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Many brain structures show a complex, non-linear pattern of maturation and age-related change. Often,
quadratic models (β0+β1age+β2age

2+ε) are used to describe such relationships. Here, we demonstrate
that the fitting of quadratic models is substantially affected by seemingly irrelevant factors, such as the age-
range sampled. Hippocampal volume was measured in 434 healthy participants between 8 and 85 years of
age, and quadratic models were fit to subsets of the sample with different age-ranges. It was found that as
the bottom of the age-range increased, the age at which volumes appeared to peak was moved upwards and
the estimated decline in the last part of the age-span became larger. Thus, whether children were included or
not affected the estimated decline between 60 and 85 years. We conclude that caution should be exerted in
inferring age-trajectories from global fit models, e.g. the quadratic model. A nonparametric local smoothing
technique (the smoothing spline) was found to be more robust to the effects of different starting ages. The
results were replicated in an independent sample of 309 participants.
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Introduction

Over the past few years, research has demonstrated that most
brain structures undergo a complex pattern of maturation and age-
related change. For instance, the hippocampus shows a marked non-
linear pattern of change throughout the lifespan (Allen et al., 2005;
Jernigan and Gamst, 2005; Kennedy et al., 2008;Walhovd et al., 2005).
Very often, non-linearity of age relationships is tested using quadratic
or other polynomial models. A quadratic term is added to the list of
predictors in a regression analysis, yielding a higher order polynomial
function. If the quadratic term is significant, the brain structure in
question can be said to have a non-linear age-trajectory (Allen et al.,
2005; Good et al., 2001; Jernigan and Gamst, 2005; Kennedy et al.,
2008; Lupien et al., 2007; Sowell et al., 2003; Sullivan et al., 1995;
Terribilli et al., 2009; Walhovd et al., 2005). In addition, the trajectory
of the curvemay be used to describe the relationship between age and
the brain structure, e.g. to determine when the hippocampus reaches
its maximum volume, or how steep the subsequent decline is. This,
however, may be problematic: First, to say that a relationship is non-
linear is not the same as saying that it is quadratic. This is an example
of a specification effect. Second, if the same quadratic model is fit to
different sets of data, one will get different results. For example, the
observed peaks of quadratic functions will inherently depend on the
age range sampled. This can lead to completely erroneous inferences
about features of the trend, for example the location of peaks. This is a
localization effect. The aim of this report is to demonstrate biases
associated with quadratic model fits, and hint at possible solutions.

The quadratic function is always a parabola, and the basic shape
only differs in curvature and direction (whether it has a peak or a dip).
Thus, it will not yield an accurate description of age-trajectories
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characterized by steep increase in development, slow decline during
adulthood, and then a sharper decline in older age. Further, the
regression line depends on all data points, thus representing a global
fit. This means that adding more data points to one part of the sample,
e.g. including more children, will change the fit in distant parts of the
age-range. Thus, estimation of age-decline after 60 years will
ultimately depend on how early in the life-span sampling begins.
Some aging studies sample from childhood (Courchesne et al., 2000;
Sowell et al., 2007), some from young adulthood (Allen et al., 2005;
Fjell et al., 2009; Raz et al., 2004;Walhovd et al., 2005), and some from
middle-age or higher (Du et al., 2006; Greenberg et al., 2008; Van
Petten, 2004). This variation may exert substantial effects on the
observed age-trajectories, but has not been tested with real
neuroanatomical data. In the present paper we demonstrate that
when quadratic functions are used, the age at which one starts to
sample has a systematic effect on the slope of the curve at all
subsequent ages, fundamentally changing the interpretation of the
age changes. Age-functions were tested for the volume of hippocam-
pus in a large sample of 434 participants ranging from 8 to 85 years of
age. The results were compared to the outputs of a nonparametric
local smoothing model, the smoothing spline.

Materials and methods

Sample

The main sample was drawn from two ongoing longitudinal
research projects at the Center for the Study of Human Cognition,
Department of Psychology, at the University of Oslo (Neurocognitive
Development/Cognition and Plasticity through the Life-Span). Proce-
dures are presented in detail elsewhere (Fjell et al., 2008; Westlye
et al., 2009). 434 right handed native Norwegian speakers without
injury or disease known to affect CNS function participated (age 8–
85 years, mean 41.4, SD=22.0, 238 women/196 men). All MR scans
were deemed free of significant injuries or conditions by a specialist in
neuroradiology.

To assess the stability of the results, the main analyses were
repeated in an independent sample of participants drawn from the
Open Access Series of Imaging Studies (OASIS) database (http://
www.oasis-brains.org/), a publicly available resource of cross-
sectional MR scans. 316 participants from this database are non-
demented. Of these, seven were rejected due to less than optimal scan
quality, bringing the n down to 309 (age 18–94, mean 44.6, SD=23.6,
194 women/115 men) . The details of this database are described in
(Marcus et al., 2007). The youngest participants (b60 years) were
interviewed about medical history and use of psychoactive drugs,
while elderly participants (N60 years) underwent the Washington
University Alzheimer Disease Research Center's full clinical assess-
ment, excluding participants with dementia (clinical dementia rating
N0) (Berg, 1984, 1988), active neurological or psychiatric illness,
serious head injury, history of clinically meaningful stroke, use of
psychoactive drugs, or gross anatomical abnormalities evident from
MRI images. In addition, MMSE was assessed for all the elderly
participants, with a range of 25–30.

MR acquisition and analysis

For the main sample, two repeated 3D T1-weighted Magnetization
Prepared Rapid Gradient Echo (MP-RAGE) were acquired using a 12-
channel head coil on the same 1.5-Tesla Siemens Avanto scanner
(Siemens Medical Solutions, Erlangen, Germany), with the following
parameters: TR/TE/TI/FA=2400 ms/3.61 ms/1000 ms/8°, matrix
192×192, field of view=192. Each volume consisted of 160 sagittal
slices with voxel sizes 1.25×1.25×1.2 mm. The two MP-RAGEs were
averaged during post-processing to increase the signal-to-noise-ratio
(SNR). For the replication sample (OASIS), three to four 3D T1-
weighted MP-RAGEs were acquired on the same 1.5-Tesla Siemens
Vision scanner, with the following parameters: TR/TE/TI/
FA=9.7 ms/4.0 ms/20 ms/10°, matrix 256×256. Each volume
consisted of 128 sagittal slices with voxel sizes 1.25×1.0×1.0 mm.
The three to four SPGRs were averaged to increase SNR.

All datasets were processed and analyzed with FreeSurfer 4.01
(http://surfer.nmr.mgh.harvard.edu/) at the Neuroimaging Analysis
Lab, Center for the Study of Human Cognition, University of Oslo, with
the additional use of computing resources from the ∼4000 CPUs titan
grid cluster (http://hpc.uio.no) run by the Research Computing
Services Group at USIT, University of Oslo. The automated procedure
for volumetric measures of the different brain structures is described
in detail by Fischl et al. (2002, 2004). A label was automatically
assigned to each voxel in the MRI volume based on probabilistic
information automatically estimated from a manually labelled
training set. The training set included both healthy persons in the
age range 18–87 years and a group of AD patients in the age range
60–87 years, and the classification technique employed a registration
procedure that is robust to anatomical variability, including the
ventricular enlargement typically associated with aging. The tech-
nique has been shown to be comparable in accuracy to manual
labelling (Fischl et al., 2002; Fischl et al., 2004), and we have used it in
previous studies of development (Walhovd et al., 2007) and aging
(Walhovd et al., 2005, in press). Further, as the gross morphology of
8-year-old brains is rather similar to the adult brains, the procedure
works well for children of this age.We also applied a newly developed
atlas normalization procedure (Han and Fischl, 2007). Hippocampus
was chosen as region of interest (ROI). The segmentation of the
hippocampal formation included dentate gyrus, CA fields, subiculum/
parasubiculum and the fimbria (Makris et al., 1999). Estimated
intracranial volume (ICV) was used to correct the volumetric data.
This was calculated by use of an atlas-based normalization procedure,
where the atlas scaling factor is used as a proxy for ICV, shown to
correlate highly with manually derived ICV (r=0.93) (Buckner et al.,
2004). An example of the segmentation for an individual participant
from the main sample is shown in Fig. 1.

Statistical analyses

Quadratic regression models of the form residual hippocampal
volume=β0+β1age+β2age2+ε (sex and ICV regressed out) were
tested for the age-ranges 8–85, 20–85, 30–85, 40–85, 50–85 and
60–85 years. The results were compared to a nonparametric local
smoothing model, the smoothing spline, implemented in matlab.
Given a sequence of data (Xi, Yi); i=1,…, n, with E (Yi | Xi)=g(xi), the
smoothing spline estimate of g minimizes

Xn
i=1

Yi−g Xið Þð Þ2 + λ
Z

gW xð Þð Þ2dx;

where the smoothing parameter λ controls the trade-off between
fidelity (closeness of g(Xi) to Yi) and smoothness (the size of the
average second derivative of g). With no smoothing (λ=0), g simply
interpolates the data, whereas infinite smoothing (λ=∞), g corres-
ponds to the line fit by ordinary least-squares. We used an algorithm
that optimizes smoothing level based on a version of Akaike's
Information Criterion (AIC), i.e. the smoothing level that minimizes
AIC for each analysis was chosen. AIC offers a relative measure of
amount of information lost when a model is used to describe a set of
data, and can be said to describe the trade off between bias and
variance in the construction of statistical models. AIC rewards
goodness of fit, but also includes a penalty that is an increasing
function of the number of estimated parameters. Thus, AIC attempts
to find the model that best explains the data with a minimum of free
parameters, in this case, with a largest possible smoothing level. With
no smoothing, the smoothing spline will yield an extremely good

http://www.oasis-brains.org/
http://www.oasis-brains.org/
http://surfer.nmr.mgh.harvard.edu/
http://hpc.uio.no


Fig. 1. Three-dimension rendering of hippocampus for a representative participant.
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apparent fit to the data, but the model would be predictively
inaccurate. AIC takes this into account by penalizing for degrees of
freedom. For this analysis, yhat=Hy, where H is the smoothing
matrix, the effective degrees of freedom of the fittedmodel is given by
the trace of the matrix H, and an argument leading AIC produces the
corresponding estimate of the model risk. Use of AIC to determine
Fig. 2. Aikake's Information Criterion (AIC) as a function of smoothing level. For the smoothin
of fit will increase with lower levels of smoothing, and so AIC takes degrees of freedom into
meaning, and that AIC cannot be used to compare models between the age-ranges tested. Th
except 60–85 years, where the lowest AIC is obtained by no smoothing at all.
level of smoothing provides a way of obviating the need for arbitrarily
chosen smoothing levels. The resulting AICs obtained at different
smoothing levels for each of the age-ranges tested are shown in Fig. 2.
For the analysis restricted to the sample above 60 years, however, the
smoothing level that minimized AIC seemed too low based on visual
inspection of the fit, so in the graph smoothing level was set to λ
(lam)=3×e−4 for this analysis. We also calculated the age where the
expression − d2 f ageð Þ

d age2 was largest, i.e. the point where the slope of the
local smoothing curve changed the most (the second derivative). For
the quadratic model, the second derivative is assumed to be constant
across the life span, and hence the point of maximum acceleration
cannot be determined.

While it is possible to test for non-linearity and to reject
quadratic models, e.g. by use of adaptive tests (Fan et al., 2001),
this was not the focus of the present paper. Rather, the local
smoothing model was included to present an alternative to the
global quadratic model. Still, to give the reader an opportunity to
compare goodness of fit between the models, AIC was also calculated
for the quadratic models. It is important to note that as AIC contains
scaling constants, the absolute AIC values for the different models
have no meaning. This implies that in the present paper, AIC can be
used to compare smoothing splines with quadratic models, but not
to compare how well the models perform across different age-
ranges. To ease comparison of AIC between quadratic and smoothing
spline models, we used ΔI, which is the difference between AIC for
the model and the lowest AIC (in this case, the difference between
g spline model, AIC was calculated as a function of smoothing level. Apparent goodness
account. Note that a low AIC is desirable, but that the absolute value of AIC gives less
e figure shows that the optimal level of smoothing is almost identical for all age-ranges



Table 1
Multiple quadratic regressions for different age spans in the main sample.

Hippocampal volume

Age-span Equation df R2 F p of age2 ≤ p of F ≤

08–85 years 0.346+0.025×age−0.001×age2 2, 431 0.44 165.81 2.5×10−11 3.9×10−54

20–85 years −0.228+0.049×age−0.001×age2 2, 327 0.43 123.14 1.3×10−9 1.4×10−40

30–85 years −2.293+0.121×age−0.001×age2 2, 266 0.41 93.07 3.1×10−10 2.3×10−31

40–85 years −4.685+0.198×age−0.002×age2 2, 227 0.41 79.29 2.0×10−7 7.7×10−27

50–85 years −6.580+0.254×age−0.002×age2 2, 189 0.43 70.36 8.6×10−5 1.5×10−22

60–85 years −9.370+0.333×age−0.003×age2 2, 111 0.44 43.85 0.051 9.2×10−15

“p of age2” is the p-value for the quadratic term when age is included as a simultaneous regressor, while “p of F” is the p-value for the expression.
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the best model and the other model). As a rule of thumb, ΔIb2
would indicate that the two models are essentially indistinguishable
with regard to goodness of fit, ΔIN4 would indicate considerable
differences between the models, and ΔIN10 would indicate that the
model has essentially no support. In addition to AIC, we also chose to
run the smoothing spline with smoothing levels chosen to minimize
the Bayesian information criterion (BIC), and compared the resulting
BICs. Similar to AIC, BIC resolves the problem of overfitting by
introducing a penalty term for the number of parameters in the
model, but the penalty for additional parameters is stronger than
that of the AIC, biasing it towards more smoothing and giving more
consistent smoothing values.

We expected that the quadratic models would be more affected by
changing the age-range of the sample analyzed than the smoothing
spline models. To assess whether this would hold for more than one
sample, the most relevant analyses were repeated in an independent
sample of participants (referred to as the replication sample).

Results

Effects of age-range on the quadratic model

The full model as well as the quadratic term was highly significant
for all age-ranges except when sampling began at 60 years, with
inverted U-shaped curves (Table 1). When sampling began at
60 years, the quadratic terms was only marginally significant
(p=0.051). Whenever sampling was skewed towards a higher
starting point, the age at which volumes peaked was moved upwards
and the estimated decline in the last part of the age-span became
larger (Table 2 and Fig. 3). Peak estimated volume was 20 years when
the models was tested with the full sample (8–85 years), increased to
29 when the sample was restricted to the participants from 20 years,
and further increased to 41, 48 and 52 years when the youngest
participants were 30, 40 and 50 years old, respectively. Further, the
estimated age decline from 60 to 85 years increased whenever
Table 2
Top/break points of the curves, estimated age-decline and AIC.

Age span Quadratic model

Top pointa

(year)
Change 60–85
years (z-score)

AIC Δi BIC Δi

08–85 20 −1.64 16 9
20–85 29 −1.87 9 4
30–85 41 −2.26 0 0
40–85 48 −2.50 0 0
50–85 52 −2.59 0 0
60–85 Linear −2.62 2 1

AIC: Akaike's Information Criterion.
BIC: Bayesian Information Criterion.
Δi The difference between AIC/BIC for the model (i) and the model with the lowest AIC/BI

a The age at which the highest y-value was obtained.
b Change was calculated as the difference between estimated hippocampal volume (z-sco

AIC.
c The age where shows the age where the expression − d2 f ageð Þ

d age2 was largest, i.e. the point w
based on the curve with the smoothing level that minimized AIC.
sampling was skewed towards a higher staring point, gradually from
−1.64 z-scores when all participants were included to −2.62
z-scores when only participants from 60 years were included.

Effects of age-range on the smoothing spline model

The curves for the smoothing spline were highly similar regardless
of at what age sampling began, with monotone decline for all
sampling ranges. For instance, the point where the rate of change of
the slope was highest (the second derivative) was 49 years regardless
of whether sampling started at 8, 20 or 30 years, and was 47 for the
age-range 40–85 years. When the sampling began at 50 or 60 years,
the graph was mainly linear. The decline in the last part of the age
span (60–85 years) was almost identical regardless of the age at
which sampling started, ranging between z=−2.19 and z=−2.25.
The discrepancy between the quadratic and the smoothing spline was
particularly pronounced in middle age, where the quadratic function
would suggest a peak, while the local smoothing function would
suggest a linear decline.

Comparison of AIC and BIC between models

For the wide age-ranges, the smoothing spline outperformed the
quadratic models, with AIC ΔI for the quadratic models of 16 and 9 for
sampling from 8 and 20 years, respectively, and BIC ΔI of 9 and 4.
When sampling began at 30 years or higher, the models were not
distinguishable with AIC ΔI b 2. BIC tended to indicate a less good fit
for the smoothing spline when sampling started at 30 or 40 years
(ΔI=3 and 4, respectively).

Replication sample

To test the stability of the results, the same analyses were
conducted in an independent sample of 309 participants. The lowest
age in this sample was 18 years and the highest 94, so the age-ranges
Local smoothing

Break pointc

(year)
Change 60–853

85b years (z-score)
AIC Δi BIC Δi

49 −2.19 0 0
49 −2.22 0 0
49 −2.22 1 3
47 −2.25 2 4
Linear −2.28 1 2
Linear −2.21 0 0

C.

res) at age 60 and age 85, based on the curve with the smoothing level that minimized

here the slope of the local smoothing curve changed the most (the second derivative),



Fig. 3. Graphs of quadratic and local smoothing models at different starting ages. The red line represents the quadratic model and the yellow line the local smoothing model (the
smoothing spline) for hippocampal volumes (standardized residuals after the effects of intracranial volume and sex were regressed out). The vertical red dotted line shows the peak
of the quadratic function, while the dotted yellow line shows the age where the expression− d2 f ageð Þ

d age2 was largest, i.e. the point where the slope of the local smoothing curve changed
the most (the second derivative). Note that the quadratic model assumes the second derivative to be constant across the life-span, and hence the point of maximal acceleration
cannot be determined. The quadratic model indicates a non-monotonic relationship between age and hippocampal volume. As can be seen, the estimated peak shifted towards a
higher age when the lower limit of the age-span samples was increased, and the estimated decline in the latest part of the life-span (i.e. beyond 60 years) increased. The local
smoothing model was more robust to the influence of sampling range.
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analyzed were 18–94, 30–94, 40–94, 50–94 and 60–94 years. The
regression equations and p-, F- and R2-values are presented in
Supplementary Table 1. Results from peak and slope analyses, as well
as AIC and BIC, are presented in Table 3. The relationship between age
Table 3
Replication sample.

Age span Quadratic model

Top pointa

(year)
Change 60–85
years (z-score)

AIC Δi BIC Δi

18–95 33 −1.43 3 0
30–95 43 −1.58 0 0
40–95 41 −1.57 0 0
50–95 Linear −1.59 0 1
60–95 Linear −1.59 0 3

AIC: Akaike's Information Criterion.
BIC: Bayesian Information Criterion.
Δi The difference between AIC/BIC for the model (i) and the model with the lowest AIC/BI

a The age at which the highest y-value was obtained.
b Change was calculated as the difference between estimated hippocampal volume (z-sco

AIC.
c The age where shows the age where the expression − d2 f ageð Þ

d age2 was largest, i.e. the point w
based on the curve with the smoothing level that minimized AIC.
and hippocampal volume was more linear than in the main sample,
yielding somewhat smaller effects of varying sampling range. Still, the
main results were replicated. For the quadratic model, whenever
sampling was skewed towards a higher starting point, the age at
Local smoothing

Break pointc

(year)
Change 60–853

85b years (z-score)
AIC Δi BIC Δi

45 −1.36 0 0
45 −1.37 2 3
45 −1.38 1 2
Linear −1.39 1 0
Linear −1.37 0 0

C.

res) at age 60 and age 85, based on the curve with the smoothing level that minimized

here the slope of the local smoothing curve changed the most (the second derivative),
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which volumes peaked was moved upwards and the estimated
decline in the last part of the age-span became larger. Peak estimated
volume was 33 years when the model was tested with the full sample
(18–94 years), and increased to 43 when the sample was restricted to
the participants from 20 years. When sampling began at 40, the
estimated peak was not further moved upwards, but was found to be
at 41 years. Further, as seen for the main sample, the estimated age
decline from 60 to 85 years increased when sampling included
participants over 30 years only (from z=−1.43 to z=−1.57)
compared with sampling that included all participants. Due to the
more linear relationship between age and hippocampal volume,
decline did not increase notably when sampling were restricted to
higher ages than 30 (z=−1.57 when starting at 40 years compared
to z=−1.59 when starting at 50 or 60 years).

Similar to the result from the analyses conducted with the main
sample, the smoothing spline models were not affected by manipula-
tions of the age-ranges. The point where the rate of change of the
slope was highest was 45 years regardless of whether sampling
started at 18, 30 or 40 years. When the sampling began at 50 or
60 years, the graph was mainly linear. The decline in the last part of
the age span (60–85 years) was almost identical regardless of the age
at which sampling started, ranging between z=−1.36 and z=
−1.39. AIC differed less between the quadratic and the smoothing
spline models in the replication sample than in the main sample, with
ΔIN2 only when sampling started at 18 years (smoothing spline
performed best). For all other age-ranges, ΔIb2. For BIC, ΔI=3 for the
smoothing spline when sampling began at 30, otherwise ΔIb2.

Discussion

The present results demonstrated that when using a conventional
quadratic model, the age-trajectories of hippocampal volume were
systematically affected by the age at which sampling started. The top
point where volume growth is ending and decline is beginning was
systematically estimated to be later when the sampling started at a
higher age. Further, estimated decline in the latest part of the life-span
was steeper with a higher sampling start age. The nonparametric local
smoothing approach (the smoothing spline) was more robust to the
effects of different start ages.

It is tempting to use descriptions of the quadratic fits to infer
timing of peaks of growth. As demonstrated, this peak will vary
depending on the age-range of the study. If the sampling range started
at 8 years of age, the break point was estimated to be 20 years,
compared to 29 years when sampling from 20 years, and 41 years
when sampling started at 30. This trend was confirmed in the
replication sample. Thus, great caution should be exercised in
inferring break points of age-trajectories based on quadratic models.
Also, while the quadratic model indicated non-monotonic trajectories
when sampling started at age 50 or earlier in the main sample and at
age 40 or earlier in the replication sample, this pattern was not found
for the local smoothing spline in either samples. This puts forth the
question of whether non-monotonic relationships often reported in
aging research (Allen et al., 2005; Jernigan and Gamst, 2005; Kennedy
et al., 2008; Terribilli et al., 2009;Walhovd et al., 2005) to some degree
are exaggerated by use of quadratic model fits. This question warrants
further investigation.

The age-range sampled also systematically affected the estimated
age-decline after 60 years in the quadratic models. Since the fit is
global, each data-point will have an effect on the estimated fit for all
other points. Thus, moving the starting point of sampling from 8 to
20 years affected the decline from 60 to 85 years from−1.64 to−1.87
z-scores in the main sample. The same tendency was observed in the
replication sample, although the effects were far less dramatic due to a
generally less non-linear relationship between age and hippocampal
volume For the smoothing spline, different starting points did not
change the estimation of the point where the change in the slope of
the graph was largest in either of the samples. Further, the estimated
age-decline from 60 to 85 years did not vary notably, ranging from
−2.19 to −2.25 z-scores in the main sample and from z=−1.36 to
z=−1.39 in the replication sample.

Analyses of goodness of fit showed that the smoothing spline
outperformed quadratic models when the age-range was large. When
sampling started at 8 years or 20 years in the main sample, and at
18 years in the replication sample, AIC was lower for the smoothing
spline than the quadratic models (ΔIN3). When only the participants
from 30 years and older were included, the models were indistin-
guishable with regard to goodness of fit (ΔIb2). These results indicate
that the smoothing spline yields better goodness of fit than the
quadratic model when the age-range in questions is large, but that the
models perform equally well when the age-range is more restricted.
However, the main problem with the quadratic model is not the
goodness of fit per se, but that the results are difficult to interpret
since they are substantially affected by variations in sampling range.

The implication of the present findings is not that authors using
quadratic fits on their data necessarily have been erroneous. It is a
valid approach to use the significance of the quadratic term to reject
the null-hypothesis that a relationship is linear, andmany researchers
have not interpreted the shape of the quadratic function literally as a
description of the true developmental or aging trajectory. For
instance, Kennedy and Raz (2009) recently used quadratic terms to
reject linear models, without making assumptions that these capture
the true shape of the trajectories. Walhovd et al. (in press) used the
same approach, and stated: “If a nonlinear (quadratic) component
significantly increased the amount of explained variance (…) that
does not mean that the exact quadratic fit shown depicts the true age
function, and these fits should not be used to interpret the exact
timing of peaks and dips in the age functions”. Other researchers used
quadratic fits to reject the linear model, and then went on to use more
complex models to describe the trajectories, i.e. exponential models
(Luft et al., 1999; Tamnes et al., 2010) or locally weighted least square
algorithms (LOESS) (Westlye et al., In press). We would recommend
that testing quadratic terms should be considered as a middle step in
the model building process, but not necessarily as an end. If the
quadratic term is significant, other models should be considered.

Still, when a quadratic function is published, it is very likely that
many readers will interpret this as the true shape of the age-curve. In
some cases the quadratic model will yield the best description of the
data, but we argue that it is important to be aware of the factors
related to age-range and sample composition when interpreting
quadratic or other higher order polynomial models. It is easy to find
examples in the brain-aging literature of statements based on
quadratic fits that can easily be misinterpreted, even though the
authors themselves did not interpret the quadratic fit to yield an
accurate description of the true age-trajectory. A quadratic fit may
adequately have described the age-trajectory in these cases, and some
of the authors explicitly discussed other possible statistical models,
but it is easy to see how a reader of these papers can get the
impression that quadratic age-trajectories are common and accurate
descriptions of structural brain aging.

This paper has two related messages: first, to say that a
relationship is non-linear does not mean that it is quadratic. Non-
linear trends can be constructed which are non-quadratic, and the
choice when testing for non-linearity should not only be the addition
of quadratic terms to the model. In the present paper, cross-sectional
data were used to show this point, but it should be noted that
longitudinal studies are not immune from similar problems. Studies
with different starting points and different sampling follow-ups may
yield different shapes of the age-curve. Age-related trajectories
estimated from cross-sectional data are not necessarily predictive of
individual age-trajectories, and a correct model would have to
account for both intraindividual change over time and interindividual
differences. Second, caution should be exerted in interpreting the
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quadratic model as an actual description of age-trajectories of
neuroanatomical structures. The nonparametric smoothing spline
was less vulnerable to variations in sampling range, and yielded a
more realistic description of age-trajectories. Irrespective of the shape
of the underlying trend, with enough data, the nonparametric
estimate will be close to the true curve. This flexibility is the result
of computing regression estimates locally. The nonparametric
estimate will be consistent for the underlying regression curve,
whatever it is, as long as the bandwidth is reasonable. In contrast, a
parametric model will only be correct when it is correctly specified.
Thus one might argue that there is less practical risks involved when
nonparametric techniques are used, because they will always be
correct eventually, while parametric techniques will fail under certain
very common conditions.

A cost of nonparametric techniques is that many degrees of
freedom are lost in the process of controlling for curves of an a priori
very unlikely shape. Thus, the rate of convergence of the estimated
regression function is much slower than it would be for the right
parametric model, leading to a loss in power. One consequence is that
in finite samples, a parametric model which is reasonably accurate
may outperform a nonparametric model. Further, nonparametric
regression modeling is also more complicated than the parametric
modeling. Adjustments for group effects can involve difficult
considerations, and the smoothing parameters must be chosen. Too
much smoothing could result in loss of important information
(approaching a linear least squares model), while too little smoothing
may result in large variance and poor generalizability of the model. In
the present paper, we used an algorithm that selects the smoothing
level that minimized AIC, thus alleviating the need for arbitrary
choices of smoothing level. However, this approach did not work well
when sampling started at 60 years, where no smoothing at all yielded
the lowest AIC. Here, a greater smoothing level had to be used to yield
a more realistic model of the relationship between age and
hippocampal atrophy. For this age-range, a smoothing level chosen
by minimizing BIC seemed more appropriate. Further, statistical
inference from nonparametric models is also complicated by the
absence of parameter estimates, which means that no prediction
equation is defined and the relationship between x and y must be
graphed (Andersen, 2009). Thus, even though the nonparametric
smoothing spline is a useful tool to determine the shape of the
relationship between a predictor and the response, it has also
disadvantages compared to the simpler quadratic regression model.
Choices related to nonparametric smoothing are discussed by Haerdle
(1990). Mueller (1985) discuss the estimation of peaks, inflection
points, and other functionals of the regression curve.
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