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Abstract
Investigating the relationship between genes and the neural substrates of complex human behavior
promises to provide essential insight into the pathophysiology of mental disorders. One approach
to this inquiry is through neuroimaging of individuals with microdeletion syndromes that manifest
in specific neuropsychiatric phenotypes. Both Velocardiofacial Syndrome (VCFS) and Williams
Syndrome (WS) involve haploinsufficiency of a relatively small set of identified genes on the one
hand and association with distinct, clinically-relevant behavioral and cognitive profiles on the
other hand. In VCFS, there is a deletion in chromosomal region 22q11.2 and a resultant
predilection toward psychosis, poor arithmetic proficiency, and low performance intelligence
quotients. In WS, there is a deletion in chromosomal region 7q11.23 and a resultant predilection
toward hypersociability, non-social anxiety, impaired visuospatial construction, and often
intellectual impairment. Structural and functional neuroimaging studies have begun not only to
map these well-defined genetic alterations to systems-level brain abnormalities, but also to
identify relationships between neural phenotypes and particular genes within the critical deletion
regions. Though neuroimaging of both VCFS and WS presents specific, formidable
methodological challenges, including comparison subject selection and accounting for
neuroanatomical and vascular anomalies in patients, and many questions remain, the literature to
date on these syndromes, reviewed herein, constitutes a fruitful “bottom-up” approach to defining
gene-brain relationships.

Introduction
Parallel advancement in both genetic and neuroimaging technologies in recent years has
offered neuroscience an opportunity to elucidate the relationships between genes, neural
function, and behavior, as never before. “Top-down” approaches – using what is known
about the clinical presentation, combined with neuroimaging of neurochemical,
neuroanatomical, and neurophysiological features of the illness to infer and test for specific
genetic effects – have offered insights into the biological plausibility of the involvement of
certain genes of interest and their mechanism. However, such approaches are intrinsically
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limited in scope, and, moreover, large-scale population-based investigations, such as
genome-wide association studies for a particular psychiatric illness, have lent increasing
support for the principle that clinical behavioral phenotypes are rooted in many gene
variants, potentially of small individual effects, which have been challenging to characterize.
Thus, to dissect specific molecular contributions to human brain development and function,
bottom-up approaches that study the neural and behavioral consequences of a well-described
genetic variation are essential. Taking advantage of genetic accidents of nature, a number of
investigators have begun to address this need by implementing in vivo neuroimaging
experiments of individuals with classic microdeletion syndromes. Two of these have been
best studied and will be reviewed here. Velocardiofacial Syndrome (VCFS) and William’s
Syndrome (WS) – result from circumscribed, small hemideletions in chromosomal bands
22q11.2 and 7q11.23, respectively, and are remarkable for their distinctive behavioral
sequelae. Though these two syndromes arise from deletion of different genes, have different
clinical and neuropsychological profiles, and demonstrate distinct neuroimaging phenotypes
(Campbell, et al., 2009), by virtue of their shared molecular etiology (i.e., microdeletion),
they both present tremendous opportunities for understanding the genetic foundations of
physiological brain function and neuropsychiatric illness. In contrast to many other studied
genetic variations in humans (e.g., single nucleotide polymorphisms (SNPs)), the
hemideletions in VCFS and WS represent alterations definitively targeted to the involved
genes (e.g., no linkage disequilibrium confound), show clinically relevant effect sizes at the
behavioral level, and confer generally unambiguous, categorical gene dose effects. The
neuroimaging of these conditions, by examining structural and functional neural correlates
of both the associated genetic defect and relevant behavioral measures, has begun to offer
critical insight into the molecular regulation of human brain development and function at the
systems level, but remains an ongoing endeavor with many important questions yet
unanswered. Because neuroimaging investigations of these disorders require overcoming
similar methodological challenges and testing similar fundamental hypotheses about the
pathogenesis of specific neuropsychiatric phenotypes within a broader clinical syndrome, by
considering the literatures of both VCFS and WS – which have made substantial but
disparate advances toward these ends – this review intends to highlight ways in which these
literatures inform each other and identify fertile ground for future study.

Velocardiofacial (22q11.2 Deletion) Syndrome
Background

Velocardiofacial syndrome (VCFS) or 22q11.2 deletion syndrome (previously termed
“DiGeorge sequence”, “Sedlackova syndrome”, “conotruncal anomalies face syndrome”,
“Cayler syndrome”, “Shprintzen syndrome”, and “CATCH 22”) results from a hemideletion
in band q11.2 of chromosome 22, which spans a critical region harboring approximately 40
known genes, and occurs with an estimated frequency between 1:2000 and 1:4000
(Maynard, et al., 2003, Oskarsdottir, et al., 2004, Shprintzen, 2008). There is no clear bias in
the parental origin of deletions (Driscoll, et al., 1992, Demczuk, et al., 1995, Ryan, et al.,
1997), and though some studies in mice and humans have not found imprinting effects
(Morrow, et al., 1995, Maynard, et al., 2006), others report subtle phenotypic variation
influenced by the parent of origin (Eliez, et al., 2001a, Glaser, et al., 2002).

VCFS is associated with a constellation of somatic phenotypes that include: palatal
deformities (e.g., cleft palate, palatopharyngeal asymmetry), congenital heart disease (e.g.,
ventricular septal defect, interrupted aortic arch, tetralogy of Fallot, and truncus arteriosus),
and characteristic facial morphology (Shprintzen, et al., 1978, Shprintzen, 2008). Associated
vascular, ocular, skeletal, immunological and endocrinological abnormalities have also been
reported (Shprintzen, 2008). Notably, there is great heterogeneity in the severity and
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particular collection of signs and symptoms in any one individual, and a number of such
individuals likely escape clinical detection (Shprintzen, 2008).

Neuropsychological and psychiatric manifestations of VCFS are similarly manifold.
Individuals with VCSF show a range of deficits on formal cognitive tests, including: poor
performance intelligence quotients (IQ) and visuospatial, arithmetic and working memory
impairments (Moss, et al., 1999, Wang, et al., 2000, Bearden, et al., 2001, Woodin, et al.,
2001, Lajiness-O’Neill, et al., 2005, Simon, et al., 2005a, Simon, et al., 2005b, Bish, et al.,
2007). One study has reported lower full-scale IQs in individuals with familial compared to
de novo deletions (Smedt, et al., 2007). Though developmental delays are present early in
life (Gerdes, et al., 1999), there is also, similar to schizophrenia, a significant decline in
verbal IQ from childhood to early adulthood (Gothelf, et al., 2005). Among the vast array of
psychiatric disturbances associated with this syndrome, including elevated rates of affective,
anxiety, attentional, compulsive and developmental disorders (Papolos, et al., 1996, Gothelf,
et al., 2004, Baker and Skuse, 2005, Fine, et al., 2005, Antshel, et al., 2006), VCFS has
garnered particular attention for conferring an increased risk of schizophrenia. This is in part
due to its remarkable prevalence, with up to 30% of VCFS individuals meeting full
diagnostic criteria (Murphy, et al., 1999, Bassett, et al., 2005, Gothelf, et al., 2005, Gothelf,
et al., 2007a) (though one study has reported greater bipolar spectrum illness than
schizophrenia in a sample of 25 VCFS patients (Papolos, et al., 1996)) and even more with
subsyndromal psychosis (Baker and Skuse, 2005), potentially constituting the strongest
known genetic predictor of schizophrenia aside from twinship.

Structural Studies
Qualitative magnetic resonance imaging (MRI) studies, though often performed in small
groups of patients, have described a number of replicated findings in VCFS. Structural brain
abnormalities detected with greater frequency in patients include: midline anomalies, such
as cavum septum pellucidum and cavum vergae (Vataja and Elomaa, 1998, Chow, et al.,
1999, van Amelsvoort, et al., 2001, Shashi, et al., 2004, van Amelsvoort, et al., 2004) as
well as hypoplastic cerebellar vermis (Mitnick, et al., 1994, Lynch, et al., 1995, Vataja and
Elomaa, 1998, Chow, et al., 1999), white matter hyperintensities on T2-weighted images
(Mitnick, et al., 1994, Lynch, et al., 1995, Chow, et al., 1999, van Amelsvoort, et al., 2001,
van Amelsvoort, et al., 2004), cerebellar atrophy (Lynch, et al., 1995, Chow, et al., 1999),
and cerebral atrophy or ventricular enlargement (Chow, et al., 1999). Reductions in
cerebellar vermis size (Eliez, et al., 2001d) and total cerebellar volume (van Amelsvoort, et
al., 2001, van Amelsvoort, et al., 2004), as well as reduced total cerebral volume (Eliez, et
al., 2000, Eliez, et al., 2001c, Simon, et al., 2005c) and ventricular enlargement (Eliez, et al.,
2000, Chow, et al., 2002, Simon, et al., 2005c, Campbell, et al., 2006) have been echoed by
quantitative reports. Notably, all of these findings have also been reported in schizophrenia
(Persaud, et al., 1997, Shenton, et al., 2001), but most studies have not attempted to
disentangle how these observations differentially reflect associations with manifest
psychosis or 22q11.2 microdeletion. One investigation addressing this issue applied
qualitative assessments, volume of interest analyses, and voxel-based morphometry to MRI
scans from VCFS patients with and without schizophrenia and learning-disabled volunteers
(van Amelsvoort, et al., 2004). This study found no differences between VCFS patients with
and without schizophrenia in septum pellucidum frequency, amount of white matter
hyperintensities, or cerebellar atrophy. However, VCFS patients with schizophrenia showed
reduced total (gray and white matter) cerebral volumes and increased cerebrospinal fluid
volumes when compared with VCFS patients without schizophrenia. Similarly, Shaer and
colleagues (2009a) recently reported that VCFS patients with schizophrenia show extensive
suprasellar cortical thinning compared to healthy controls and VCFS patients without
schizophrenia. Notably, a recent longitudinal study identified no differences in volumetric
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changes over time between VCFS patients who developed schizophrenia and those that did
not (Gothelf, et al., 2007b).

Another qualitative neuroimaging finding reported in VCFS is gyral pattern abnormalities –
in particular, polymicrogyria, but also pachygyria (Bingham, et al., 1998, Bird and
Scambler, 2000, Kawame, et al., 2000, Ghariani, et al., 2002, Ehara, et al., 2003, Koolen, et
al., 2004, Sztriha, et al., 2004, Robin, et al., 2006) – which has recently received some
quantitative corroboration in an MRI study of VCFS children and young adults showing
reduced gyral complexity relative to healthy comparison subjects (Schaer, et al., 2006).
These data raise the unresolved question of whether such gyral abnormalities are rooted in
embryonic vascular developmental or primary neural migratory aberrancies. Indeed, in the
case of both VCFS and WS, interpretation of disturbances of brain parenchymal structure
and function must consider the potential contribution of syndrome-associated cardiovascular
abnormalities. In VCFS, for instance, a range of cardiac and Circle of Willis anomalies have
been described (Shprintzen, 2008), which together could lead to irregular regional cerebral
perfusion and subsequent disruption of early brain maturational processes, resulting not only
in abnormal gyrification (Larroche, et al., 1994), but also suboptimal neuronal integrity and
subcortical development (Miller, et al., 2007). Though isolated mutations in TBX1 within the
VCFS critical region lead to characteristic cardiovascular but not necessarily
neuropsychiatric phenotypes in some humans (Yagi, et al., 2003), recent evidence suggests
that haploinsufficiency of this gene can impart substantial neurobehavioral consequences
(Paylor, et al., 2006), illustrating that even at the molecular level, distinguishing
cardiovascular and neural etiologies is not a trivial endeavor. It is therefore notable that even
though some findings discussed below have been demonstrated to be robust to cardiac
disease status (Bearden, et al., 2007) or cardiac surgical history (Kates, et al., 2001), one
recent investigation has reported diminished total brain volume and gyrification at the
parieto-temporo-occipital junction in VCFS patients with significant cardiac disease
histories versus those without (Schaer, et al., 2009b).

With this caveat in mind, recent structural studies in VCFS have increasingly focused on
identifying more regionally precise alterations in neural systems that might contribute to
observed behavioral phenotypes, using both voxel-based and targeted volume-of-interest
approaches, and diffusion tensor imaging, and correlating imaging results with behavioral
measures. This has resulted in a number of VCFS studies identifying parietal lobule
abnormalities, in line with this region’s role in performing visuospatial and arithmetic tasks,
which are particularly challenging to VCFS patients. These findings include: left parietal
gray matter volume reductions (Eliez, et al., 2000), parietal cortical thinning (Bearden, et al.,
2007, Bearden, et al., 2009), left parietal white matter volume reductions (Kates, et al.,
2001), reduced fractional anisotropy in several left parietal regions (Barnea-Goraly, et al.,
2003) but greater fractional anisotropy and less radial diffusivity in the right inferior parietal
lobule (Simon, et al., 2005c, Simon, et al., 2008), and reduced bilateral (though left more
than right) parietal gyral complexity (Schaer, et al., 2006). To pursue these findings further,
one study was able to show that in VCFS patients, worse arithmetic task performance
correlated with reductions (relative to healthy individuals) in left inferior parietal lobe
fractional anisotropy (Barnea-Goraly, et al., 2005), and another that slower response
inhibition correlated with abnormally increased right parietal fractional anisotropy.

Importantly, all of the above cited studies (and most of the VCFS studies discussed in this
section, with rare exceptions (e.g., (Kates, et al., 2001, Baker, et al., 2005)), used healthy
comparison subjects unmatched for IQ, introducing the possibility that some of these
findings may be related to IQ generally, rather than VCFS specifically. Indeed, when a
subset of IQ-matched subjects were compared in one volumetric study, the reported VCFS-
associated reductions in parietal white matter were substantially weakened (Kates, et al.,
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2001). This illustrates a particular challenge to research in VCFS, and, as echoed below,
WS; comparison subject selection and subsequent analyses must be able to address the issue
of IQ, which is both part of the illness under study and a potential independent contributor to
altered brain development and function. In VCFS patients, lower IQ may be associated with
reduced frontotemporal cortical thickness (Schaer, et al., 2009a). In healthy individuals,
domain-general intelligence scores show a positive correlation with total brain size
(McDaniel, 2005) and distributed regional gray matter volumes (Haier, et al., 2004, Colom,
et al., 2006) and fractional anisotropy (Schmithorst, et al., 2005, Yu, et al., 2008). Likewise,
compared with healthy normal-IQ individuals, those with idiopathic mental retardation show
more qualitative structural abnormalities, including some relevant to the VCFS imaging
phenotype (e.g., enlarged lateral ventricles and thinned corpus callosum) (Spencer, et al.,
2005), as well as widespread reductions in regional gray matter volumes (Spencer, et al.,
2006) and fractional anisotropy (Yu, et al., 2008), underscoring the need to better
characterize the specificity of reported neuroimaging results in VCFS.

In addition to parietal structural findings outlined above, several studies have identified
abnormalities of the corpus callosum in VCFS, including reduced fractional anisotropy
throughout this structure (Simon, et al., 2005c). Using manual segmentation methods, VCFS
patients show greater corpus callosum volumes, though discrepancies in subregional
analyses exist, with some investigators reporting greater isthmus volumes (Shashi, et al.,
2004) and others reporting greater rostrum (but not isthmus) volumes (Machado, et al.,
2007). In the latter study, reaction time on an enumeration task correlated inversely with
rostrum volumes in VCFS, but not healthy, children. In the largest study of its kind to date
(60 VCFS patients and 52 age-matched control subjects), VCFS patients showed larger total
and subregional (all except the genu) corpus callosum volumes, which inversely correlated
with teacher ratings of behavioral symptoms (Antshel, et al., 2005). However, children with
VCFS and comorbid attention-deficit hyperactivity disorder showed reduced corpus
callosum volumes compared to those with VCFS alone. In contrast, another study showed
increased midbody corpus callosum volumes in children with VCFS and comorbid
schizophrenia (Usiskin, et al., 1999). These last two studies form a particularly interesting
illustration of the complexity introduced by psychiatric comorbidity in studying
neurogenetic syndromes, highlighting the potential for independent or interaction effects of
diagnosis, even when that diagnosis is associated with the syndrome itself.

Several studies measuring frontal lobe total or gray matter volumes in VCFS children have
found either no change or absolute volume reductions that disappear or become relative
enlargements when accounting for total brain volume (Eliez, et al., 2000, Kates, et al., 2001,
Kates, et al., 2004, Simon, et al., 2005c). This has been interpreted as relative sparing of the
frontal lobes from pathology; however, orbitofrontal cortical thinning in VCFS children
(Bearden, et al., 2007, Bearden, et al., 2009, though see Schaer, et al. 2009a reporting frontal
thickening in VCFS children with subsequent accelerated thinning with age), reduced frontal
gyral complexity in a mixed-age VCFS group, and frontal gray matter reductions (even with
total brain volume correction) in adult VCFS cohorts that include patients with
schizophrenia have also been reported (van Amelsvoort, et al., 2001, Chow, et al., 2002),
raising the possibility that either metric, comorbid psychosis and/or late developmental
effects might play a role in detecting emergent frontal cortical pathology when present in
VCFS. As discussed below, contextual genetic influences may also have a hand in abnormal
frontal development in VCFS (Gothelf, et al., 2005). Furthermore, voxel-based
morphometric studies in children with VCFS have found reductions of frontal white matter
(van Amelsvoort, et al., 2001, Simon, et al., 2005c, Campbell, et al., 2006), though current
diffusion tensor imaging evidence does not support disrupted frontal axonal organization in
this syndrome (Simon, et al., 2005c). In view of these data, it is interesting to note
preliminary evidence that frontostriatal relationships may be altered in VCFS, as
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correlations between frontal and caudate volumes found in healthy volunteers were absent
from VCFS children’s scans in one study (Kates, et al., 2004). This may be closely linked to
striatal alterations however, as this same study reported increased relative caudate volumes
in patients, a finding replicated in another investigation, which also showed a relationship
with emotional symptoms (Campbell, et al., 2006). Enlarged caudate volumes have also
been observed in two other studies that controlled for total brain volume (Sugama, 2000)
and antipsychotic medication exposure (Eliez, et al., 2002). Further corroborative striatal
abnormalities documented in VCFS include: greater caudate fractional anisotropy (Simon, et
al., 2008), reduced internal capsule volumes (Kates, et al., 2004, Campbell, et al., 2006), and
an association between schizotypy and putamen volumes in patients (Campbell, et al.,
2006).

Structural differences in the temporal lobes, including gray matter thinning (Bearden, et al.,
2007, Bearden, et al., 2009), reduced gray matter volume (Chow, et al., 2002), and reduced
white matter volume (van Amelsvoort, et al., 2001) have also been reported in VCFS.
Recent findings in the medial temporal lobes have been of particular interest because of this
region’s importance in schizophrenia and association with learning, memory and social/
emotional processing. Reductions in absolute, but not relative, hippocampal volumes has
been reported (Eliez, et al., 2001c, Kates, et al., 2006), but two studies – one in children and
one in a mixed-age sample – found hippocampal reductions in VCFS that not only survived
correction for intracranial volume (Debbane, et al., 2006, Deboer, et al., 2007) but also were
associated with cognitive impairment. Findings in the amygdala have been less consistent,
with one study suggesting that children with VCFS have larger amygdalae and smaller
amygdala-prefrontal cortex ratios (Kates, et al., 2006), and another failing to detect
differences (Eliez, et al., 2001c). Finally, increased anterior and decreased posterior fusiform
gyrus volumes (Glaser, et al., 2007) in VCFS children have been reported, mimicking the
anterior-posterior gradient of the relative frontal-parietal findings discussed above, and
posited to be related to social functional impairments by the authors. These and the above-
cited types of anatomical variations in patients with neurodevelopmental disorders (Simon,
et al., 2005c) bring an important methodological challenge to voxel-based analyses of
patients with VCFS or WS, especially children, in that adequate registration to an unbiased
common template becomes paramount.

A number of structural findings among the plethora enumerated above require replication
and further study. Similarly, several other reports, including reduced gray matter and
increased fractional anisotropy in the posterior cingulate (Simon, et al., 2005c) and reduced
thalamic volumes (Bish, et al., 2004), require further investigation. Nonetheless and despite
the heterogeneity inherent in this disorder, in sum, emerging structural data increasingly
support a profile of temporal-parietal-cerebellar hypotrophy and midline maldevelopment in
VCFS (see table 1 for a brief summary of replicated findings).

Functional Studies
Few functional MRI (fMRI) studies of VCFS have been reported, and as in the structural
studies above, most have been limited by small sample sizes. Nonetheless, these
investigations have suggested abnormalities in circuits important for mathematical,
executive, and social-emotional functions, in a manner consistent with the
neuropsychological and structural findings in this illness. Two studies have identified
parietal lobe dysfunction in different cognitive contexts: one used an arithmetic task to show
worse accuracy and concomitant increased activation in the inferior parietal lobule in
adolescents with VCFS (Eliez, et al., 2001b), and another used a non-spatial n-back working
memory task to show reduced inferior parietal (and frontal operculum) activation in VCFS
children (Kates, et al., 2007). Two additional studies have used face-viewing paradigms to
show in VCFS less activation to emotional (versus neutral) faces in the insula and premotor
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regions (though more activation in occipital cortex) (van Amelsvoort, et al., 2006) and
reduced fusiform gyrus activation in response to neutral faces compared to houses, an effect
that was stronger in patients with psychosis, as well as reduced repetition adaptation effects
in this region when viewing neutral faces (Andersson, et al., 2008). Thus, though there are
still insufficient data to provide a definitive or comprehensive characterization of the
functional imaging phenotypes of this disorder, fMRI investigations to date support the
hypothesis of disrupted parietal circuitry, which is evident even across different cognitive
paradigms and is presaged by the convergent above-reviewed morphometric evidence. The
reported findings further raise the possibility of face-processing dysfunction, potentially in
line with more subtle changes in fusiform shape (Glaser, et al., 2007); however, additional
work to address the regional and domain (e.g., attentional or IQ effects) specificity of these
findings, as well as direct examination of relationships between related structural and
functional measures, will help develop current understanding of the neural correlates of
VCFS.

Specific Genes and Neural Phenotypes
A number of genes in the VCFS critical region on chromosome 22 are expressed in the
developing and adult central nervous system, and potentially contribute to VCFS
neuropsychiatric phenotypes (Maynard, et al., 2003, Arinami, 2006). Two of these – COMT
(catechol-O-methyltransferase; important in cortical synaptic dopamine catabolism) and
PRODH (proline dehydrogenase; important in proline catabolism) – have featured
prominently in the schizophrenia literature because variations in these genes have been
associated both with risk of illness and schizophrenia neurophysiological phenotypes in
humans (Egan, et al., 2001, Glatt, et al., 2003, Paylor, et al., 2006, Kempf, et al., 2008,
Williams, et al., 2008). It is notable that TBX1 (T-box 1 transcription factor) and GNB1L
(guanine nucleotide-binding protein beta subunit-like protein 1) have also recently shown
association with schizophrenia and behavioral endophenotypes in mouse models (Paylor, et
al., 2006, Williams, et al., 2008). Given the remarkably high incidence of comorbid
diagnoses of VCFS and schizophrenia, these associations are important clues about both the
genesis of schizophrenic symptoms in VCFS and the neurogenetic mechanism of non
VCFS-related schizophrenia.

COMT genotype (Val158Met), the variant that has been most investigated, predicts the
course of schizophrenia-related phenotypes in VCFS, such that having the remaining gene
copy contain the Met (low enzymatic activity) allele is associated with greater prefrontal
dysfunction (Baker, et al., 2005) as well as cognitive, clinical (i.e. psychosis), and prefrontal
cortical volume decline over time (Gothelf, et al., 2005). A subsequent study confirmed
worse prefrontal function but not more frequent schizophrenia in VCFS Met carriers
(Bassett, et al., 2007). In a recent corroborative experiment that studied fifty-six VCFS
patients, COMT low enzymatic activity allele carriers showed a trend for impaired prepulse
inhibition and a significant interaction with hyperprolinemia for impaired smooth-pursuit
eye movements (both impaired prepulse inhibition and smooth-pursuit eye movements have
previously been used as endophenotypic measures for schizophrenia) (Vorstman, et al.,
2008). These results are in line with rodent data supporting extensive functional interactions
between PRODH and COMT genes relevant to frontal dopaminergic signaling (Paterlini, et
al., 2005), emphasizing the complexity of neural disturbances in VCFS, in that they likely
arise not only from the sum deletion of multiple genes, but also from resulting epistatic
interactions. The fact that the high enzymatic activity allele is associated with illness risk
and phenotypes in individuals that do not have VCFS (Egan, et al., 2001, Glatt, et al., 2003)
further highlights the dependence of individual gene effects on the accompanying genetic
context. In VCFS, the low activity allele would exacerbate the lower baseline COMT
function arising from possession of only a single copy of this gene. Given non-linear effects
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of cortical dopamine on cognitive function and prefrontal physiology, such that too little or
too much synaptic dopaminergic tone may be detrimental (Goldman-Rakic, et al., 2004),
these seemingly opposing gene effects may be reconcilable and further underscore the
unique contribution of microdeletion syndrome investigations to the wider genetic literature.
From these initial results implicating COMT in the development of psychosis and its neural
correlates in VCFS, it is clear that examination of individual variation in hemizygous genes
in relation to neuroimaging measures offers tremendous potential in understanding the
molecular and physiological underpinnings of neuropsychiatric phenotypes in microdeletion
syndromes. Additional investigation of interactions between VCFS deleted genes and other
structural and functional neurophenotypes in this disorder is therefore needed.

Summary of VCFS Neuroimaging
Neuroimaging studies have revealed a network of abnormalities that attempt to link genetic,
neuronal and behavioral aspects of VCFS in the service of better understanding how
22q11.2 hemideletion confers such a unique and complex neuropsychiatric phenotype.
Replicated structural anomalies coupled with abnormal neurophysiology co-localized to the
parietal cortex appear to align well with arithmetic deficits in this syndrome. Additionally,
susceptibility to psychosis may manifest at the neuronal systems level in multiple structural
findings common to VCFS and schizophrenia, such as striatal abnormalities, and specific
genetic (e.g. COMT) influences on cortical development, though clear pathways from genes
to neural circuits to psychosis in VCFS remain elusive. A particular challenge is to bring
replicated structural findings (e.g., reduced cerebellar volume) into a functional context via
multimodal and longitudinal imaging and to employ further investigation into the neural
correlates of variations in intact gene copies within the 22q11.2 region.

Williams Syndrome
Background

Relative to VCFS, Williams syndrome (WS) is a more infrequent disorder (prevalence of
1:7500–1:20,000 live births) that is caused by a hemizygous deletion of ~1.6 megabases
(Mb) typically containing approximately 28 genes on chromosomal location 7q11.23
(Stromme, et al., 2002, Osborne and Mervis, 2007, Schubert, 2009), which occurs regardless
of parental origin of the affected chromosome (Schubert, 2009). The hemideleted region is
flanked by low-copy-repeat sequences (LCR), and the deletions arise as a consequence of
unequal crossing over and misalignment that occurs during meiosis due to the substantial
similarity of the flanking LCR blocks (Shaw and Lupski, 2004, Osborne and Mervis, 2007,
Schubert, 2009). In addition to the classic WS deletion, recently discovered duplications in
the WS region also arise through unequal recombination between flanking repeats at
7q11.23 (Somerville, et al., 2005, Osborne and Mervis, 2007), and extremely rare cases of
deletions that include part of the WS locus but are smaller or larger than the typical WS
deletion have also been reported (Frangiskakis, et al., 1996, Morris, et al., 2003),
demonstrating variable outcomes of this genomic region’s inherent vulnerability to
misalignment (Osborne and Mervis, 2007, Schubert, 2009).

Relative to healthy individuals, chromosome transmitting parents of WS probands show a
six-fold increase in paracentric inversion of the WS locus (Osborne, et al., 2001, Bayes, et
al., 2003). Like the deletions, such inversions also result from a misalignment between the
inverted homologous LCR blocks, again demonstrating the vulnerability of this genomic
region to variation (Osborne, et al., 2001, Bayes, et al., 2003, Scherer, et al., 2005, Schubert,
2009). However, though they appear to predispose toward the WS deletion in offspring,
these inversions are not accompanied by typical WS symptoms (Scherer, et al., 2005, Tam,
et al., 2008).
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The large majority of individuals with the typical WS deletion have a number of
characteristic somatic abnormalities, including, distinct facial appearance, short stature,
weakness of connective tissues, motor coordination problems, as well as cardiovascular
abnormalities, such as supravalvular aortic stenosis (SVAS) (Williams, et al., 1961, Beuren,
et al., 1962, Partsch, et al., 1999, Committee on Genetics, 2001, Osborne and Mervis, 2007).
Orthopedic, endocrine, and gastrointestinal dysfunctions are also prevalent in WS
(Committee on Genetics, 2001).

Evidence for neural abnormalities in WS includes neurological signs such as hyperreflexia,
acoustic hyper-sensitivity, nystagmus, and poor coordination (Chapman, et al., 1996,
Committee on Genetics, 2001). Particularly compelling is the unique neuropsychological
and behavioral profile of WS. In addition to mild to moderate intellectual impairment in
most (Morris, et al., 2003, Osborne and Mervis, 2007), individuals with WS show severe
visuospatial construction deficits coupled with impairments in mathematical abilities and
long term memory (Mervis, et al., 1999, Mervis, et al., 2000, Farran and Jarrold, 2003, Van
Herwegen, et al., 2008, O’Hearn and Luna, 2009) in the context of relatively preserved
verbal short-term memory and language abilities (Mervis, et al., 1999, Mervis, et al., 2000,
Farran and Jarrold, 2003). However, despite the relative preservation of language abilities in
general, emerging findings document abnormalities in discreet language domains such as
pragmatic language skills, rational conceptual vocabulary, and verbal fluency (Laws and
Bishop, 2004, Mervis and Becerra, 2007, Rossi, et al., 2009).

Another behavioral hallmark of WS is high sociability, overfriendliness, and increased
empathy for others (Bellugi, et al., 1999, Mervis and Klein-Tasman, 2000, Klein-Tasman
and Mervis, 2003). Individuals with WS are socially fearless and eager to engage in social
interactions even with complete strangers (Bellugi, et al., 1999, Klein-Tasman and Mervis,
2003). These unusual social characteristic of WS are often coupled with poor social
relationships (Bellugi, et al., 1999, Jones, et al., 2000, Mervis and Klein-Tasman, 2000,
Dykens, 2003, Klein-Tasman and Mervis, 2003, Leyfer, et al., 2006), suggesting a deficit in
social-perceptual and social-cognitive components of interpersonal interactions (Tager-
Flusberg and Sullivan, 2000). In marked contrast to this highly characteristic drive toward
social interactions and social fearlessness, individuals with WS have a high incidence of
non-socially related phobias and generalized anxiety (Bellugi, et al., 1999, Jones, et al.,
2000, Mervis and Klein-Tasman, 2000, Dykens, 2003, Klein-Tasman and Mervis, 2003).
This behavioral dichotomy suggests the presence of neurobiologically, and perhaps
genetically, dissociable mechanisms of social versus nonsocial fear in WS (Meyer-
Lindenberg, et al., 2005a). Collectively, these phenotypes usually persist from early
childhood to adulthood (Bellugi, et al., 1999, Jones, et al., 2000), potentially playing a role
throughout development, though specific investigation of developmental trajectories of
neural function and associated behavioral correlates in this disorder is needed.

Structural Studies
On average, individuals with WS show several widespread neurostructural changes,
including reduced brain size and overall curvature of the brain as well as increased gyral
complexity – abnormalities that likely represent aberrant cortical maturation and are
reflected in anomalous formation of the central sulcus and sylvian fissure (Jernigan and
Bellugi, 1990, Galaburda, et al., 2001, Schmitt, et al., 2001a, Schmitt, et al., 2002,
Jackowski and Schultz, 2005, Thompson, et al., 2005, Eckert, et al., 2006a, Gaser, et al.,
2006). Though cellular alterations in several specimens of postmortem WS visual
(Galaburda, et al., 2002) and parietal cortices (Holinger, et al., 2002) have been reported,
more work is required to better characterize the underlying cellular pathological correlates
of the generalized neuroanatomical abnormalities observed with in vivo structural imaging.
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Similar to research in VCFS outlined above, recent neuroimaging studies in WS have
increasingly focused on identifying neuroanatomical alterations associated with this
disorder’s unique cognitive and behavioral features. Recent findings have largely converged
on two key neural systems, parietal nodes along the dorsal stream and limbic regions, which
appear to be particularly affected by the WS deletion and closely related to distinct
behavioral phenotypes.

In light of the fact that the visual system is composed of dual processing streams emerging
from the primary visual cortex - a dorsal “where” processing stream projecting into the
parietal cortex and a ventral “what” processing stream projecting into the temporal lobe
(Ungerleider and Mishkin, 1982) - neuropsychological data demonstrating poor performance
in WS on tests such as block design and pattern construction, but relatively spared face
processing (Mervis, et al., 1999, Mervis, et al., 2000, Mervis and Morris, 2007) implicate
specific abnormalities of the dorsal stream. Because of the parietal lobes’ importance in
regulating visuospatial cognition and attention (Brody and Pribram, 1978, Posner, 1987,
Farah, 1989, Hubbard, et al., 2005, Cavanna and Trimble, 2006, Gottlieb, 2007, Burgess,
2008, Medendorp, et al., 2008, Bueti and Walsh, 2009, Sack, 2009), aberrant parietal
anatomy in WS is a promising candidate neurogenetic phenotype for the marked
visuospatial construction deficit in WS. Consistent with this notion, using a variety of
approaches, independent studies have repeatedly found parietal region structural
abnormalities, including reduced gray matter volume (Meyer-Lindenberg, et al., 2004,
Reiss, et al., 2004, Eckert, et al., 2005, Boddaert, et al., 2006), reduced sulcal depth
(intraparietal/occipitoparietal sulcus;) (Kippenhan, et al., 2005), and alterations of white
matter integrity and connectivity (Marenco, et al., 2007). Findings of parietal abnormalities
in WS have been remarkably consistent across different methodological approaches. For
example, a strong relationship exists between sulcal depth and adjacent gray matter volume
reductions in the intraparietal sulcal region (IPS) (Kippenhan, et al., 2005), where white
matter tract changes were subsequently identified (Marenco, et al., 2007). In particular,
using DTI, Hoeft et al demonstrated significant association between measures of higher
fractional anisotropy in the superior longitudinal fasciculus and deficits in visuospatial
construction in WS (Hoeft, et al., 2007).

Though not yet studied with longitudinal methods, parieto-occipital gray matter reductions
in WS have been observed both cross-sectionally in children (aged 5–15 years) (Boddaert, et
al., 2006) and in adults (Meyer-Lindenberg, et al., 2004, Reiss, et al., 2004, Eckert, et al.,
2005), further strengthening the reliability of this finding and suggesting a persistence of this
abnormality across development, in accord with the timecourse of the visuospatial
construction deficit itself. Future research examining the developmental trajectories of the
WS brain in concert with the developmental trajectories of WS behavioral and cognitive
features will help to establish gene-neurodevelopment interactions.

As discussed above, in studying neurodevelopmental disorders that are often accompanied
by intellectual disability, controlling for IQ confounds is an essential consideration. It is
therefore notable that reduced gray matter volume and abnormal sulcal morphology of the
IPS, along with co-localized altered white matter connectivity, have been observed in WS
individuals both with and without mental retardation (Meyer-Lindenberg, et al., 2004, Reiss,
et al., 2004, Eckert, et al., 2005, Kippenhan, et al., 2005, Van Essen, et al., 2006, Hoeft, et
al., 2007, Marenco, et al., 2007). However, to what degree and how these and other neural
abnormalities in WS may be related to general IQ effects remain important mechanistic and
methodological questions that must be addressed. These considerations notwithstanding,
together, the above findings suggest that manifold but linked abnormalities in the parietal
region are likely neural correlates of the visuospatial construction deficit in WS.
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It is well established that limbic pathways are important for the modulation of social and
emotional behavior (Cammer, 1971, Sperry, et al., 1979, Kyle, 1988, Murray, 1991, Singer,
2007, Adolphs, 2009, Behrens, et al., 2009). Because of the unique hypersociability and
social fearlessness, coupled with high prevalence of specific non-social phobia in WS
(Dykens, 2003, Leyfer, et al., 2006), anatomical alterations in limbic structures have been
hypothesized and subsequently demonstrated in a number of recent neuroimaging reports.
The orbitofrontal cortex (OFC), a component of fronto-amygdala circuitry important for
social inhibition (Rolls, et al., 1994) and for making social value judgments (Stone, et al.,
1998, Adolphs, 2003), is structurally anomalous in WS, both with regard to gray matter
volume reductions (Meyer-Lindenberg, et al., 2004, Eckert, et al., 2005, though, see Reiss,
et al., 2004) and altered cortical folding patterns (Van Essen, et al., 2006). While IQ
differences across study populations may play a role in some of these discrepant findings,
Eckert, et al (2006b) demonstrated that the type of image processing performed in these
normalized whole brain analyses affects the OFC differences. Unlike the majority of studies
showing reduced gray matter volume in the IPS and OFC of WS individuals, findings in the
amygdala (which is both functionally and structurally linked to the OFC) tend to point to
either no change (Meyer-Lindenberg, et al., 2004) or an increase in gray matter volume
(Reiss, et al., 2004, Chiang, et al., 2007). A recent study suggests that gray matter increases
in this region predict approachability ratings of faces (Martens, et al., 2009). Additionally,
reduced parahippocampal volume (Reiss, et al., 2004), as well as anterior to posterior
changes in hippocampal shape, coupled with reduced activation, blood flow, and metabolic
integrity of the hippocampus (Meyer-Lindenberg, et al., 2005b) have been reported.
Furthermore, reduced insular volumes coupled with reduced blood flow in the anterior
insula in WS have been recently described (Jabbi, et al., 2008).

In addition to parietal and limbic findings, abnormalities in other regions such as the dorsal
forebrain (Galaburda, et al., 2001), corpus callosum (Schmitt, et al., 2001a, Schmitt, et al.,
2001c, b, Tomaiuolo, et al., 2002, Luders, et al., 2007, Gothelf, et al., 2008), and cerebellum
(Schmitt, et al., 2001c, Chiang, et al., 2007) have also been reported and merit additional
study. In light of evidence showing abnormal gyrification (Larroche, et al., 1994) and other
neurodevelopmental alterations (Miller, et al., 2007) being linked to cardiovascular
abnormalities in VCFS, whether reported structural abnormalities in WS are to some extent
impacted by congenital cardiovascular conditions is a topic that also requires further
investigation. Taken together, however, accumulating evidence of gross morphological
alterations such as reduced brain size and overall curvature and increased gyral complexity,
in conjunction with reductions in parietal and limbic regional volumes, points to likely
structural foundations for functional alterations (outlined below) in the WS brain and
provides a particularly valuable bridge between the cognitive and behavioral phenotypes of
this disorder and the underlying neurogenetic etiology (see table 2 for a brief summary of
replicated findings).

Functional Studies
As in structural studies of WS, functional studies have focused on delineating neural
features associated with visuospatial construction deficits and social/emotional cognition.
Several functional neuroimaging studies of WS have identified abnormalities in the IPS as
well as in amygdala and orbitofrontal and prefrontal cortices, respectively associated with
these two behavioral signatures of WS (Meyer-Lindenberg, et al., 2004, Meyer-Lindenberg,
et al., 2005a, Hoeft, et al., 2007, Haas, et al., 2009).

In a series of fMRI studies designed to test the visual processing system in a hierarchical
“bottom-up” fashion in normal-IQ individuals with WS, retinotopic mapping revealed that
the functional extent and locale of primary visual cortex (V1), the first cortical node for
processing of visual information, is intact (Olsen, et al., 2009), as is the responsivity of the
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ventral visual processing stream (Meyer-Lindenberg, et al., 2004). However, during both
attention-to-location and visuospatial construction tasks, activation of the dorsal stream is
decreased in WS (Meyer-Lindenberg, et al., 2004). Moreover, with structural equation
modeling, information flow from an early dorsal stream IPS region (where gray matter
volume was reduced) to higher-level parietal visual processing regions was found to be
specifically disrupted (Meyer-Lindenberg, et al., 2004). In a related study (Sarpal, et al.,
2008), participants were shown pictures of houses and faces to identify the parahippocampal
place area (PPA) and the fusiform face area (FFA). While both ventral stream regions were
normally activated in WS, the functional connectivity of the PPA with dorsal stream parietal
cortex and of the FFA with amygdalofrontal regions was disrupted. Collectively, this body
of work, as well as a finding of reduced parietal response during global visual processing
(Mobbs, et al., 2007a), confirms that specific dorsal stream abnormalities are at least one
proximate cause of the visuospatial construction deficits in WS.

As with the WS visuospatial constructive impairment, the neurofunctional underpinnings of
the unique WS personality and attendant social and non-social affect processing have been
at least in part elucidated by functional neuroimaging, In a normal-IQ WS cohort, relative to
matched normal controls, Meyer-Lindenberg et al. (2005a) demonstrated reduced amygdala
reactivity to threatening and fearful socially-relevant stimuli (faces), but when the
threatening stimuli were non-social, the opposite finding emerged: amygdala response was
abnormally increased. These data are in good agreement, on the one hand, with the
diminished fear of strangers and consequent social disinhibition, and, on the other hand,
with the high prevalence of non-social phobias and anxiety in WS (Bellugi, et al., 1999,
Mervis and Klein-Tasman, 2000, Dykens, 2003, Klein-Tasman and Mervis, 2003, Leyfer, et
al., 2006). The former finding has been recently replicated (Paul, et al., 2009) and extended
in low IQ WS individuals studied with fMRI and ERP (Haas, et al., 2009). Furthermore, the
increased tendency to approach strangers was shown to predict abnormal left amygdala
response to social fear in WS (Haas, et al., In Press). Together, these findings support a
functional role for the amygdala in the WS behavioral phenotype.

Harboring strong anatomical links to the amygdala, the OFC has shown functional
abnormalities in WS as well, complementing morphological evidence reviewed above
(Meyer-Lindenberg et al. 2004). Using the described social/non-social affective fMRI
paradigm and structural equation modeling, Meyer-Lindenberg et al. (2005a) demonstrated
associated disruption of OFC-amygdala functional connectivity. Because the OFC-amygdala
pathway is particularly implicated in motivational valuation of social stimuli (Adolphs,
2003) and in regulating social inhibition (Rolls, et al., 1994), these data present a likely
neurogenetic correlate of hypersociability and disinhibited approach to strangers in WS.
Importantly, during a response inhibition task without a social or emotional component, WS
individuals show reduced activity in the striatum and dorsolateral prefrontal and dorsal
anterior cingulate, coupled with significantly reduced reaction time but not accuracy,
suggesting the potential contribution of regions beyond the amygdala-OFC circuit to
behavioral disinhibition in WS (Mobbs, et al., 2007b).

In sum, functional studies show convergent evidence of dorsal stream regional
abnormalities, especially the IPS, that likely underlie the visuospatial construction deficit in
WS. Limbic regions, particularly OFC-amygdala circuitry, known to be functionally
involved in socially relevant affective cognition, also demonstrate functional compromise in
WS. Together, these findings identify specific and dissociable neurophysiological
underpinnings of the characteristic behavioral phenotypes of WS and set the stage for
studying which genes within the WS locus might be responsible for these distinctive neural
abnormalities (Meyer-Lindenberg, et al., 2006).
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Specific Genes and Neural Phenotypes
As a result of hemizygosity, many of the ~28 genes in the WS deletion region show reduced
expression in lymphoblasts and/or fibroblasts (Merla et al., 2006); however, an
understanding of the specific cellular sequelae of these changes, which could explain the
alterations in neural systems described above, remains limited. This is in contrast to the
more straightforward characterization of WS-associated cardiovascular abnormalities
resulting from hemideletion of the elastin (ELN) gene (Fazio, et al., 1991, Curran, et al.,
1993, Morris, et al., 1993, Tassabehji, et al., 1997, Morris, 1998, Osborne and Mervis, 2007,
Schubert, 2009). Thus, identifying which of the genes in the WS deletion locus are
associated with which cognitive or behavioral abnormalities remains elusive and is
complicated by the possible involvement of multiple genetic factors in the modulation of
complex behavior such as social function and higher-order cognition. The study of
individuals with smaller deletions within the 7q11.23 region offers the promise of further
insights into which genes are important in the WS behavioral and neural phenotypes
(Meyer-Lindenberg, et al., 2006, Osborne and Mervis, 2007). While neuroimaging studies of
these rare individuals have been lacking, several behavioral studies have paved the way. For
instance, the fact that visuospatial construction difficulties occur in a kindred with a small
deletion affecting only ELN and the LIM domain kinase 1 gene (LIMK1) (Frangiskakis, et
al., 1996, Morris, et al., 2003) offers strong evidence that the latter gene is involved in this
aspect of the WS cognitive profile; however, findings from two partial LIMK1 deletion cases
showing spared memory and visuo-spatial functioning (but impaired handwriting) has raised
the possibility that LIMK1 hemizygosity alone may not always be sufficient to produce
pronounced visuo-spatial deficits in every individual (Tassabehji, et al., 1999, Gray, et al.,
2006, Smith, et al., 2009), in accord with hypotheses from Eckert and colleagues proposing
that combined haploinsufficiency of LIMK1 and TFII-I, implicated in posterior dorsal
stream structural maldevelopment, may lead to the emergence of visual-motor problems
found in WS (Eckert, et al., 2006b). Additionally, the partial deletion of two members of the
TFII-I transcription family of genes, GTF2IRD1 and GTF2I, was linked to craniofacial
abnormalities (Tassabehji, et al., 2005) and intellectual impairment and/or visuospatial
difficulties, respectively (Morris, et al., 2003, Osborne and Mervis, 2007).

Recent work in genetically modified mice has provided additional information that may
guide neuroimaging studies aimed at linking individual genes in the WS locus with specific
neural and behavioral abnormalities. Emerging evidence from such murine studies has
suggested distinct roles for LIMK1, CLIP2, and GTF2IRD1. Interestingly, both LIMK1,
important for cofilin phosphorylation, actin dynamics, and regulation of the cytoskeleton
(Meng, et al., 2002), and CLIP2, which codes for a microtubule-binding protein
(Hoogenraad, et al., 2000, Hoogenraad, et al., 2002), are important for neuronal maturation
and migration during development, and knockout mouse models of both genes show
hippocampal abnormalities. Specifically, LIMK1 knockout affects hippocampal spine
morphology and long-term potentiation as well as fear responses and spatial learning (Meng,
et al., 2002). Similar to LIMK1’s influence on hippocampal integrity, CLIP2 knockout
results in changes in hippocampus-related behaviors and electrophysiology (Hoogenraad, et
al., 2002). Thus, the observed neural consequences of both murine models are consistent
with observations of structural and functional changes in the hippocampi of individuals with
WS (Meyer-Lindenberg, et al., 2005b). Finally, mice with heterozygous or homozygous
disruption of GTF2IRD1 exhibit decreased fear and aggression and increased social
behaviors as well as significantly increased levels of serotonin metabolites in several brain
regions implicated in WS, including the amygdala, frontal cortex and parietal cortex
(Young, et al., 2008). Thus, these results more firmly link LIMK1, CLIP2, and GTF2IRD1 to
the genesis of the distinctive neuronal and behavioral features of WS, though corroborative
in vivo human data is needed.
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While such single-gene manipulations in mouse models have offered insights about gene-
brain mechanisms, an understanding of the complex interplay among multiple genes in the
WS critical region is needed. Li et al. (2009) took advantage of the fact that this region on
human chromosome 7 is largely syntenic with a segment of genes on mouse chromosome
5G2 (albeit inverted), to functionally dissect the deletion as a whole (Li, et al., 2009). They
created two half-deletions of the conserved syntenic region, with the proximal deletion mice
lacking GTF2I to LIMK1, distal deletion mice lacking LIMK1 to FKBP6, and the double
heterozygotes carrying the complete human deletion. Mice with the proximal deletion
showed increased sociability and acoustic startle response, whereas mice with the distal
deletion showed cognitive defects. Approaches such as this may serve to identify gene
interactions and neurogenetic mechanisms that contribute crucial aspects of the human
disorder (Li, et al., 2009).

In sum, the specific role of individual genes in the critical WS deletion region remains to be
fully understood. Although not without challenges, linking the genetic, neuronal, and
behavioral features of WS through neuroimaging offers a unique opportunity to uncover
how genes are translated in the brain to produce complex human behaviors and contribute to
related neuropsychiatric disorders. Similarly to the insights achieved from studying effects
of COMT allelic variation on brain and behavior in healthy individuals as well as in the
remaining allele in VCFS individuals (as discussed above) research into the neurogenetics of
WS behavioral phenotypes such as anxiety and abnormal social approach would likely
benefit from examining the neurofunctional and structural implications of allelic variation in
WS locus genes, such as LIMK1, CLIP2 and GTFTird2, in healthy and WS individuals. As
efforts to better characterize these molecular mechanisms progress, dedicated study of how
variation in relevant genes regulate neuronal and behavioral phenotypes in WS throughout
development will also be invaluable.

Summary of WS Neuroimaging
Targeted neuroimaging of WS has begun to yield progress in elucidating the biological
underpinnings of this disorder’s characteristic neuropsychological, social cognitive, and
anxiety phenotypes. A parieto-occipital abnormality evident by both structural and
functional measures has been found to underlie visuospatial construction deficits in WS.
Emerging evidence implicates the amygdala, OFC and related limbic pathways in the
atypical social and emotional behavioral profiles in this disorder. In addition, animal models
targeting specific subsets of genes in the WS deleted region are emerging as vital research
tools in understanding the genotype-phenotype relationship in this syndrome. Further
research is needed to examine the role of specific genes deleted in WS and catalog
developmental influences of complex genotype-phenotype relationships in the emergence of
syndrome-associated behavioral abnormalities.

Discussion
Both VCFS and WS, as neurodevelopmental genetic disorders arising from well-delineated
hemideletions and resulting in distinctive behavioral sequelae, pose unique opportunities to
use neuroimaging to study the neural mechanisms by which genes contribute to complex
cognitive and behavioral phenotypes in a bottom-up fashion. This approach, in taking
advantage of an intermediate brain phenotypes tactic (Gottesman and Sheilds, 1972) and
capitalizing on restricted genetic anomalies with large effects, promises to help bridge the
still vast knowledge gap between genes and psychiatric illness in a way that complements
genome-wide as well as more specifically-targeted top-down research efforts studying
common variants of small effects (Risch and Merikangas, 1996, Iles, 2008). In particular,
neuroimaging of these two syndromes has been successful in identifying their structural
sequelae – such as volumetric reductions in the temporal and parietal cortices and posterior
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fossa in VCFS and in parieto-occipital and orbitofrontal regions in WS – as well as
functional correlates – such as activation abnormalities in the inferior parietal lobule during
arithmetic and working memory tasks in VCFS and in the intraparietal sulcus and
orbitofrontal cortex during visuospatial and social cognition respectively, in WS.
Importantly, many of these findings relate to relevant behavioral measures in VCFS and WS
patients and fit well with current conceptions of the neural systems underlying these
behavioral functions in health.

However, common methodological barriers to fully understanding these and other findings
must continue to be a focus of future study; both VCFS and WS patients are difficult to
recruit in large numbers and are prone to cardiovascular anomalies, morphological
abnormalities, comorbid psychiatric conditions, and mental retardation, among other
complications, which may bias neuroimaging measurements if not systematically accounted
for. Nonetheless, in considering the literatures of VCFS and WS together, it is notable that
shared confounds with general mechanisms of action in the central nervous system, such as
general intelligence deficits or possible general ischemic conditions during
neurodevelopment from significant cardiovascular abnormalities, are unlikely to entirely
explain the distinct neuroimaging profiles described above for each disorder. However, by
the same token, shared phenotypes, such as total cerebral volume reductions, may be more
likely confounded by these variables, though direct testing of these hypotheses is needed.

Future advances in delineating single-gene effects within the critical chromosomal regions
of these syndromes will undoubtedly provide enormous steps forward, as presaged by initial
work reviewed above examining hemizygous COMT polymorphisms in VCFS.
Additionally, given the clinical heterogeneity in these syndromes, it is likely that there is a
complex interaction between genes in the deleted regions of both VCFS and WS as well as
interaction elsewhere in the genome, in where individual variation could play an influential
role in the emergence of abnormal mental functioning (Meechan, et al., 2009). Indeed, a
broader set of genes may be needed to produce the complex neuropsychiatric abnormalities
in VCFS and WS, which likely result from highly integrative neuropsychological,
neurophysiological and neurochemical mechanisms.

Critically, because in both disorders it is still poorly understood at what stage or stages of
development such single- or multiple-gene effects occur, initial inroads toward
understanding the longitudinal aspects of the observed neural abnormalities in VCFS must
be buttressed by additional study, and it is imperative to develop similar longitudinal
investigations in WS. A particular challenge to researchers studying these syndromes is
investigating possible genetic interactions occurring either very early in development or at
specific epochs over the lifespan that might underlie the emergence of pathological behavior
in both VCFS and WS. Moreover, developmentally-dependent pleiotropy in certain genes
within the deleted regions of both disorders could give rise to both somatic and neuronal
syndromal phenotypes.

In conclusion, neuroimaging work aimed both at overcoming methodological barriers and
better describing potential contributions of genetic effects – ranging from single-gene
influences to developmentally-dependent epistasis – remains an important province of future
microdeletion investigations. With these possibilities in mind, neuroimaging studies of
VCFS and WS to date exemplify a powerful bottom-up approach to the inherent difficulties
in, and the extraordinary promise of, elucidating specific genetic influences on normal and
abnormal behavior.
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Table 1

Replicated Structural Neuroimaging Findings in Velocardiofacial Syndrome

Region Structure Neuroimaging Findings Supporting References

Midline - Supratentorial Septum Pellucidum Cavum Septum Pellucidum Cavum Vergae Vataja and Elomaa, 1998
Chow, et al., 1999
van Amelsvoort, et al., 2001
Shashi, et al., 2004
van Amelsvoort, et al., 2004

Corpus Callosum Increased Corpus Callosal Volumes (Substructure
localization is mixed across studies - see text)

Shashi, et al., 2004
Machado, et al., 2007
Antshel, et al., 2005

Corpus Callosal Agenesis Ryan, et al., 1997

Corpus Callosal Hypoplasia Kraynack, et al., 1999

Midline - Subtentorial Cerebellar Vermis Reduced Cerebellar Vermis Volume Eliez, et al., 2001d
Mitnick, et al., 1994
Lynch, et al., 1995
Vataja and Elomaa, 1998
Chow, et al., 1999

Nonmidline - Supratentorial Total Cerebrum/Ventricles Reduced Total Cerebral Volume Eliez, et al., 2000
Eliez, et al., 2001c
Simon, et al., 2005c
Ryan et al., 1997

Increased Ventricular Volumes Eliez, et al., 2000
Chow, et al., 2002
Simon, et al., 2005c
Campbell, et al., 2006
Chow, et al., 1999

Parietal Lobe Reduced Left Parietal Gray Matter Volumes,
Thickness

Eliez, et al., 2000
Bearden, et al., 2007
Bearden, et al., 2009

Reduced Left Parietal White Matter Volumes, FA Kates, et al., 2001
Barnea-Goraly, et al., 2003

Temporal Lobe Reduced Temporal Gray Matter Volume,
Thickness

Chow, et al., 2002
Bearden, et al., 2007
Bearden, et al., 2009

Reduced Hippocampal Volumes Debbane, et al., 2006
Deboer, et al., 2007
Eliez, et al., 2001c
Kates, et al., 2006

Frontal Lobe Mixed Findings (see text) Many (see text)

Gyral Morphology Reduced Gyral Complexity Schaer, et al., 2006

Pachygyria Bingham, et al., 1998

Polymicrogyria Bird and Scambler, 2000
Kawame, et al., 2000
Ghariani, et al., 2002
Ehara, et al., 2003
Koolen, et al., 2004
Sztriha, et al., 2004
Robin, et al., 2006

Increased Caudate Volumes Sugama, 2000
Eliez, et al., 2002
Kates, et al., 2004
Campbell, et al., 2006

Nonmidline - Subtentorial Cerebellum Reduced Total Cerebellar Volume van Amelsvoort, et al., 2001
van Amelsvoort, et al., 2004
Lynch, et al., 1995
Chow, et al., 1999
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Italics indicate qualitative findings. FA indicates fractional anisotropy.
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Table 2

Replicated Structural Neuroimaging Findings in Williams Syndrome

Region Structure Neuroimaging Findings Supporting References

Midline - Supratentorial Corpus Callosum Reduced Corpus Callosal Volume, Length Schmitt et al., 2001c
Tomaiuolo et al., 2002

Abnormal Corpus Callosal Shape Luders et al., 2007
Gothelf et al., 2008

Nonmidline - Supratentorial Total Cerebrum/Ventricles Reduced Total Cerebral Volume Jernigan & Bellugi 1990
Galaburda et al., 2001
Schmitt et al., 2001a

Gyral Morphology Increased Gyral Complexity Schmitt et al., 2002
Thompson et al., 2005
Gaser et al., 2006
van Essen et al., 2006

Abnormal Cortical Thickness Cortical Folding Thompson et al., 2005
Van Essen et al., 2006

Changes in Cerebral Shape Schmitt et al., 2001c
Schmitt et al., 2002
Jackowski & Schultz 2005

Parietal/Occipital Lobes Reduced Parieto-occipital Gray Matter Volumes Meyer-Lindenberg et al., 2004
Reiss et al., 2004
Eckert et al., 2005
Boddaert et al., 2006

Reduced Parietal Sulcal Depth Kippenhan et al., 2005

Increased Parietal FA Marenco et al., 2007
Hoeft et al., 2007

Nonmidline - Subtentorial Cerebellum Increased/Preserved Cerebellar Volume Schmitt et al., 2001b
Chiang et al., 2007
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