular context. We suggest that the mental states are represented by
stable patterns of reverberating activity, which are attractors of the neural dynamics. These
representations are built from neurons that are selective to specific combinations of external events
(e.g. sensory stimuli) and pre-existent mental states. Consistent with this notion, we find that neurons
in the amygdala and in orbito-frontal cortex (OFC) often exhibit this form of mixed selectivity. We
propose that activating different mixed selectivity neurons in a fixed temporal order modifies synaptic
connections so that conjunctions of events and mental states merge into a single pattern of
reverberating activity. This process corresponds to the birth of a new different mental state that
encodes a different temporal context. The concretion process depends on temporal contiguity, i.e.
on the probability that a combination of an event and mental states follows or precedes the events
and states that define a certain context. The information contained in the context thereby allows an
animal to assign unambiguously a value to the events that initially appeared in different situations
with different meanings.
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Introduction
When we execute complex tasks, we often need to store information about past events in order
to decide how to react to a particular stimulus. If the task is familiar, we know what information
to store and what to disregard. At the moment we make a decision about our response to a
particular event, we are in a specific mental state that contains all the information that we know
to be relevant to react to that event. This information is typically about our perception of the
environment, our physical position, our memories, our motivation, our intentions, and all the
other factors that might be relevant to reach a particular goal. In other words, every mental
state is our most general disposition to behavior. In many cases the execution of a task can be
considered as a series of transitions from one mental state to the next, each triggered by the
occurrence of a particular event.

In order to understand the neural mechanisms underlying the execution of complex tasks we
need to answer two important questions: 1) how do we create the neural representations of
mental states that contain all the relevant information to execute a task? 2) how do we learn
which mental state to select in response to a particular event? Reinforcement learning (RL)
algorithms (see e.g. (Sutton and Barto, 1998)) have provided an elegant theoretical framework
to answer the second question. In particular they provide prescriptions for the policy of mental
state selection that maximize reward and minimize punishment. In RL algorithms, values that
represent future cumulative reward are assigned to the mental states. The value increases as
the agent moves closer to a pleasant outcome, like the delivery of reward. The table of values
of mental states thereby determines the optimal policy. One has simply to select the action that
induces a transition to the state with highest value. However, most RL algorithms presuppose
that the set of mental states contain all the relevant information for performing a task, and hence
they do not provide an answer to the first question, on how the mental states are created.

In this paper, we make an attempt to answer this question by proposing a mechanism for the
creation of mental states in context dependent tasks, in which the optimal policy for maximizing
reward is different in different contexts. In particular we will consider all the situations in which
the information about temporal context can be used to create mental states that unequivocally
determine the state of the environment and the actions to be executed. In other words, if the
occurrence of an event in two different contexts requires different policies, we need to react to
that event in two different ways that will be encoded in two different sets of mental states. We
propose in our paper a mechanism that leads to the formation of different sets of mental states
for different contexts.

A paradigmatic experiment
To illustrate the principles behind our proposed mechanism, we will present a neural network
model that performs an extended version of an appetitive and aversive trace conditioning task
used in recent neurophysiological recording experiments (Paton et al., 2006; Belova et al.,
2007; Salzman et al., 2007; Belova et al., 2008; Morrison and Salzman, 2009). In those
experiments, monkeys learned whether an abstract fractal image (conditioned stimulus, CS)
predicted liquid reward or aversive air-pufis (unconditioned stimulus, US) after a brief time
(trace) interval. Single unit recordings in the amygdala and orbitofrontal cortex (OFC) revealed
the existence of cells encoding the learned value of the CSs (rewarded or punished). After a
variable number of trials, the CS-reinforcement contingencies were reversed and monkeys had
to learn the new contingencies. In the experiments, the CS-US associations were reversed only
once. However, in principle, the two contexts defined by the sets of CS-US associations could
be alternated multiple times. In this situation, it is possible that the animal at some point creates
two representations corresponding to the two contexts and it can switch rapidly from the
optimal policy for one context to the optimal policy for the other. This switch is qualitatively
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different from learning and forgetting the associations as it would not require any synaptic
modification. The two independent context representations would be simultaneously encoded
in the pattern of synaptic connectivity.

The model of a neural circuit performing the trace conditioning task with multiple reversals
will be used to illustrate the mechanism for the formation of context representations. The single
unit recordings from experiments (in which there is a single reversal), will be used to support
our assumptions about the initial response properties of the model neurons.

The proposed model architecture: the Associative Network (AN) and the Context Network
(CN)

In modeling data from this task, we assume that there are two interacting neural circuits. The
first one is a neural circuit that we name AN (Associative Network) similar to the one proposed
by (Fusi et al., 2007), that learns simple one to one associations between CSs and USs. The
second one, the CN (Context Network) observes the activity of the AN, in particular when the
AN has already learned the correct associations, and abstracts the representations of temporal
contexts. These representations can then be used by the AN to predict more efficiently the
value of the CSs when the context changes and the AN has to learn the new associations.

Learning and forgetting associations: the function of the AN
In every trial the AN starts from a wait state. The CS biases a competition between the
populations of neurons representing two different mental states, one that predicts the delivery
of reward, and hence has a positive value, and the other that predicts punishment and has a
negative value. The delivery of reward or punishment resets the AN to the wait state. The AN
encodes the CS-US associations by making CS triggered transitions to the state that represents
the value of the predicted US. The CS-US associations are learned by biasing the competition
between the positive and the negative state. In particular, the competition bias is learned by
modifying the synaptic connections from the neurons that represent each CS and the positive
and negative neurons. When the associations are reversed, the learned synaptic strengths are
overwritten by the new values. The AN can be in one of the three states (wait, positive,
negative), and can implement only one set of CS-US mappings at a time. In the two contexts
the AN implements two different “policies”, as the same CS induces different transitions.
Notice that the CS-US associations are learned independently for each CS. The AN does not
store any information about the relations between different CS-US associations, and in
particular about the fact that all associations are simultaneously modified when the context
changes. This means that for example, when the context changes, the AN cannot infer from
the modification of one of the CS-US associations, the value of the other CS. This type of
inference requires information about the temporal statistics of the CS-US associations, which
are collected by the CN. We propose that this type of inferential information is stored in the
representations of the temporal contexts, which are built from the statistics of the sequence of
events and mental states.

The formation of representations of temporal contexts: the main idea
In the trace conditioning task the first context is characterized by the fact that the sequence CS
A-Reward is most often followed either by itself or by CS B-Punishment. Analogously the
second context is defined by the elevated probability of the transitions between CS A-
Punishment and CS B-Reward. The animal observes rarely that CS A-Reward is followed by
CS B-Reward or CS A-Punishment. In other words, if we look at the matrix of transitions
between these sequences, we can clearly identify two clusters of sequences that are connected
by significantly larger transition probabilities. These two clusters define the two relevant
contexts. The idea sounds simple, but the detailed implementation turned out to be more
difficult than expected because initially, the neural circuit does not know that it needs to
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consider the CS-US associations as the building blocks of the context representation. The neural
circuit observes a series of several events and mental states and it has to abstract autonomously
what is relevant for the formation of context representations.

The neural basis of the formation of context representations
In the detailed implementation, the learning process that takes place in the CN iteratively
merges the neural representations of temporally contiguous events and mental states. The first
compounds that are created represent short temporal sequences, or, more generally, groups of
events and mental states that tend to be temporally contiguous. Compounds that often follow
each other can also merge into larger compounds. In this sense the process of merging is
iterative, and at every iteration the compounds grow to represent larger groups of events that
are temporally contiguous to each other. In more technical terms, the temporal statistics of the
compounds define a new Markov process that is a coarse grained representation of the Markov
process of the previous iteration, similarly to what has been studied in (E et al., 2008). The
iterative process stops when all the transition probabilities between the compounds go below
a certain threshold. In the specific case of the trace conditioning task, the first representations
that merge are those that represent temporally contiguous events like CS A and the mental state
predicting a positive value. The parameters are chosen so that the merging process stops when
CS A-Reward and CS B-Punishment belong to a single compound representing context 1, and
CS B-Reward and CS A-Punishment belong to a second compound that represents context 2.
The neural mechanisms that could underlie this iterative learning process are described in detail
in the Methods, and the simulations are illustrated in the Results.

The initial conditions: mixed selectivity in theory and experiments—The neurons
of the CN are randomly connected to the neurons of the AN and the parameters are chosen
such that they respond to conjunctions of external events (CS A or B, reward, punishment) and
states of the AN (neutral, positive, negative). The neurons therefore may be described as having
mixed selectivity, even before the learning process of the CN starts. We observed these types
of neurons both in the amygdala and in orbitofrontal cortex of monkeys performing the trace
conditioning task of Paton et al. (2006). We report in this manuscript the statistics of their
response properties.

From temporal sequences to context representations: attractor concretion—In
the model, the temporal statistics of the mixed selectivity neurons depend on the sequence of
patterns of activation of the AN. For example consider a trial in which CS A is followed by
reward. The AN would start in a wait state with neutral value and CS A would steer the activity
toward a positive state. The US would reset the AN activity back to the neutral state. In the
CN we would observe the activation in sequence of the following populations that are selective
to conjunctions of states and events: neutral-CS A, CS A-positive, positive-reward, reward-
neutral. Initially, each conjunction induces a transient activation of the CN neurons. The
synapses between CN neurons that are activated simultaneously are strengthened (Hebbian
component of synaptic plasticity), so that the neural representations of individual conjunctions
become stable self-sustaining patterns of persistent activity that are attractors of the neural
dynamics (see e.g. (Hopfield, 1982; Amit, 1989)). These patterns remain active until the
occurrence of the next event and the activation of a new input from the AN. A second
component of the synaptic plasticity, which we call temporal sequence learning (TSL),
strengthens the connections between neurons that are activated in succession, similar to what
has been proposed for learning of temporal sequences (Sompolinsky and Kanter, 1986) and
temporal contexts (Brunel, 1996; Griniasty et al., 1993; O’Reilly and Munakata, 2000; Rougier
et al., 2005; Yakovlev et al., 1998). This component causes the merging (concretion) of
attractors that are activated in a fixed temporal order, leading to the formation of the
representations of temporal contexts.
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From context representations to the creation of mental states—At the beginning
of the learning process, the CN simply reflects the activity of the AN, and hence the entire AN–
CN system has the same number of mental states as the sole AN (neutral, positive, negative).
At the end of the learning process, the CN can represent both contexts, with one being the
”active context”. Hence, the entire AN–CN system has two sets of the three AN states, one for
the first context and one for the second. As the AN receives feedback from the CN, it can then
easily disambiguate between the CS-US associations of the first context from those of the
second. We will show that at the end of the learning process the full AN–CN system can work
more efficiently than the AN alone after a context switch. Indeed it can predict the correct value
of a CS when the other is already known. We will then discuss quantitative predictions about
the behavior and the neural activity that can be recorded.

Materials and Methods
We first describe the details of the trace conditioning task that has been used in
neurophysiological experiments and its extended version, which we used in all model
simulations. We then describe the the Associative Network (AN) and the Context Network
(CN). The model of the AN has already been introduced in Fusi et al. (2007). Here we
summarize briefly its neural and synaptic dynamics and we show simulations of the specific
case of the trace conditioning task. We then describe the novel neural and the synaptic dynamics
of the CN. The description of the learning behavior and the explanation of the mechanisms are
deferred to the Results section. Finally, we describe the details of the analysis of
neurophysiological data that we use in the Results to motivate the model assumptions about
the initial response properties of the neurons.

The experimental protocol
The appetitive and aversive trace conditioning task described in (Paton et al., 2006; Belova et
al., 2007; Salzman et al., 2007; Belova et al., 2008; Morrison and Salzman, 2009) uses a trace
conditioning protocol (a type of Pavlovian conditioning) to train an animal to learn the
relationship between abstract visual stimuli (conditioned stimuli, CS) and rewards and
punishments (unconditioned stimuli, US). While a monkey centers its gaze at a fixation point,
CSs are presented followed by a trace interval (a brief temporal gap), and then US delivery. In
the experiments (Paton et al., 2006; Belova et al., 2007; Salzman et al., 2007; Belova et al.,
2008; Morrison and Salzman, 2009), the animals demonstrated their learning of CS-US
contingencies by licking a reward tube in anticipation of reward and blinking in anticipation
of the delivery of the air-pufi. After a variable number of trials, the CS-US associations were
reversed without any notice and the animals had to learn the new contingencies.

In the version of the task that is simulated in this paper, we will consider two CSs, A and B,
and two possible outcomes, reward and punishment, which are delivered after a brief time
interval, as in the original task of (Paton et al., 2006). The CS-US associations are reversed
multiple times, switching from context 1 in which CS A is paired with reward, and CS B with
punishment, to context 2 in which CS A is paired with punishment and CS B with reward. The
blocks of context 1 and context 2 trials are approximately 120 trials each, and they are alternated
multiple times.

The Associative Network (AN): structure and function
The AN learns the associations between CSs and USs. This Associative Network (AN) receives
feed-forward plastic inputs from the neural populations that represent external events (CSs,
reward and punishment). The neurons of the AN are grouped in three different populations:
two excitatory populations representing positive and negative value compete through a
population of inhibitory neurons (see Fig. 1). The synaptic connections between these three
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populations are chosen as in Wang (2002) and Fusi et al. (2007), so that there are only three
stable states: a wait state in which the AN is quiet (neutral value state), and the other two
corresponding to the activation of one of the two excitatory populations (positive and negative
state). The presentation of the CS generates an input that initiates and biases the competition
between the positive value and the negative value populations of neurons. The delivery of the
US brings the network back to the neutral value state (see Fig. 2 for a description of the AN
dynamics). Initially, when the CS is novel and the associated US is still unknown, the CS
activates an unbiased competition between positive and negative populations and one of the
two values is chosen randomly with equal probability. This behavior reflects the fact that the
animal is already familiar with the experimental protocol and can predict that the CS will be
followed in half of the cases by reward and in the other half by punishment (Fusi et al.,
2007). The synaptic weights between the neurons encoding the CS and the AN neurons are
modified in every trial depending on whether the prediction of the AN (positive or negative)
matches the actual US that is delivered (reward or punishment) or not. When the prediction is
correct (i.e. when the CS activates the positive state and it is followed by reward, or when the
CS activates the negative states and it is followed by punishment), the synapses from the CS
neurons to the correct value encoding population are strengthened (learning rate , see
Fusi et al. (2007) for the details of the synaptic dynamics), and the synapses from the CS
neurons to the other value population are weakened . These modifications reinforce
the bias in the competition between positive and negative populations towards the correct
prediction. When the prediction is incorrect, we assume as in Fusi et al. (2007) that all synapses
from the CS neurons to the AN neurons are rapidly depressed . This reset forces
the AN to choose randomly the value of the CS the next time it is presented. The learning rates
qs have been chosen to match the learning curves reported in Paton et al. (2006). In particular
we chose them so that the simulated AN reaches 90% of the value prediction performance in
10 trials on average.

The Context Network (CN): the architecture
The Context Network is made of neurons that are randomly connected to both the neurons
encoding the external events and the excitatory neurons of the AN. The synapses between CN
neurons are plastic and they are modified by the learning rule described below in order to create
context representations. The random connections are Gauss distributed and the parameters are
chosen so that a large number of neurons of the CN neurons respond to conjunctions of external
events (CS A,CS B, reward, punishment, denoted by ‘A’,‘B’,‘R’,‘P’, respectively) and the
state of the AN (positive, negative, neutral, denoted by ‘+’, ‘−’, ‘0’ respectively). For simplicity,
we will consider in our simulations only the neurons that respond to simple conjunctions of
one external event and one state. For example, some neurons would respond to CS B only when
the AN switches to a negative state. We will label these neurons with ‘B−’. In Fig. 3 we show
the simulation of a rate model neuron that behaves like a typical CN neuron with mixed
selectivity. These simulations are for illustrative purposes only and to motivate our assumptions
about the response properties of the CN neurons. This type of model neurons will not be used
in the rest of the paper (see the Methods section about the neural dynamics for the model
neurons that will be used). The simulated neuron receives synaptic inputs with equal weights
from the neurons that are activated by CS B and from the negative value coding neurons of the
AN (simulated as in Fusi et al. (2007)). The firing rate is a sigmoidal function of the total
synaptic input. Although the choice of equal synaptic weights might seem special, the behavior
illustrated in Fig. 3 is actually the typical behavior of neurons with randomly chosen synaptic
weights. The probability that a randomly connected neuron exhibits significant mixed
selectivity depends on the specific model of the neuron and on the neural representations of
the events, but it can be as large as 1/3 (Rigotti et al., 2010).
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The neurons with mixed selectivity are the building blocks of context representations and they
are assumed to be present in the CN from the very beginning, before any learning process takes
place. In the Results we will support this assumption with experimental data.

The neural dynamics of the CN
The activity of the AN drives the CN network, which is composed of N populations of neurons
which are either active or inactive. We denote by ξi the activity of population i. As we consider
only the randomly connected neurons that respond to simple conjunctions of external events
and state of the AN, we have in total N = 12 different types of populations responding to the
following combinations: 0A, 0B, A+, A−, B+, B−, R0, P0, +R, −R, +P, −P. Not all these
combinations are necessary for the formation of context representations, but we simulate all
of them for completeness, as they are all assumed to be present in the neural circuit. For
simplicity we ignore neurons that respond to combinations of three or more events and AN
states. We assume full connectivity within the CN. The average strength of the excitatory
synaptic connections from neurons of population j to neurons of population i is denoted by
Jij, and it can vary from 0 to 1. Every CN population inhibits all the others through a pool of
inhibitory neurons. The net effect is to include a constant negative coupling (gI = 0.5) between
the excitatory populations. Additionally, every population i receives a constant current θi and
an external input hi from the AN neurons. More quantitatively, the activity  of population i
at time t is given by the following discrete time evolution equation:

(1)

where Θ is the Heaviside function with Θ(x) = 1 if x > 0, and Θ(x) = 0 otherwise.

During the learning process, the single or multiple CN populations can become attractors of
the neural dynamics (stable patterns of self-sustaining activity). These patterns will be the
building blocks for context representation, as illustrated in the Results. Once activated by the
AN and external input, the attractors remain active indefinitely, or at least until the arrival of
the next sufficiently strong input. To avoid the simultaneous activity of all CN populations,
we need to guarantee that the external input can overcome the recurrent CN input and shut
down previously activated stable patterns. This is important also for weak external inputs, that
would normally be ignored by the CN. For this reason we complemented the described neural
dynamics by a reset signal which inhibits the whole network every time an external input ht

targets at least one population which is not already activated by the recurrent input. Such a
signal is important not only to reset the activity but also to learn only when the activity pattern
of the CN is modified.

The synaptic dynamics of the CN
The CN “observes” the activity of the neurons representing the external stimuli and the neurons
of the AN. The context representations are created from the temporal statistics of the patterns
of activity of the AN and the external neurons. Here we describe the equations and the details
of the synaptic dynamics that lead to the formation of the context representations, but we
explain the mechanism and we show simulations only in the Results.

The synapses are modified by two mechanisms: 1) a Hebbian mechanism strengthens the
synapses of simultaneously active neurons, and depresses the synapses connecting an active
to an inactive neuron. Analogously to the mechanism introduced in Hopfield (1982) and, more
recently, in Amit and Brunel (1995)), it stabilizes the CN activity that is initially imposed
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transiently by the external input and the AN. If the synapses between co-activated neurons
become strong enough, the neurons of the activated CN population can excite each other to the
point that the transient activity becomes self-sustaining (attractor of the neural dynamics). 2)
the TSL (Temporal Sequence Learning) mechanism, which links together patterns of activity
that are activated in sequence. This component of the synaptic dynamics is responsible for
merging attractors that are often temporally contiguous. It basically strengthens the synapses
between two neurons that are activated sequentially one after the other. Moreover it depresses
the synapses between active neurons and neurons that are inactivated at the next time step.

Both mechanisms are activated only when the competition between the positive and negative
populations in the AN is strongly biased, indicating that the AN has already learned the
associations. As the neurons have only two levels of activation, we monitor the total synaptic
input to them, and we modify the synapses of the CN only when the current driving the winning
population exceeds a threshold θL = 0.25 (to be compared to the total synaptic input, i.e. the
argument of the Heaviside function in Eq. 1). In a more realistic implementation with rate
neurons, we could set a threshold for the firing rate of the AN neurons.

The Hebbian mechanism—The modifications of the synapses from population j to
population i depend on the current pre and post-synaptic activity  and on the post-synaptic
recurrent synaptic input  (i.e. the input from the neurons the belong to other populations within
the CN):

(2)

In particular we have:

(3)

Equation (3) describes a modified version of the perceptron learning algorithm (Rosenblatt,
1958). The synapse Jij is potentiated when both the pre-and the post-synaptic neuron are
simultaneously active  and depressed when the pre-synaptic neuron is active and the post-
synaptic neuron is inactive . The two terms containing Jij, and (1 − Jij) impose
a soft-bound on the synaptic weights and keep them between zero and one, as in Senn and Fusi
(2005). The synapses are not updated when the post-synaptic neuron is active and the total
recurrent input is sufficiently large , where γs is a positive number which is related
to the stability parameter (Gardner, 1987)). This term prevents the synapses from being updated
when the recurrent input is sufficient to activate the post-synaptic neuron in the absence of the
external stimulus. In other words, the synapses are not updated if the pattern of activity can
already sustain itself. This term prevents the correlated parts of different attractors to dominate
the neural dynamics and hence allows the network to generate attractors that are highly
correlated (see e.g. Senn and Fusi (2005)). Moreover, if γ is sufficiently large, it increases the
stability of the attractors (Krauth et al., 1988).

This type of learning prescription can be implemented with realistic spike driven synaptic
dynamics (Brader et al., 2007). The factors  are the learning rates for potentiation and
depression, respectively. The parameter values are: γs = 5 × 10−4,

, where n is the number of time steps in one trial (in our
simulations n = 15).
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Temporal Sequence Learning (TSL)—The second learning component, temporal
sequence learning (TSL), is meant to strengthen the synaptic connections between neurons that
are repeatedly activated one after the other in a fixed temporal order. At every time step t we
calculate how many inactive populations are activated by the new incoming external input ht

and we divide this quantity by the total number of populations N:

This is a measure of the global mismatch between the pattern imposed by the external
stimulation at time t and the network activity at the previous time t − 1. When this quantity is
different from zero, it is an indication that the neural activity of the CN has been modified by
the external input. In such a case a reset signal is delivered to the CN (see neural dynamics),
and the synaptic connections from population j and population i are modified according to:

(4)

The term in square brackets contains two terms, one potentiates the synapses and the other one
depresses them. In particular, the synapses are potentiated when the post-synaptic external

current  is positive and the pre-synaptic neuron was active at the previous time step .
The synapses are depressed when the post-synaptic external current  is negative, and the pre-
synaptic neuron was active at the previous time step. The Jij dependent terms implement a soft
boundary as in the case of the Hebbian term. The presence of a soft boundary is in general
important to estimate probabilities (Rosenthal et al., 2001; Fusi et al., 2007; Soltani and Wang,
2006), and in our specific case to estimate the probability that a particular event is followed
by another one. The parameters are: γa = 0, .

At every time step the synaptic weights are updated according to:

(5)

When the reset signal is delivered, first the weights are updated and then the activity is reset.

The feedback from the Context Network to the Associative Network
The information about the current context contained in the CN activity after learning, can be
used by the AN to predict more efficiently the value of the stimuli. For example, when the CN–
AN knows that the CS-US association has changed for CS A, it can predict that the CS-US
association for CS B has changed as well. In order to do so, we need to introduce some form
of feedback from the CN to the AN. In principle CN neurons could project directly to the AN
neurons, as the CN neurons contain all the information that the AN neurons need to know about
the current context. However, this feedback input cannot produce the desired context dependent
bias on the AN competitive dynamics, unless we introduce an intermediate population of
neurons that mixes the external input and the CN activity (see Fig. 4). This is a general
requirement for many systems in which there is a dependence on context (Rigotti et al.,
2010). Indeed, without this intermediate layer of neurons, there is no set of synaptic weights
that would produce the correct prediction. The general proof is in Rigotti et al. (2010), here we
give an intuitive argument for our specific case. Consider two input neurons: an external neuron
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that is active when CS A is presented and inactive for CS B, and a CN neuron that is active for
context 1 and inactive for context 2. The AN “output” neuron encoding a negative value should
be inactive for CS A+Context 1 (both input neurons active=11), and CS B+Context 2 (00). At
the same time it should be inactive for CS A+Context 2 (10), and CS B+Context 1 (01). This
mapping of the input to the output is equivalent to the implementation of the logical operation
‘exclusive or’ (XOR) and it is known that it is not possible to build a single layer network that
implements it (see e.g. Minsky and Papert (1969)). The solution proposed in Rigotti et al.
(2010) is to introduce an intermediate layer of randomly connected neurons. If the number of
these neurons is suficiently large, the problem equivalent to the XOR explained above can be
solved. For this reason we introduced an additional population of neurons whose activity
depends on the input from the CN populations and the external neurons. Analogously to the
CN neurons, which are also connected by random synaptic weights to the AN, most of the
neurons of the additional population respond to pairs of CN-external neurons activations. We
therefore assume that the feedback population is composed of neurons responding to the 2 ×
N possible CS-CN population combinations (2 CSs multiplied by the N populations of the CN).
These neurons project back to the AN neurons with plastic synapses that are modified with the
same synaptic dynamics as the connections from the external neurons to the AN neurons, except
that the learning rates are significantly smaller . These
feedback connections are initialized to zero, and the learning rates are chosen to be small, so
that the synaptic input from the CN affects the AN dynamics only at a late learning stage, when
the CN context attractors are formed and stable. The AN sees the information about the current
context coming from the CN as an additional input, that would operate in the same way as a
constantly present contextual cue.

We stop modifying the CN synapses when the feedback input becomes too strong compared
to the external input. This prevents the CN from learning from its own activity, with the danger
of effects that are difficult to control. For example, if the CN learns rapidly one of the two
contexts of the trace conditioning task, and it starts dominating the AN behavior, then it
becomes difficult to create the representation of the second context because the AN will not
have a chance to learn the CS-US associations of the second context. Indeed it will constantly
be driven by the CN, which represents and will continue to represent only the first context. In
the simulations we block the CN learning dynamics when the synaptic input to the AN coming
from the CN feedback is more than 2.5 times larger than the direct feedforward external input.

The analysis of recorded OFC and amygdala cells
Our assumption that the neurons of the CN are initially selective to conjunctions of external
events and AN mental states (mixed selectivity), is supported by the analysis of
neurophysiological recordings. We analyzed the cells recorded during the trace conditioning
task with a single reversal described at the beginning of the Methods. It is reasonable to assume
that this situation (i.e. the single reversal) reflects what happens in the initial or early stages of
the learning process that leads to the formation of context representations. Most analyses were
performed on spike data from two time intervals during the trial: the CS interval (90–440 ms
after image onset for monkey L; 90–390 ms after image onset for monkey R) and the trace
interval (90–1500 ms after the image turned off). These time intervals were chosen because
more than 90% of visual response latencies exceeded 90 ms as established by an analysis of
latencies, described previously (Paton et al., 2006; Belova et al., 2007, 2008; Morrison and
Salzman, 2009).

In order to determine the degree to which neural responses are modulated by reinforcement
contingencies (image value) or by the sensory characteristics of the CSs themselves, we
performed a two-way ANOVA with image value and image identity as main factors. The
ANOVA was performed separately on spike counts from the CS and trace intervals for each
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cell, as cells could encode image value at different times during the trial. If there was a
significant effect of image value in either or both intervals (p < 0.01), the cell was classified
as value-coding. We found a few cells that had opposite image value preferences in the CS and
trace intervals, and these were excluded from further analysis. Neurons in OFC and the
amygdala that were categorized as “non-value-coding” exhibited a variety of responses to
conditioned stimuli; these included neural responses that were similar for all conditioned
images, as well as responses that were strongest (or weakest) for the stimulus associated with
a weak reward. In addition, a substantial proportion of OFC and amygdala neurons, both value-
coding and non-value-coding, showed a significant main effect of image identity in the
ANOVA, or an interaction effect of image value and image identity (p < 0.01).

We performed an additional analysis to determine whether in the trace conditioning task with
a single reversal (presumably the situation preceding the formation of context representations)
there are cells that encode the context in the same way as the CN neurons at the end of the
learning process. As we will see in the simulation results, the CN neurons that represent the
context after learning, are selective to the context in every interval of the trial (in the presence
or in the absence of external events like the CS or the US). In particular their activity should
be significantly different in the two contexts for all the individual CS-US associations. In
practice, in the specific case of the trace conditioning task, there should be a threshold that
separates the activity recorded in CS A-Positive and CS B-Negative trials (context 1) from the
activity recorded in CS A-Negative and CS B-Positive trials (context 2). Moreover the
difference between context 1 and context 2 activities should be significant. We imposed these
conditions by considering all pairs of CS-US combinations. In particular, in order to meet the
criterion for a “context cell”, the average activity of the neuron in the CS A-Positive trials
(μA+) had to be significantly different (p < 0.05, t-test) from the average activity in the CS A-
Negative trials (μA−). Moreover, we required that also the differences μA+ − μB+, μB− − μA−
and μB− − μB+ are significant. Additionally, we required that all the four differences μA+ −
μA−, μA+ − μB+, μB− − μA− and μB− − μB+ have the same sign (we always subtract context 2
(reversal) epochs from context 1 (initial) epochs). A cell qualified as a context cell if it satisfied
all these criteria at least in one of the two analyzed intervals (the interval during CS presentation
and the trace interval).

Results
We present the results as follows: we first explain the assumptions of the model about the
mixed selectivity of the neurons, and we provide experimental evidence to support them. In
particular, we show how neurophysiological data recorded in the amygdala and orbitofrontal
cortex of monkeys during appetitive and aversive trace conditioning supports the hypothesis
that neurons have mixed selectivity to external events like the CSs and inner mental states
encoding the predicted value of the stimuli. The model neurons are assumed to exhibit the same
response properties before the process of creation of context representations starts. We then
illustrate the proposed mechanisms underlying the formation of context representation by
describing the simulations of a model neural network performing a trace conditioning task. In
particular we show how transient events can generate patterns of sustained activity that bridges
the gap between two successive relevant events. We then explain the iterative process of
merging of the neural representations of short temporal sequences (attractor concretion) that
leads eventually to the temporal contexts. Simulations show that these representations can
significantly improve the prediction of the value of a stimulus when the context changes.
Finally, we use the model to make specific predictions for the patterns of neural activity that
would be observed given new experimental manipulations.
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Learning context representations
The initial situation: experimental evidence for neurons with mixed selectivity
—In our model, we assume that the neurons of the CN have mixed selectivity to the mental
states of the AN (positive, negative, neutral) and external events (CSs, USs). They should
exhibit this form of selectivity to the conjunction of mental states and events even before the
learning process leading to the formation of context representation starts. The assumption is
based on two considerations: 1) these conjunctions contain the basic elements that characterize
the contexts. For example, selectivity to CS A would not allow the network to discriminate
between the two contexts, as the very same stimulus A is presented in both contexts, in which
it would activate the neuron in exactly the same way. However, a neuron that responds to CS
A only when the following mental state of the AN is positive, would activate only in one context
and not in the other. 2) neurons with this form of mixed selectivity can be easily obtained with
random connections, and hence without any learning procedure (see Methods and Rigotti et
al. (2010)). Indeed, neurons that are connected with random synaptic weights to the neurons
of the AN, which represent the mental state, and to the neurons representing the external events,
are very likely to respond only to the simultaneous activation of these two populations, provided
that the threshold for activating the neuron is large enough. Neural representations of patterns
of activity across several randomly connected neurons are analogous to random projections
and they can encode efficiently the information contained in both the external and internal
inputs (e.g. the Johnson and Lindenstrauss lemma (Dasgupta and Gupta, 2002)).

Neurons with the assumed mixed selectivity (in the CN) and with the expected response
properties for the AN have been observed in various areas of the brain. For example, the CSs
are assumed to evoke value dependent sustained activity in the AN. We observed neurons with
these response properties both in the OFC and in the amygdala while the animal was performing
the trace conditioning experiment (see Fig. 5A,B). The activity can be sustained throughout
the trace interval (see the cells of Paton et al. (2006)), for a limited time (Fig. 5A), or it can
ramp up in anticipation of reinforcement (Fig. 5B).

The CN neurons are assumed to respond to conjunctions of events and the internal states of
the AN. In the trace conditioning experiment we expect to observe in the first context neural
representations of the mixtures, such as CS A-Positive or CS B-Negative, whereas in the second
context, the patterns represent CS A-Negative or CS B-Positive. We have often observed neural
responses reflecting this type of mixed selectivity in the amygdala and OFC. We recorded and
analyzed 216 cells in OFC and 222 from the amygdala (recorded from two monkeys). We used
a two way ANOVA to determine whether image value, image identity or an interaction between
image value and identity accounted for a significant portion of the variance in neural firing.
For this analysis, we excluded the first five trials of the experiment of each type of trial, as well
as the first 5 trials of each trial type after reversal. We did this to exclude trials in which neurons
were changing their firing rate during learning about reinforcement contingencies. Of particular
interest to our proposed model, a substantial number of neurons in both the amygdala and OFC
had a significant effect of the interaction between image identity and value (66/216 OFC
neurons, and 87/222 amygdala neurons, p < 0.01, 2-way ANOVA). Neurons with a significant
interaction term indicate that responses to images are modulated in an unequal manner by
reinforcement contingencies, which is the precise type of response profile postulated by the
model. Two examples of these types of neurons are depicted in Fig. 5C,D. Notice that in each
case, neurons represent the conjunction between a particular image and a particular
reinforcement. In these two cases, image identity and image value do not have a significant
effect on responses, but many of the cells with significant interactive effects also show
significant effects of a main factor in the ANOVA.
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The first learning phase: from transient conjunctions of events and mental
states to attractors—We assumed that the CN initially receives a strong excitatory input
from the AN and the neurons representing the external events only when particular events (the
CSs A and B, the USs Reward and Punishment) are preceded or followed by specific states of
the Associative Network, AN (neutral, positive, negative). For example, consider a trial in
which CS A is associated with reward (first trial in Fig. 6A). We assume that the AN has already
learned the correct association, and the presentation of CS A induces a transition from a state
with neutral value (0) to a state with a positive value (+) (see Fig. 6B). The neurons encoding
a positive value have sustained activity until reward is delivered and the activity of the AN is
shut down. The CN neurons observe the following sequence of AN states and events: Neutral-
A, A-Positive, Positive-Reward, Reward-Neutral. The corresponding populations of neurons
are transiently activated in the same order (0A, A+, +R, R0, see Fig. 6C). Analogously, in a
trial in which CS B is associated with punishment, we have Neutral-B, B-Negative, Negative-
Punishment, Punishment-Neutral (see Fig. 6, second trial). For simplicity, we assumed in our
simulations that each conjunction like Punishment-Neutral activates a single population of the
CN.

The Hebbian component of learning strengthens the synaptic connections between the CN
neurons that are repeatedly co-activated. Moreover, it depresses the synapses from active to
inactive neurons (see Methods for the detailed equations). As a consequence all patterns of
activity of the CN that are activated a sufficient number of times become attractors of the neural
dynamics. At the end of the first phase, we have the situation illustrated in Fig. 6D. Each
conjunction of events and AN states activates a population of the CN, and the activity remains
elevated even after the event terminates. However, every time the AN activates a population
of CN neurons that was inactive, or deactivates a population of CN neurons that was active,
we assumed that a reset signal is delivered and the previous pattern of reverberating activity
is shut down by a strong inhibitory input (blue stripes in the figure).

The second learning phase: concretion of temporally contiguous attractors—
Now that the representations of the conjunction of events and AN states are attractors of the
neural dynamics, the time gap between one event and the next one is bridged by the self-
sustained patterns of reverberating activity. Two successive conjunctions of events belonging
to the same or different trials, become temporally contiguous. This enables the temporal
sequence learning (TSL) mechanism to modify synaptic weights and to link two successive
patterns of activity, so that the process of attractor concretion can start. The TSL mechanism
operates only when the pattern of activity of the CN changes because it is modified by the AN
input, and it strengthens the synapses between an active pre-synaptic neuron and a neuron that
is activated at the successive time step. Moreover it depresses the synapses between active
neurons and neurons that are inactivated at the successive time step. If the synapses between
two populations, say a and b, are sufficiently potentiated, then the activation of a causes also
the activation of b, leading to the merging of the two attractors (attractor concretion).

The process of formation of the context representations requires a few iterations, and the typical
phases that we observe in the simulations are illustrated in Fig. 7. The iterative process
generates representations of progressively longer temporal sequences. To illustrate this
process, consider the same two trials considered in Fig. 6. The CN dynamics are now simulated
at different stages of the learning process (Fig 6B–E). A scheme representing the temporal
statistics of the activation of the CN populations that is relevant for the concretion process is
shown in the right column. Although this scheme does not allow us to make quantitative
predictions about the detailed neural dynamics, it is useful to describe the dynamics of the
concretion process, and in particular to understand how the temporal statistics of the events
and mental states are related to the probability that two attractors merge into a single
representation. Each arrow links two CN populations and its thickness represents the propensity
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of these populations to merge. The propensity depends on both the parameters of the learning
dynamics and the temporal statistics of the activation of the two populations. In particular, the
arrow connecting two generic populations, say a to b, is proportional to the probability that a
is followed by b, multiplied by the number of times that a is activated within a certain time
interval, which depends on the parameters of the learning dynamics. This is motivated by the
fact that the synapses between a and b are potentiated by the TSL mechanism every time that
a is activated, and then it is followed by b. They are depressed when a is followed by a
population different from b. The stronger a synapse becomes, the higher the probability that
a activates b, and hence that the two populations merge into a single representation. The
propensity to concretion depends also on other details of the TSL mechanism (see the Methods
for the description of the full dynamics), but also and more strongly on the effects of the
Hebbian mechanism. In particular the Hebbian component of synaptic dynamics strengthens
the synapses within population a every time a is activated, and it depresses the synapses from
a to all the other populations, including b. This effect of stabilization of a increases with the
time that the CN spends in a state in which a is active. This means that the strength of the
connections between a and b, and hence the propensity to concretion, should decrease with the
time that a is active. This is valid only when a and b are not already co-activated, because in
such a case the Hebbian term actually strengthens their connections. For these reasons, the
propensity is inversely proportional to the fraction of time that the CN spends in a when b is
inactive, multiplied by the ratio between the Hebbian learning rate and the TSL learning rate.
Summarizing, the propensity of a to merge with b is high when a is activated repeatedly and
it is often followed by b. However it is reduced if the CN spends a large fraction of time in a,
or if the CN is often driven to states other than b.

The largest propensities drive the first concretions. For example Fig. 7B shows that +R and
R0 are the first population to merge into a single attractor. Indeed +R is consistently followed
by R0 in both contexts. Notice that also A+ is always followed by +R, but the propensity to
merge is smaller because A+ is activated on average half of the times that +R is activated. The
result of this first concretion is illustrated in the simulations of Fig. 7B. The activation of +R
now turns on also the R0 population, and from now on, the two populations will always co-
activate since they are part of a new compound.

The next iteration is again driven by the concretion propensities, however now there are new
attractor states in the CN, and all the propensities must be recalculated. The new scheme of
propensities is shown in Fig. 7C. The next concretions are again predicted correctly by the
propensities. The same process is iterated in Fig. 7D and in E, where we finally obtain the
representations of the two contexts. Notice that at every iteration the width of the arrows
progressively decreases. This is due to the fact that the CN spends more and more time in the
new attractors and hence the propensity to concretion with other attractors decreases because
of the Hebbian component of learning. At some point the process of concretion stops because
the propensity is too small to induce a concretion. We choose the learning rates to stop the
process as soon as we have the representations of the two contexts (but see also the Discussion
for a different choice of parameters). The full simulations of the learning process are shown in
Fig. 8.

Predicting context dependent values: the expected behavior—After the learning
process described in the previous section, the CN contains a representation of the current
context. When the CS-US associations are reversed, the first time a CS is presented, the value
is predicted incorrectly by the AN. This resets the synapses from the neurons representing the
external events to the AN, and the transitions to the positive and negative states become random
with equal probability Fusi et al. (2007). At the same time a ‘surprise’ signal is generated in
the CN and the attractor representing the context is reset. If the AN selects by chance the wrong
value state, then it keeps selecting the state randomly. As soon as the AN selects the correct
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value, then it also activates the correct context in the CN, and the AN–CN system starts
predicting the correct values for all CSs. Although it is not possible for our neural circuit to
switch with probability one from one context to the other in one trial, it is still possible to
harness the information contained in the context representation of the CN in order to improve
the prediction of the US. Indeed, as soon as the AN guesses the correct value for one CS, say
CS A, the CN also selects the correct context and then it is possible to predict the US that
follows CS B with certainty. Summarizing, as soon as the context changes, the AN predicts
the wrong value. The surprise signal resets the CN context, and then the AN–CN system selects
randomly one of the two possible contexts until it guesses the correct one. This strategy is less
efficient than switching to the alternative context as soon as one knows that the context has
changed, but it is still more efficient than learning independently the associations, as it allows
the AN–CN system to predict correctly the value of all the CSs once it knows the new value
of one CS.

This mechanism is implemented in our neural circuit by the feedback from the CN to the AN,
as described in the Materials and Methods. The CN and the external neurons project to a
population of randomly connected neurons which represent mixtures of the CN context
representations and the external events. These neurons contain the information about the
current context and the occurring event. The synapses between these neurons and the AN are
plastic, and they are modified in the same way as the synapses from external neurons to the
AN, which encode simple Pavlovian associations. As soon as the context is correctly
determined by the CN, it is simple to predict the values of both CSs as the AN sees the CN as
an additional input that represents explicitly the current context. Indeed, Fig. 9 shows the
percentage of correct predictions of the value of one CS when the neural circuit has already
guessed correctly the value of the other CS. In other words, we quantify the ability of the neural
circuit to use the context information to infer the value of one CS once the value of the other
CS is known. In the absence of context information, this percentage is at a significantly lower
level, that depends on the specific sequence of events (left). In the presence of the CN feedback,
this percentage is close to 100% (right). This behavior is in principle observable in an
experiment and the plot of Fig. 9 provides us with a behavioral criterion for establishing the
existence of context representations.

Experimental predictions about the response properties of recorded cells
As the process of concretion takes place, the neural representations evoked by events like the
presentations of the CSs or the delivery of the USs, become progressively more similar in the
CN. For example, the activation of CS B& Negative (B−) should eventually evoke the
activation of the attractor representation of context 1. Neurons that initially were activated by
CS B& Negative only, are predicted to be activated also by CS A & Positive. In particular, as
the process of attractor concretion starts from the events that follow each other with the highest
probability, the first compounds that form are likely to be [+R,R0], [−P,P0], followed by [0A,A
+], [0B,B−], for context 1, and [0B,B+], [0A,B−] for context 2 (see Fig. 10).

This prediction can be tested experimentally by single unit recordings. We predict that the
fraction of recorded cells that are activated by events that belong to the same context, should
increase monotonically with the total number of trials that the animal experiences. Notice that
in the simulations of Fig. 10 we assumed that there are initially no neurons that already respond
to conjunctions of more than two events. In the brain there might be neurons that from the very
beginning respond already to those conjunctions of events that represent the contexts in the
CN. The probability of finding those neurons is predicted to be significantly smaller than the
probability of finding neurons that respond to simple conjunctions of events, like those that
we simulated, but in general we cannot exclude that they are already present before the learning
process starts. Consistent with our predictions, in the trace conditioning experiment we
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observed 11/216 cells in OFC and 15/222 cells in the amygdala that are significantly selective
to the conjunctions of events that represent the context (see Materials and Methods for the
details of the analysis). Our analysis shows that these cells may only be significantly selective
by chance, or anyway they may simply be a very small fraction of the recorded cells. In both
cases, our assumption that the majority of cells responds to simple conjunctions of events is
correct.

Discussion
We proposed attractor concretion as a possible mechanism for creating representations of
contexts. The formation of these representations leads to the generation of new mental states
that were not present in the initial AN–CN system. Indeed, the CN, at the end of the learning
process operates as an additional input to the AN that contains information about the active
context. When the AN–CN system is considered, the number of mental states eventually
doubles, as for each AN state there are two states of the CN. In practice, two new sets of mental
states are generated as soon as the CN starts encoding the two contexts. In the intermediate
stages of the iterative process that leads to the formation of the new states, the CN neurons are
activated by short sequences, which generate a number of mental states that is larger than the
final one. However the temporal statistics of these sequences is not correlated with any useful
information about the contexts. In particular they do not allow the AN to disambiguate between
the CS-US associations of the two different contexts. Indeed in the first three stages (in Fig.
7B,C,D) there is no evidence of the existence of temporal contexts, both in the transition
probabilities and in the propensities. It is only at the end of the concretion iterative process that
the CN can detect a clustered structure in the transition probabilities (i.e. large probabilities to
make a transition within the context, and small ones to switch to a different one). We believe
that the kind of merging behavior we observed in the case we analyzed is very general and it
applies to a wide variety of tasks in which the information about temporal contexts are
important to improve the performance.

In our manuscript we analyzed a particularly difficult case, because the CSs and the USs appear
in the two contexts in a perfectly symmetric way, and the contexts are solely defined by the
temporal statistics of the events. Our model would certainly work and generate quantitative
predictions in simpler cases, in which for example a particular CS-US identifies unequivocally
one context, or in which an explicit contextual cue appears in all or in some trials to signal
which context is active. The concretion rules illustrated in the schemes of Fig. 7 allow us to
make predictions about the typical behavior of our model network, although it is always
important to run a full simulations to analyze the behavior of the concretion process. For
example, the representation of a contextual cue that appears in every trial would have the
highest propensity to merge with CS-US associations, and it would operate as a kernel around
which the context representations are built. The details of this learning process obviously
depend on the specific task protocol, on the representations of the CSs and the USs and on the
parameters of the model, but the model can certainly generate quantitative predictions in a wide
variety of experiments.

A hierarchy of context representations
The final context representations are determined not only by the temporal statistics of the
events, but also by the parameters of the neuronal and synaptic dynamics. In a system with
multiple neural circuits, each characterized by different dynamical parameters, we expect the
creation of a hierarchy of contexts that correspond to different processes of attractor concretion.
Some neural circuits can represent only single events, as the TSL component is not strong
enough, some others might represent general contexts that correspond to conjunctions of many
events, stimuli and internal conditions. For example, there could be cases with no merging, in
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which the network simply represents the individual events A-Reward, B-Punishment, A-
Punishment and B-Reward. For the parameters used in our simulations the patterns of activity
corresponding to A-Reward and B-Punishment merge into the representation of context 1,
whereas A-Punishment and B-Reward merge into context 2. For other sets of parameters there
could be a unique, large compound comprising all possible events of the context corresponding
to the general task. Such a compound would link together A-Reward, B-Punishment, A-
Punishment and B-Reward. All these neural circuits with different neural and synaptic
parameters are likely to be simultaneously present in the brain, either in one particular area, or
spread across different areas. They would provide the brain with a hierarchy of contexts at
many different levels that all together determine a general mental state. A population of cells
reading out all these context representations could easily encode the value of the current state,
and such a value would in general depend on which context pattern is activated in every level
of the hierarchy.

The use of a hierarchy of contexts generated by the heterogeneity of the network is a new
possibility that will be investigated systematically in future theoretical and experimental
studies. In particular, it should be possible to detect to which hierarchical level a recorded
neuron belongs. This could be done by manipulating the transition probabilities between
events. For example, we considered an experiment in which there are only two CSs and the
probability to make a transition from a trial with one CS to a trial with a different CS within
the same context is simply 1/2. In the case of 2p CSs, this probability would be 1/2p. The
probability to switch to a different context should be accordingly reduced when all the CSs are
presented at least once in each context (≪ 1/2p). Hence the clustered structure of transition
probabilities that defines the temporal context would still be detectable for any p > 2, but the
transition probabilities would all be rescaled down when p increases. The parameters of the
neural circuits that determine the propensity to concretion and the maximal number of CSs are
always related. In particular, neural circuits with a small propensity to concretion would
generate context representations only if p is small enough. p = 2 maximizes the probability that
we observe what we described in the experimental prediction section. However we also have
the additional prediction, that for any neural circuit that shows concretion for p = 2, there is
always a p that is large enough so that no concretion should be observed. Of course the entire
brain would still be able to create context representations because there would be a different
neural circuit with the proper parameters to generate the context representations in a different
situation.

Previous experimental and theoretical works on temporal context representation
Neural signals that could provide a representation of temporal context have been observed in
several experiments. For example, Miyashita investigated the representations of sequences of
visual stimuli(Miyashita and Chang, 1988). In these experiments, a monkey was trained to
perform a Delayed Match to Sample task in which the sample stimuli were presented in a fixed
temporal order. Single neuron activity recorded in infero-temporal cortex revealed that cells
activated by one particular stimulus were likely to be activated also by the neighboring stimuli
in the temporal sequence. In other words, the spatial patterns of neural activity across multiple
cells, induced by temporally contiguous stimuli, were highly correlated, reflecting the order of
presentation of the sensory events. This work inspired several theoretical works on the neural
mechanisms underlying context representation in the brain. For example, Griniasty et al
(Griniasty et al., 1993) interpreted this data as being an expression of the recurrent dynamics
of cortical circuits. In the model the authors proposed, these circuits initially produce different
patterns of stable, reverberating activity in response to individual sensory stimuli. If the stimuli
are repeatedly presented in a fixed temporal order, the synaptic connections are modified so
that a sensory stimulus activates a pattern of activity that is correlated not only to its
representation when presented individually, but also the representations of the stimuli that
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surround it in the temporal sequence. This pattern of reverberating activity may be a neural
representation of the context in which the sensory stimulus appears. A more detailed model of
the learning process that is responsible for tuning the synaptic weights has been proposed by
(Brunel, 1996) and some of the predictions have been verified in experiments (Yakovlev et al.,
1998).

In all these models, each stimulus evokes a different representation and the context is encoded
in the correlations between the representations. Highly correlated neural patterns correspond
to stimuli that belong to the same context. In our model, attractor concretion leads to new
inseparable “entities” that represent contexts. Different events, like visual stimuli, activate the
very same pattern of activity if they belong to the same context. This is different from the
representations in which the contexts are encoded in the correlations because in that case, each
event still activates a characteristic pattern of activity that is unique, though similar to the
patterns elicited by the events of the same context. Our approach is similar to what has been
proposed in (Brunel, 1996) for pair associates. One of the advantages of creating new entities
that represent context, is compositionality. Context representations can easily merge to
generate new compounds even if they are highly structured and complex. In other words, when
a new entity is created, there is a significant reduction of the dimensionality of the state space.
Indeed if two populations are always coactivated, they behave as a single one, reducing the
effective number of independent populations, and hence the dimensions of the state space. This
reduction greatly simplifies the process of representation of complex contexts. This is not true
in the case in which each individual event contains the information about the correlation with
all the other population of neurons (i.e. with all the other dimensions). One of the disadvantages
of creating new entities is that the information about individual events is lost, unless multiple
systems are considered as discussed in the previous section of the Discussion.

Alternative approaches to the creation of context representations
As we briey discussed in the Introduction, one of the limitations of Reinforcement Learning
(RL) algorithms is that a representation of mental states is assumed, yet the algorithms do not
provide for how these representations are created. This is a major limitation when the
environment is only partially observable, as in the case of limited sensory data, or when agents
have limited computational resources to process all the details of the sensory stimuli. In all of
these cases, we often might be induced to think that we are in the same situation when we
actually are not and we would need to select different actions. For example, when we drive in
a forest, we often arrive at two similar crossings, which can lead to confusion if we don’t take
into account other information, such as where we have been recently. Thus in many
circumstances it is possible to decide our actions if we remember some of our previous
experiences. For example, one crossing might be preceded by a pump station and the other
might be preceded by a level crossing. In this situation, we need to create two distinct mental
states, each corresponding to a different temporal context.

We proposed a simple mechanism and a biologically plausible neural network model that
autonomously generates context representations. Alternative and complementary approaches
have been proposed to solve analogous problems in different fields. For example, Hidden
Markov Models (HMM) have been widely used to predict complex temporal series where the
next event might depend on a long sequence of previous observations (see e.g. (Rabiner,
1989)). In these models and in some of their extensions to decision processes (e.g. POMDP,
Partially Observable Markov Decision Processes (Kaelbling et al., 1998)), the number and the
meaning of the states of the agent are not known a priori. The algorithms usually start from a
large number of hidden states that are randomly linked to the observed states of the
environment. The states acquire a meaning by iterating a recursive algorithm that estimates
both the probabilities that a hidden state is related to an observed state, and that it is followed
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by another state (see e.g. Viterbi or Baum-Welch algorithms). Although very efficient in many
applications like speech recognition, these algorithms suffer from many limitations. They
require knowing the number of states a priori. If there are not enough hidden states, then it is
possible to add more, but estimating all the transition probabilities between hidden states
becomes rapidly an intractable problem as the number of states increases. Moreover, all
probabilities should be revaluated every time a new state is introduced, which makes the system
rather inflexible. Finally, the convergence of the recursive algorithms to the global optimal
solution is not guaranteed and the final scheme of hidden states and transition probabilities
depends strongly on the initial condition. Some of these limitations might be related to the fact
that the hidden states are initially chosen in a completely random fashion and they are not
constructed on the basis of the temporal statistics of the events. Although we still do not have
a general theory and a convergence theorem as in the case of HMMs, we believe that our
approach does not suffer from these limitations, and it is closer to the mechanisms that the
brain might be using to create context representations.

Where are the cells of the AN and the CN in the brain?
As shown in Fig. 5, neurons with mixed selectivity to the relevant conjunction of events for
defining the two contexts have been observed both in pre-frontal cortex (PFC), in particular,
in OFC, and in the amygdala. As these two areas are strongly interacting (Salzman and Fusi,
2010), it is likely that the neural circuits of the AN and the CN are distributed across these
brain regions, and probably, also other areas (e.g. in other subareas of PFC, as well as in the
hippocampus and related structures).

When temporal contiguity is broken by intervening distractors
In many realistic situations there are contexts in which the temporal contiguity between relevant
events is broken by distractors, e.g by the presentation of a random visual stimulus. In our
model, these distractors would disrupt the process of formation of context representations.
There are at least two possible solutions to this problem. The first one has been proposed in
(O’Reilly and Frank, 2006), and it is based on a gating system that can learn to ignore the
irrelevant events. In these models the irrelevant events are simply ’gated’, and hence not
represented in the AN and in the CN. The second possibility is based on short term synaptic
mechanisms that could preserve the memory of relevant events even when distractors are
presented (see Mongillo et al. (2008) for a possible mechanism based on short term synaptic
facilitation). For example, the TSL mechanism could be implemented by tagging the synapses
at time t, and then modifying them in the next time interval τ, creating links between the event
occurring at t and all events occurring the next time interval τ. Such a mechanism would suffer
from the introduction of the inherent time constant τ of synaptic tagging, whereas our
mechanism can work and generalize with almost any timing between successive events. Notice
that synaptic tagging could in principle allow us to eliminate the first phase of learning, in
which the attractor representations of individual events are created to bridge the temporal gap
between events that are separated in time.

More general mental states and operant tasks
We focused on a trace conditioning task to illustrate the proposed mechanism for the formation
of context representations. However the same mechanism can be applied to other experiments
and to operant tasks. For example in (Asaad et al., 1998; Pasupathy and Miller, 2005) the
monkeys are trained to associate saccadic movements to visual responses. The AN model has
already been used to reproduce quantitatively the observed behavior of the monkeys when they
learn and forget visuo-motor associations (Fusi et al., 2007). The positive and negative states
are equivalent to the decisions of the monkey about the direction of the saccade (left or right).
In one context stimulus A is associated with left and B with right, in the second context the
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associations are reversed. Although in the experiments the monkeys never learned to switch
from one context to another immediately, it is possible that in other conditions (see the
Discussion of Fusi et al. (2007)) they would be able to create the representations of the contexts.
The model and the predictions would be the same as for the trace conditioning task. Notice
that the two contexts correspond to two simple rules that could be expressed as ‘whenever A
is associated with left, B is associated with right’ and ‘whenever A is associated with right, B
is associated with left’. In this case the representation of the temporal context would be
equivalent to the representation of a rule. In recent years, investigators accumulated evidence
that the activity of prefrontal neurons can encode abstract rules (Genovesio et al., 2005;
Mansouri et al., 2007, 2006; Wallis et al., 2001). These rules allow the animal to respond to
the same sensory stimulus in different ways depending on the strategy or on a sequence of
sensory cues preceding the stimulus. Hence, they are all analogous to the temporal contexts
that we studied here. In one of the cited experiments, Tanaka and colleagues observed sustained
activity in the inter-trial intervals that encode the rule in effect when the monkey was
performing a simplified version of the Wisconsin Card Sorting Test (Mansouri et al., 2006).
This rule was determined by the temporal context of monkey choices, and the rule selective
inter-trial activity therefore corresponds to an active representation of context (O’Reilly and
Munakata, 2000; Loh and Deco, 2005; Deco and Rolls, 2005; Rigotti et al., 2008; Rougier et
al., 2005). In all the models and the experiments that we described, a large proportion of neurons
exhibit mixed selectivity. Interestingly, it has been shown(Dayan, 2007) that mixed selectivity
neurons implemented with multilinear functions can actually play an important role in neural
systems that implement both habits and rules during the process of learning of complex
cognitive tasks. Multilinearity implements conditional maps between the sensory input, the
working memory state, and an output representing the motor response.

Temporal contiguity can also be important in the creation of invariant representations. Some
investigators propose that invariant representations of objects can be generated by linking
temporally contiguous views (Rolls and Milward, 2000; Miyashita and Chang, 1988; Li and
DiCarlo, 2008). This is yet another example of an abstraction process that relies on temporal
contiguity to create the internal representations. As shown in our manuscript, temporal
contiguity can also be an important aspect of the statistics of the environment in all the cases
in which behavior depends on information about temporal context. We believe that it is
particularly important to study the neural mechanisms that allow the animal to encode complex
patterns of temporal contiguity as these processes might underlie the neural basis of cognitive
functions that range from the creation of invariant representations to rule abstraction.
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Figure 1.
The two networks of the simulated neural circuit: the Associative Network (AN, top right),
and the Context Network (CN, bottom right). The AN and the CN receive inputs from the
neurons encoding external events (conditioned and unconditioned stimuli). The AN network
contains two populations of neurons, +,−, that encode positive and negative values respectively.
These neurons are activated by external events (CSs) in anticipation of reward and punishment.
The inhibitory population (INH) mediates the competition between the two populations. The
connections from the CS neurons to the AN neurons are plastic and encode the associations
between the CS and the predicted US. The CN neurons receive fixed random synaptic
connections from both the AN and the external neurons. The neurons in the CN respond to
conjunctions of external events and AN states and they are labeled accordingly. The recurrent
connections within the CN are plastic and they are modified to learn context representations.
After learning, the CN neurons encode the context, and they project back to the AN (described
later, in Fig. 4).
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Figure 2.
Simulated activity of the AN during two trials of the trace conditioning task of Paton et al.
(2006). During the first trial CS A is presented, followed by a reward. The AN network is
initially in the neutral state ‘0’ in which all populations are inactive (the activity is color coded:
blue means inactive, red means active). The presentation of CS A initiates a competition
between the positive coding AN population ‘+’ and the negative coding population ‘−’ which,
in this simulation, ends with the activation of population ‘+’. The delivery of reward resets the
AN to the ‘0’ state. In the second trial CS B activates population ‘−’ and punishment resets it.
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Figure 3.
Illustrative firing-rate simulations of a typical CN neuron which exhibits mixed selectivity to
the conjunction of an external event (CS B) and an AN value state (negative). A. The top plots
show firing rate as a function of time for two simulated neurons in response to CS B. The blue
trace represents the response of an external neuron encoding CS B, which is at until the
presentation of visual stimulus B. The red trace corresponds to the response of a negative value
coding neuron of the AN. CS B is already familiar and its value is correctly predicted by the
AN. When CS B is shown, the negative value population is activated, and it remains active
until the delivery of the US. In the bottom plot, we show the activity of a CN neuron that, by
chance, is strongly connected to CS B external neurons and to the negative value coding AN
neurons. The response is significantly different from spontaneous firing rate only when CS B
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is presented, and the negative value AN state wins the competition. B. Mixed selectivity to CS
B and negative value. The cell is selective to both the value and the identity of the CS as the
neuron responds only to the CS B-Negative combination and not to the other combinations
(CS A-Positive, CS A-Negative, CS B-Positive).
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Figure 4.
The learning dynamics of the CN to AN feedback. This signal is mediated by a layer of feedback
neuron selective to CN and external input activity. The synapses connecting the feedback
neurons to the AN are modified with the same learning dynamics as the one used for the AN
synapses (see Fusi et al. (2007) and the description of the AN dynamics in the Methods).
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Figure 5.
Recorded activity of OFC and amygdala cells that respond as expected in AN (A,B) and CN
(C,D). The activity has been recorded while the monkey was performing the trace-conditioning
task for the four possible CS-US pairings. The continuous traces show the activity after the
monkey had learned the associations defining Context 1 (A-Positive, B-Negative). The dotted
traces show the activity after learning of Context 2 (A-Negative, B-Positive). The AN cells
show sustained activity during the trace interval that encodes the value of the CS. These cells
have been observed both in the OFC (A) and amygdala (B). The CN cells are selective to
specific combinations of CS and value, both in the OFC (C) and the amygdala (D).
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Figure 6.
First learning phase: from transient events to attractors. A: The scheme of two consecutive
trials. In the first trial the presentation of CS A is followed, after a delay, by the delivery of
reward. In the second one, CS B is followed by punishment. B: Color coded activity of the AN
(red=active, blue=inactive) as a function of time in response to the events depicted in panel A.
The simulation starts in an inactive state with neutral value (0). The presentation of CS A
induces a transition to a state in which the neurons encoding positive value (+) have self-
sustained activity. The activity is shut down by the delivery of reward. Analogously for the CS
B-Punishment case. C: Color coded activity of the CN populations as a function of time
(red=active in the presence of external input, yellow=active in the absence of external input,
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light blue=inactive, blue=inactive because of the strong inhibitory input generated by a reset
signal). Each row represents the activity of one population that is labeled according to its
selectivity (e.g. 0A is a neuron that responds only when the AN is the neutral state and CS A
is presented). The external events together with the activation of positive and negative states
of the AN activate the populations of the CN (red bars). Every time a different population is
activated a reset signal is delivered (blue stripe). D: First CN attractors: the synapses within
each repeatedly activated population are strengthened to the point that the activity self-sustains
also after the event terminates (yellow bars).
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Figure 7.
Second learning phase: attractor concretion. A: Scheme of two trials and color coded activity
of the AN as a function of time as in Fig. 6. B,C,D,E From left to right: Scheme of propensities
to concretion, scheme of attractors following concretion, Color coded activity of the CN
populations as a function of time as in Fig. 6 following the concretion. B,C,D,E describe
different iterations of the concretion process (see the text for a detailed description).
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Figure 8.
Full learning simulation. Color coded activity of the CN populations as a function of time as
in Fig. 6. Red and blue bars above the plot indicate context 1 and 2 respectively. Temporally
contiguous attractors merge into single representations of short temporal sequences (attractor
concretion). Eventually, the context representations emerge, and they are demonstrated by the
coactivation of the attractors representing all conjunctions of events and AN states in each
context (e.g. 0A, A+, +R, R0, 0B, B−, −P, P0 for context 1).
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Figure 9.
Harnessing the feedback from the CN to the AN: percent of correct predictions of the value of
one CS when the new value of the other CS is already known. The performance is estimated
immediately after a context switch. In the absence of the context information provided by the
CN, the performance is significantly worse (left) than in the presence of CN feedback, when
the performance is close to 100%.
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Figure 10.
Predictions on the correlations between neurons that respond to conjunctions of events. The
probability that two populations of neurons of CN are co-activated is computed by running the
simulation several times and it is plotted as a function of the number of blocks of context 1
(top) and context 2 (bottom) trials. Different colors denote different co-activated populations.
Initially the probability is zero, as we assumed that in the CN there are only populations that
respond to simple conjunctions of events and AN states. As learning progresses, the probability
of co-activation of populations that represent events of the context increases. For example, in
context 1, neurons that initially respond only to CS A & Positive (A+), after 15 reversals (block
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16), respond also to CS B & Negative (B−). The corresponding compound is denoted by [A
+,B−].
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