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Abstract
Neuroimaging studies are facilitated significantly when it is possible to recruit subjects and
acquire data at multiple sites. However, the use of different scanners and acquisition protocols is a
potential source of variability in multi-site data. In this work we present a multi-site study of the
reliability of fMRI activation indices, where 10 healthy volunteers were scanned at 4 different
sites while performing a working memory paradigm. Our results indicate that, even with different
scanner manufacturers and field strengths, activation variability due to site differences is small
compared to variability due to subject differences in this cognitive task, provided we choose an
appropriate activation measure.
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1. Introduction
Multi-site studies provide an efficient means for collecting neuroimaging data from a large
number of subjects. Thus they augment our ability to study conditions that are relatively rare
in the general population, allow larger samples for studies of genetic polymorphisms, and
increase the generalizability of the findings. However, differences in scanner hardware and
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acquisition protocols may be a source of variability in the data. It is important to quantify
this effect and compare it to the variability introduced by other factors, such as individual
subject differences and imaging noise, before embarking on studies where data are pooled
across multiple sites.

Several recent studies have shown fMRI activation measures to be highly reproducible
across sites with identical scanners in tasks ranging from facial affect processing [Suckling
2008] to motor [Costafreda 2007, Sutton 2008] and visual [Sutton 2008. In particular, these
studies have found the proportion of the variance in activation measures that can be
attributed to across-site variability to be an order of magnitude smaller than the proportion
that can be attributed to across-subject variability.

Pooling data acquired at sites with different scanners poses additional challenges. Initial
results from a multi-site study performed by the Biomedical Informatics Research Network
(BIRN, http://www.nbirn.net) indicated that scanner differences could result in significant
variability in fMRI-derived measures of brain activation [Zou 2005]. These results were
obtained for a sensorimotor paradigm, performed by 5 subjects at 10 different scanners. The
experience from this study led to a series of recommendations on how to mitigate across-site
variability. These include a quality assurance protocol to ensure stable scanner performance
[Friedman 2006a] and guidelines for data analysis methods that lead to improved reliability
of activation measures [Friedman 2008].

In this work we present results from a study of neuroimaging data reliability conducted by
the Mind Research Network (MRN) sponsored Mind Clinical Imaging Consortium (MCIC).
For this study 10 healthy volunteers traveled to 4 sites and were scanned twice. Structural,
functional, and diffusion-weighted MRI data were acquired at each site. Here we focus on
the reliability of the functional data.

At the time of the study the sites had scanners from different manufacturers (GE, Waukesha,
WI, USA or Siemens, Erlangen, Germany) and with different field strengths (1.5T or 3T).
However, all of the sites are also members of BIRN and thus the present study benefited
from the lessons learned by phase I of the BIRN study in addressing some of the factors that
may result in site differences. This effort included following the specifications of the quality
assurance protocol proposed by the BIRN [Friedman 2006a], as well as standardizing certain
acquisition parameters across sites, as described in more detail later.

Although the study presented here involved healthy subjects, it was performed with the
ultimate goal of informing a large-scale, multi-site fMRI study of schizophrenia conducted
at the same four sites by the MCIC. To this end, the paradigm studied here is one of
particular interest to schizophrenia research. It consisted of a variation of the Sternberg item
recognition paradigm (SIRP) [Sternberg 1966], tailored for use in neuroimaging experiments
[Manoach 1997]. Performance of the SIRP is relatively stable in healthy participants, even
after extensive daily practice [Kristofferson 1972]. In fMRI studies, the SIRP gives rise to
activation in a network of brain areas associated with working memory and has been used to
characterize working memory deficits in schizophrenia patients [Manoach 1999, Manoach
2000, Ragland 2007]. The within-subject reliability of SIRP activations has been found to be
high for healthy subjects but low for schizophrenia patients [Manoach 2001]. Here we study
the across-site reliability of these activations in healthy individuals.
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2. Materials and methods
I. Experimental design and data acquisition

Ten healthy subjects (ages 30-63, 5 male) traveled to four sites and were scanned while
performing the SIRP on each of two visits (test-retest). The four sites were: Massachusetts
General Hospital (MGH), University of New Mexico (UNM), University of Iowa, and
University of Minnesota. Two of the sites used 3T scanners (Siemens at MGH and
Minnesota), while the other two used 1.5T scanners (Siemens at UNM and GE at Iowa).

The participating sites are also members of the BIRN and in that capacity they had been part
of multi-site MRI calibration studies by the Morphometry BIRN [Han 2006, Jovicich 2009]
and Function BIRN [Freidman 2006, Freidman 2008]. The lessons learned from those
studies were then applied to reduce disparities in the experimental set-up, data acquisition
methods and sequences used for the study presented here. In particular, all sites had matched
button press devices, followed common audiovisual set-up calibration methods and paid
particular attention to centering each subject's head in the center of the scanner bore to
minimize gradient distortion effects. Sequences parameters such at bandwidth and echo
spacing were optimized at each site for the best quality images and synchronization of the
stimulus onset with the scan start was improved. In addition, the four sites followed the
quality assurance procedures recommended by the BIRN to ensure scanner stability
[Friedman 2006a]. However, each site followed its own choice of head immobilization
strategy (foam packing, soft-strap restraints, or none). The subjects wore Avotec headphones
with active noise cancellation (Avotec, Inc., Stuart, FL) during all scans at all sites.

During each visit, a subject performed the SIRP task (EPrime v1.1, Psychology Software
Tools, Inc., Pittsburg, PA) during four separate scans. Thus each subject performed the task
paradigm a total of 32 times (4 scans × 2 visits × 4 sites). A total of 316 scans were analyzed
because data was not available for one of the visits of one of the subjects. Most of the test-
retest visits took place on subsequent days. The only exceptions were two cases with 2 days
between test and retest and one case each with 6, 7, and 32 days between test and retest.

For each scan we acquired whole-brain, gradient-echo, EPI data along 27 contiguous
oblique axial slices, parallel to the AC-PC line (in-plane resolution 3.44mm, slice thickness
4mm skip 1mm, slice order interleaved, TE=30msec for 3T, TE=40msec for 1.5T, TR=2sec,
FA=90°, FOV=22cm). A total of 177 time frames were collected for a total scan time of
5min 54sec.

During each scan the subject had to retain in memory a set of 1, 3 or 5 digits during blocks
of 46sec, providing a range of task difficulty. First the subject was prompted by the word
“Learn” for a time of 1.5sec (prompt condition), followed by a blank screen for 0.5sec. Then
the targets (digits to be retained in working memory) were presented in red font for a time of
6sec (encode condition). The subject was then shown a sequence of probe digits in green
font and had to indicate whether each probe digit was a target or a foil, i.e., whether it was a
member of the memorized set or not (probe condition). The probe condition lasted a total
time of 38sec. Each probe digit was presented for up to 1.1sec in a pseudo-randomly jittered
fashion within a 2.7s interval. We presented 14 probe digits in each block, of which 7 were
targets and 7 were foils, for a total of 84 probes per scan. Subjects were instructed to
respond with a right-thumb button press if the probe digit was a target and a left-thumb
button press if it was a foil.

Subjects were instructed to respond as quickly and as accurately as they could. They were
told that they would receive a bonus of $0.05 for every correct response. Subjects were
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trained to perform the task on a computer prior to the first scan session to verify that they
achieved a greater than chance performance.

A working-memory (WM) block consisting of a single repetition of the prompt-encode-
probe conditions was then repeated six times per scan. We alternated WM blocks with
blocks of fixation. The durations of the fixation blocks were random integer multiples of
2sec, chosen so that the total duration of all fixation blocks within a scan was 78sec. Among
the six WM blocks in a scan, there were two blocks of each of the three set sizes (1, 3, 5) in
a pseudorandom order.

We varied the digits that comprised the memory sets for each of the 32 scans to eliminate
learning effects. The target digits presented in each block were randomly chosen integers
between 0 and 9, with no digit repeated within a single set. To avoid response biases, no
digit was used more than 60% of the time as a target digit across the 6 scans in a visit (2
practice scans and 4 experimental scans). Also, in the two sets within a scan that consisted
of a single digit, that digit was not the same. The order of targets and foils within a probe
epoch was random, but no more than 3 consecutive digits could be targets. Each of the target
digits presented during the encode epoch had to be presented at least once during the probe
epoch. When the set presented during the encode epoch consisted of 3 target digits, each
target digit had to be presented at least twice during the probe epoch.

In addition to the functional data, T1-weighted high-resolution structural scans were
collected and we use them here for anatomical localization. Although T1-weighted scans
were acquired at all four sites, we used the ones collected at a single site throughout the
analyses presented here, as our focus in this work was the variability of the functional data.
Specifically, the T1-weighted scans that we used in the present study were acquired at the
MGH site on a Siemens 1.5T scanner with an axial GRE sequence (in-plane resolution 0.625
mm, slice thickness 1.5 mm, FOV=16 cm, 256×256×144 matrix, TR=12ms, TE=4.76ms,
FA=20°, NEX=3).

II. Analysis of behavioral data
We recorded the accuracy and latency of the subjects' responses to the probe digits using the
same equipment at all sites (EPrime and a NeuroScan response pad, NeuroScan, Charlotte,
NC). We performed analysis of variance (ANOVA) on the reaction time (RT) data,
modeling subject, site, and run as random effects, and visit, memory load (1, 3, 5), probe
type (target or foil), and site order as fixed effects.

III. Analysis of fMRI data
(i) Quality assurance—We evaluated the quality of the fMRI data using the artifact
detection tools (ART) [Whitfield-Gabrieli 2009]. The purpose of this evaluation was to
ensure that no scans with gross motion or spiking artifacts were included in our data set, as
this could have confounded our measures of across-site reliability. We checked for outlier
time frames in each time series in our data set that satisfied any of the following criteria for
exclusion: (i) Global mean image intensity that differed by more than 3 standard deviations
from the mean of the entire series of time frames in a scan, (ii) Displacement due to motion
by more than 1mm in the x, y or z direction relative to the previous time frame or (iii)
Rotation due to motion by more than 0.1rad around any of the three axes relative to the
previous time frame.

Out of the 316 total scans in the data set, 85 scans had no time frames flagged as outliers and
only 10 scans had more than 10% of their time frames flagged as outliers. The average
number of outliers per run was 1.6 ± 2.1 (UNM), 6.4 ± 11.4 (Iowa), 1.8 ± 2.6 (MGH), 1.9 ±
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2.2 (Minn). Specifically, four of the ten subjects exhibited significantly more motion-related
outlier time points at Iowa than at any of the other sites. This sort of variation between sites
could be due to the differences in head immobilization strategies that may have led to
different levels of subject comfort. In addition, subjects reported that late-night scans at
Iowa were the hardest for concentration and comfort.

We repeated all analyses of variance discussed below after removing the outlier time frames
through the use of nuisance regressors in the linear model and, in the case of scans where
more than 10% of the time frames were flagged as outliers, removing the entire scan from
the analysis. This had negligible impact on the outcome of our analyses, so we chose to
include all time frames from all scans for the results reported in the following.

(ii) Statistical analysis—We used FEAT (FMRI Expert Analysis Tool), part of FSL
(FMRIB's Software Library, http://www.fmrib.ox.ac.uk/fsl), to perform statistical analysis.
We performed the following pre-processing steps on the acquired images: (i) Motion
correction using MCFLIRT [Jenkinson 2002], (ii) Removal of non-brain voxels using BET
[Smith 2002], (iii) Spatial smoothing using a 3-D Gaussian kernel with a FWHM of 5mm,
(iv) Normalization of all volumes to a common average scan intensity, and (v) High-pass
temporal filtering (Gaussian-weighted LSF straight-line fitting, with sigma=50.0s).

We analyzed each pre-processed time series using the Functional Imaging Linear Model
(FILM) with local autocorrelation correction [Woolrich 2001]. We fit a general linear model
to the series, including each of the prompt, encode, and probe conditions at each of the 3
memory loads as a separate explanatory variable. For all conditions, the haemodynamic
response function was modeled as a single gamma function with initial delay 0sec, time-to-
peak 6sec, and dispersion 3sec. Although motion parameter estimates could be included in
the GLM as nuisance regressors [Friston 1996], we did not include them in our model. For
the results shown here we used the following linear Contrasts Of Parameter Estimates
(COPEs), where 1t, 3t and 5t signify blocks with memory sets of 1, 3, and 5 target digits
respectively: (i) Probe-1t versus fixation, (ii) Probe-3t versus fixation, (iii) Probe-5t versus
fixation, (iv) Probe-5t versus Probe-1t, and (v) Any load (Probe-1t or Probe-3t or Probe-5t)
versus fixation. Each of the estimated COPEs and its estimated variance for each scan were
used to obtain a T-statistic map.

To enable the use of ROIs defined anatomically on a subject-by-subject basis, we registered
each subject's functional images to a high-resolution T1 image of the same subject collected
at MGH. This was done by an intra-subject registration method that maximizes the intensity
contrast gradient of the image across the cortical gray/white boundary, which is obtained
from the T1 scan [Greve 2009]. To perform multi-subject analyses, we also registered the
functional images to the standard space defined by the MNI-152 atlas [Talairach 1988]. We
did this by first registering the T1 images to the standard brain using FLIRT [Jenkinson
2001, 2002] and then composing the functional-to-T1 and T1-to-standard registrations.

We included the co-registered COPEs corresponding to all 4 SIRP scans from each visit in a
fixed-effects analysis. Finally, we performed higher-level, random-effects analyses to
combine the visit-level COPEs of individual subjects.

To obtain Z-statistic maps for the activation indices described in the following, we
thresholded the visit-level statistical maps using cluster-based correction for multiple
comparisons [Worsley 1992]. Specifically we used a significance threshold of Z=2.3 on the
cluster magnitude and P=0.05 on the cluster size.
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(iii) Anatomical ROIs—We produced several anatomically defined ROIs on the left and
right hemisphere for each subject. We present results here from the following ROIs:

0) Mid-temporal gyrus (MT)

1) Dorsolateral prefrontal cortex (DLPFC)

2) Dorsolateral premotor cortex (DLPMC)

3) Pre-supplementary motor cortex (PSM)

4) Supplementary motor cortex (SM)

5) Primary motor cortex in the hand region (PM)

6) Primary sensory cortex in the hand region (PS)

7) Intraparietal sulcus (IPS)

8) Insula (INS)

We included ROIs 1-8 to investigate the dependence of their activation on the memory load
of the SIRP across different sites. We included ROI 0 as a control, since it is not part of the
working-memory network and we did not expect its activation to be load-dependent.

To define the ROIs, we applied the FreeSurfer surface reconstruction software [Fischl 2002]
on each subject's high-resolution T1 image. Conservative Talairach criteria from
[Rajkowska 1995] were used to define the DLPFC. For more details on how we used the
FreeSurfer subcortical segmentation and cortical parcellation to construct the ROIs for this
study, we refer the reader to the supplemental material. The nine ROIs for one individual are
shown in Figure 1, painted on the individual's inflated cortical surface, as obtained from
FreeSurfer.

(iv) Activation indices—We obtained indices of activation for each anatomical ROI
using the COPEs obtained from all four scans in a single visit (second-level fixed-effects
analysis). We applied a functional mask, based on a thresholded Z-statistic, to each of the
anatomical ROIs listed in the previous section. For each of these functionally masked
anatomical ROIs and each of the COPEs (i) – (iv) listed above we extracted the following
measures:

▪ The average percent signal change (Avg%Δ) and maximum percent signal
change (Max%Δ), defined respectively as the average and maximum of each
COPE normalized by the mean image intensity within each of the functionally
masked ROIs. The functional mask used in this case consisted of voxels where
the corrected Z-statistic for the COPE (v), i.e., the union of all three loads versus
fixation, exceeded a threshold of Z=2.3 (cluster-corrected). Thus the exact same
voxels were used to mask all other COPEs for the calculations of Avg%Δ and
Max%Δ.

▪ The number of activated voxels (NVox), defined as the number of voxels where
the corrected Z-statistic for each COPE exceeded a threshold of Z=2.3 (cluster-
corrected). Thus, unlike the calculations of Avg%Δ and Max%Δ, each COPE
had its own functional mask for the NVox calculations. (Using the same mask
for all COPEs would have yielded the same NVox value.)

(v) Analysis of variance—The Avg%Δ, Max%Δ, and NVox measures were analyzed by
mixed-model ANOVA using restricted maximum likelihood (REML), as implemented in the
“lme4” package of the R statistical analysis software (http://www.r-project.org). We
modeled visit (2 levels) as a fixed effect and subject (10 levels), site (4 levels), and their
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interaction as random effects. We also modeled the slope of each activation measure versus
memory load as a random effect, nested within subject. Formally, the activation measure
ȃijk(l) obtained for subject i = 1,…,10, site j = 1,…,4, visit k = 1,2, and memory load l =
1,3,5 was modeled as

(1)

where a0 the fixed intercept, si the random subject effect, λi the random subject-dependent
slope versus memory load, tj the random site effect, uij the random subject-by-site
interaction, vk the fixed visit effect, and εijkl the random residual. The effects were assumed
independent, except for the subject-dependent terms si and λi, which were assumed to have
covariance σs,λ. Thus the parameters estimated by the ANOVA were

. The total variance of the activation measure at memory
load l is equal to

(2)

The sum  can be seen as the overall variance due to subject variability,
including variability in the magnitude and slope of the subjects' response.

(vi) Power analysis—The differences in how activation measures vary as a function of
memory load in patients versus controls are used in schizophrenia research to characterize
working memory deficits in patients [Manoach 1999, Manoach 2000, Ragland 2007]. Here
we calculate the power for a test on the difference of the mean activation-versus-load slopes
of two populations.

Specifically, we calculate the power for a hypothetical multi-site study, where each subject
is scanned once at a single site. We then use the variance estimates derived from the present
study to establish how power is affected when we pool subjects from different sites. This
allows us to determine if pooling data from several sites leads to greater power because of a
greater total number of subjects or if pooling data from sites with different levels of noise
negates the benefit of increasing the number of subjects. This analysis mirrors the one from
[Suckling 2008], except that the effect of interest and the model of variance components
differ in our case.

Let a(l), a′(l) be the true activation measure for the two populations of interest as a function
of memory load and λ, λ′ the respective slopes. The effect that we want to test is the
difference of slopes, given by

(3)

for any two memory loads l1, l2. We estimate the effect from noisy observations of the

activation measure,  where N, N′ the numbers of
subjects drawn from the two populations. We assume that each of the subjects in the study is
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scanned at one site only and for one visit only, thus we drop the dependence of the
activation on the site and visit here. Different subjects, however, may be scanned at different
sites. Then the estimated effect is

(4)

Substituting from (1) yields

(5)

where  the slopes for the i-th subject in each of the two populations and  the
noise for the i -th subject at memory load l.

Let  be the variance of the random slope in the two populations and  the variance of
the random noise in the activation measurements. Then, assuming independence, the
variance of the estimated effect from (5) is

(6)

The power of the two-sided test between hypotheses H1 :|Δλ| > 0 and H0:|Δλ| = 0 is

(7)

where erfc(·) is the complimentary error function and T the detection threshold.

For the power analysis presented in the following we used expected effect sizes  for
the left and right DLPFC from a previous study involving 9 schizophrenia patients and 9
healthy controls [Manoach 2000]. That study used the same WM paradigm but somewhat
different fMRI data acquisition parameters (1.5T field strength, in-plane resolution 3.13mm,
slice thickness 8 mm, TE=50msec, TR=2sec, FA=70°) than the present study. Thus the
validity of our results depends on the generalizability of the findings of [Manoach 2000].

We calculated the effect variance  from (6), using estimates of the slope and
noise variances from the variance components analysis of our reliability data set. This
allowed us to calculate power for a scenario similar to the clinical schizophrenia study of the
MCIC, which involved the same sites as the present study but large numbers of patients and
healthy controls (N ≈ N′ ≈150), each scanned at one of the four sites. For simplicity and to
sum up to a total number of patients and controls similar to that study, we assumed in our
calculations that each site contributed equally, with 38 patients and 38 controls. We set the
detection threshold T to achieve type-I error probability equal to 0.05.
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3. Results
I. Behavioral data

All subjects performed at or near ceiling levels of overall accuracy (range: 86-99% correct,
mean: 95%±4% correct). There was little decrease in average accuracy as the memory load
increased: 96%±3% (load 1), 95%±3% (load 3), 92%±5% (load 5). Each subject visited the
four sites in a different order. Figure 2 shows a plot of each subject's accuracy at the four
sites in the order they were visited. Accuracy was stable over time for most subjects, except
for two that exhibited a decrease in accuracy with time. Thus there was no evidence of
learning effects.

Figure 3 shows plots of the average RT versus memory load for each of the four sites with
standard error bars, illustrating that RT and its slope as a function of memory load was
reliable across sites. Although the RTs recorded at Iowa appear to be somewhat longer than
those recorded at other sites, the differences between the slope and intercept of the RT vs.
memory load as estimated at different sites were not statistically significant. Specifically,
two-sided unpaired T-tests between sites yielded p-values of 0.37 or higher for the slope
differences and 0.27 or higher for the intercept differences.

The analysis of variance that we performed on the RT data indicated that the variability
between subjects was much higher than the variability between sites. Specifically, the
variances attributed by the ANOVA to each of the random effects, expressed as percentages
of the overall RT variance, were as follows: subject 15.8%, site 1%, site-by-subject
interaction 2.9%, run 1.5%, and residual 78.9%. The fixed effects were estimated as follows:
intercept 515.9ms, memory load 32.8ms, probe type (foil–target) 38.6ms, visit (2nd–1st)
-9.8ms, and site order (2nd–1st/3rd–1st/4th– 1st) 2.7/-2.2/-8.6ms. These results demonstrate
reasonable stability of performance over time and across sites. Consequently, we do not
expect learning effects or other behavioral variability to confound our fMRI data analysis.

II. fMRI data
As an example of how fMRI activation varied across subjects and sites, Figure 4 shows plots
of Avg%Δ for three ROIs in the left hemisphere. Two of the ROIs displayed here (DLPFC,
IPS) are typically hypothesized to be part of the working-memory network, while the third
ROI (MT) is not. Thus the first two ROIs are expected to exhibit activation dependent on the
memory load but the third is not. The bars in Figure 4 represent Avg%Δ for each of the three
memory loads, shown with standard error bars. We show averages of Avg%Δ over all data,
over each site, and over each subject. We also mark the cases that exhibit significance or
trend towards significance on the difference between Avg%Δ for load 5 and load 1 based on
a two-sided T-test.

These plots illustrate the general trends in the data. Specifically, subjects were found to
differ both in their magnitude of activation indices, and in the dependence of activation
indices on memory load. Although there was across-site variability of the indices, it was
smaller than the across-subject variability. General trends were captured in the results of all
four sites. For example, dependence on memory load was more significant in the left IPS
than the left DLPFC at all sites. Although a small increase in activation occurred at the
highest load compared to the lowest load in the control region of MT, the load dependence
in that area was not significant in any of the sites.

Figure 5 shows plots of Max%Δ by memory load for the same three ROIs as above,
averaged over all data sets acquired at each field strength. The plots show a modest increase
in activation at 3T in the ROIs that are hypothesized to be part of the working-memory
network (DLPFC, IPS) and a modest decrease in activation at 3T in the control ROI (MT).
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The contribution of site and subject to the variability in the data is further quantified in
Figure 6 for all 9 ROIs and all 3 activation measures studied here. The plots show the
variance attributed by the mixed-model ANOVA to the factors of subject

, site  and subject-by-site interaction , as well as the residual

variance , as percentages of the total variance, for Avg%Δ, Max%Δ, and NVox. Note
that, because the subject variance is a function of the memory load l, its contribution to the
overall variance differs at each load. The plots in Figure 6 were generated for l = 3. The
variance components for the COPEs of each of the 3 memory loads versus fixation are
summarized in Table 1, which shows median percentages of variance over all 18 ROIs (9 in
each hemisphere).

At the end of Table 1 we also show results from a separate mixed-model ANOVA that we
applied to the COPE of load 5 versus load 1. The model for this particular ANOVA was
similar to the one used for the COPEs of individual loads vs. fixation from equation (1),
except without the load dependent term λi · l. Other than the result from the COPE of load 5
versus load 1 at the bottom of Table 1, all other variance components results reported in the
following refer to the model of equation (1), which was applied to the COPEs of individual
loads versus fixation.

The three activation measures that we studied exhibited differences in terms of their
variance components. The percentage of Avg%Δ variance that was attributed to the site
factor was an order of magnitude smaller than the percentages attributed to the subject and
subject-by-site factors. The percentage of variance attributed to site was greater for Max%Δ
and NVox than it was for Avg%Δ. However, even for those measures, it was smaller than
the percentages contributed by subject and subject-by-site interaction. The contribution of
the subject-by-site interaction suggests that variability between data acquired at different
sites was due more to individual subjects activating differently on different occasions than to
overall site differences. Variance components corresponding to each of the three memory
load versus fixation were fairly similar to each other for Avg%Δ and Max%Δ, but not so for

NVox. Because the variance of load slopes over subjects, , was more substantial for NVox
than the other two activation measures, the dependence of the subject-related variance,

, on the memory load was greater for NVox as well.

Table 2 shows the relative contributions of the factors comprising subject variability,
summarized through their median values over all 18 ROIs. Both the slope variance and the
covariance of slope and intercept were found to be one to two orders of magnitude smaller
than the intercept variance. These results confirm that the contribution of the slope variance

 was greater for NVox than it was for Avg%Δ and Max%Δ.

A strategy suggested in [Friedman 2008] for evaluating across-site reliability by identifying
outlier sites is to repeat analyses after removing each one of the sites consecutively.
Following this strategy, we repeated the ANOVA four times, excluding the data of one of
the four sites and including the other 3 sites each time. In the following we compare
ANOVA results obtained after each site was excluded. Since it would be unclear how to
choose absolute thresholds on these ANOVA outcomes to deem sites as outliers, we did not
compare the results obtained by excluding each site to any absolute threshold, but only
relative to the results from the exclusion of the other sites and the results obtained when all
four sites were included.

Table 3 shows how the percentage of the overall variance that was attributed to the site
factor changed as we excluded each of the sites. The table shows median changes over all 18
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ROIs. A positive change indicates that the percentage of variance attributed to site increased
when the specific site was excluded. If there were a dramatic decrease of site-by-site
variance over all activation measures when a specific site was removed, it would suggest
that this site was an outlier. None of the sites emerged as an outlier based on this criterion.
Specifically, there was no site whose exclusion led to a decrease in the variance of all 3
activation measures. Among activation measures, Avg%Δ was the most stable in this
comparison, with only small increases of variance (less than 10% of the corresponding
across-site variance from Table 1) when any single site was removed.

Figure 7 shows plots of the grand mean of the slope of activation versus memory load over
all subjects, λ¯, as estimated by the ANOVA, with standard error bars. We also applied the
strategy of removing one site to determine how the slope estimate changed when each site's
data was excluded. Table 4 shows that the slopes of activation versus memory load that we
obtain from any combination of three of the sites are very similar to each other and very
similar to those obtained by combining all four sites. We quantified differences in the slope

estimates via the normalized mean squared error, ,
where λ¯3(i) and λ¯4(i) are the mean slopes for the i-th ROI when including 3 sites and all 4
sites respectively. None of the sites emerged as a clear outlier from this comparison either,
as would have been indicated by a much greater change in the slope estimates for all 3
measures when removing the specific site. For all ROIs and all activation measures, the
differences between the slopes estimated from 3 sites and the slope estimated from all 4 sites
were within the standard errors shown in Figure 7.

Table 5 shows the results of the power analysis. We had at our disposal estimates of
activation measures in the left and right DLPFC in schizophrenia patients and healthy
controls from a previous study [Manoach 2000]. We used those estimates (for Avg%Δ in
load 5 versus fixation and load 2 versus fixation) to obtain our expected effect size, i.e., the
expected difference of activation slopes between patients and controls (in units of
percentage points by memory target digit). The effect size was 0.003 for the left DLPFC and
0.013 for the right DLPFC. We substituted this effect size into equation (7) to calculate the
power. We repeated the calculation with the variances obtained from the ANOVA when the
data from all four sites was included, when data from one of the sites was excluded, and
when only data from a single site was included. As seen in Table 5, power would be greatest
if all sites were included. Thus, the advantage of pooling more subjects would outweigh any
potential disadvantage from differences in the pooled sites' levels of noise.

Equations (6) and (7) can also be used to calculate the sample size required to achieve a
certain power. In general, scanning all subjects at the site with the lowest data variance
would require the smallest sample size. Distributing the subjects over multiple sites would
require a sample size greater than what would be needed if all subjects were scanned at the
site with lowest variance but smaller than what would be needed if all subjects were scanned
at the site with highest variance. Thus in the multi-site setting we are interested in the trade-
off between scanning all subjects at the single site where power was highest, thus reducing
the total number of subjects required, versus scanning subjects at multiple sites and
parallelizing the scans, thus reducing the overall time required to complete the study.

To quantify this trade-off we fixed the power levels for left and right DLPFC at the levels
achieved by using data from all four sites and N = N′ = 150 patients and controls. We then
used the variance estimated from the ANOVA on each individual site to calculate how many
subjects would be needed to achieve the same power if all subjects were scanned at that site.
The results are shown in Table 6. Because the ranking of the sites with respect to their
individual power at a fixed sample size was different in the left and right DLPFC (see Table
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5), the site ranking with respect to the required sampled size at a fixed power level was also
different in the two ROIs. If one wanted to achieve the desired power levels in both ROIs,
one would pick the highest of the sample sizes required for each ROI. Thus, the required
sample sizes N = N′ at each site would be 162 (UNM), 171 (Iowa), 164 (MGH), and 135
(Minnesota). Minnesota was the only site where there would be savings in the required
sample size compared to the 150 we would need to reach the same power if we distributed
the scans across the four sites. Those savings would be gained at the expense of longer times
needed to recruit and scan subjects at a single site, particularly for large studies such as the
one in this example. For smaller studies, on the other hand, the additional time required to
set up multi-site data collection properly might trump the time saved by parallelizing the
data collection.

Finally, for a visual comparison of the similarity of statistical maps among subjects and
sites, we show Z-maps for the contrast of highest versus lowest memory load (load 5 versus
load 1) on the left hemisphere. The maps have been thresholded to show the top 2% of Z-
values and mapped to the inflated surface reconstructed from the T1 images of one of the
subjects. The anatomical ROIs are shown overlaid on that surface as well. Specifically,
Figure 8 shows individual maps for each of the ten subjects, each obtained from a fixed-
effects analysis of one subject's scans at all four sites. Figure 9 shows maps for each of the
four sites, each obtained from a random-effects analysis of scans from all ten subjects
acquired at one site. In Figure 8 each subject's statistical maps are shown on the subject's
own anatomy. In Figure 9 all maps are shown on the anatomy of one of the subjects.

These statistical maps support the established observation that individual subjects differ
from one another not only in the magnitude and load dependence of their activations but also
in the spatial localization of their activation peaks. Note that the top 2% of load-dependent
activations, as shown in these figures, correspond to different thresholds in each case. This is
not the usual way that one would choose the threshold, e.g., to compare statistical
significance of activation magnitudes between different maps. However, these figures are
intended as a comparison of the locations of activation peaks, not as a comparison of the
activation magnitudes.

The activation peaks obtained by the group analysis of the ten subjects' data from each site,
shown in Figure 9, appear less variable in their location than the ones obtained for individual
subjects, shown in Figure 8. For quantitative measures of similarity of the whole-brain
statistical maps between sites and between subjects we refer the reader to the supplemental
material.

4. Discussion
Our study indicates that it is possible to obtain fMRI activation indices for working memory
processing that are reliable across sites with different scanners. Thus it is possible to
combine multi-site data to improve power in studies of such a task. However, our results
also show that it is important to choose an appropriate activation measure. In particular, the
average percent signal change was the most reliable among the measures we studied, with its
across-site variability being an order of magnitude smaller than its across-subject variability.
The maximum percent signal change was somewhat less reliable across sites, and the
number of activated voxels was the least reliable. In addition, the number of activated voxels
exhibited greater variability among subjects in terms of its slope versus memory load,
leading to a greater dependence of its variance components on the memory load.

It has been known that different activation measures can yield different degrees of
variability. Some of the activation measures that have been used to assess across-site
reliability are percent signal change and volume of activation [Costafreda 2007, Sutton
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2008], which are threshold-dependent, or F-statistic values [Suckling 2008], which are
threshold-independent. Friedman et al. showed that measures based on image contrast
(median and maximum percent signal change) are more reliable than measures based on
contrast-to-noise ratio, possibly because the latter involve an estimate of variance in the
denominator, which can be difficult to obtain reliably [Friedman 2008]. Thus we have
focused here mainly on contrast-based measures, namely the average and maximum percent
signal change. We expect the median measure to lie between the average and maximum
measures in terms of reliability. We found the number of activated voxels to be less reliable
than contrast-based measures, perhaps because of its dependence on both the mean and the
variance of the signal. This was by no means an exhaustive comparison and further
evaluation of the reliability of different activation measures in working-memory processing
is warranted.

Another aspect of data processing that could affect reliability is the type of ROIs used to
extract activation measures. When prior hypotheses cannot be formulated on a purely
anatomical basis, it is common to apply functional masks to anatomically defined ROIs. A
recent comparison of strategies for functional mask definition has shown that using masks
derived from individual conditions introduces unacceptable biases in average signal change
calculations, which are not present when masks are derived from the union of all relevant
conditions [Mitsis 2008]. In keeping with this we have chosen to use functional masks
derived from the union of all three memory loads for our average and maximum signal
change calculations.

In this work we chose to use functional masks derived from the data of each visit separately
(second-level fixed-effects analysis). An alternative approach is to derive a common
functional mask from the data of both visits (third-level fixed-effects analysis). We repeated
our ANOVA with third-level masks and the results are summarized in the supplemental
material. As with second-level masks, the variance due to site was much smaller than the
other variance components.

The threshold applied to the functional masks is another choice to consider. As the threshold
becomes more stringent, the size of the functional mask decreases and thus the average and
the maximum signal converge, eliminating the advantage of the former over the latter in
terms of reliability. The minimum size of clusters surviving cluster-based thresholding
depends on the autocorrelation function of the images [Forman 1995]. For our data and the
threshold we used, this minimum cluster size was 904 mm3 (UNM), 1440 mm3 (Iowa), 1104
mm3 (MGH), and 1128 mm3 (Minn).

Data processing strategies recommended in [Friedman 2008] to improve across-site
reliability were: (i) Increasing the size of the ROIs, especially for 3T data. The average
volume of the anatomical ROIs used here was 10212mm3 ± 5717 mm3. We believe that
these ROIs, based on cortical parcellations of T1 images, were sufficiently large to ensure
reliable activation measures. (ii) Compensating for differences in the smoothness of the
images acquired at different sites, especially for contrast-to-noise measures. Images from the
four sites did exhibit somewhat different smoothness. Using spatial smoothness estimation
available in FreeSurfer, we calculated the average full width at half maximum for each site's
images at 2.79±0.15mm (UNM), 4.03±0.36mm (Iowa), 3.13±0.10mm (MGH), and
3.14±0.57mm (Minnesota). That is, smoothness was similar for the two Siemens 3T sites,
slightly lower for the Siemens 1.5T site, and higher for the GE 1.5T site. It is possible that
equalizing the smoothness of the images from the four sites could increase reliability further.
However, the Iowa site, which would be most affected from such an equalization, did not
emerge as an outlier in our analyses. That is, as seen in Table 3 through Table 5, exclusion
of the Iowa data did not lead to consistently better or worse performance compared to the
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exclusion of the other sites, thus giving us no indication of a systematic bias due to
smoothness differences between Iowa and the other sites. Based on this result we chose not
to pursue smoothness equalization further. (iii) Including more scans. The maximum number
of sensorimotor scans included in [Friedman 2008] was four, which equals the number of
the SIRP scans included in the present study. It is possible that acquiring additional scans
could improve reliability further. However, it would be impractical due to subject fatigue,
particularly in studies of populations with psychiatric disorders such as schizophrenia.

Another strategy for improving across-site reliability that has been proposed in the past is to
compensate for differences in signal-to-fluctuation-noise-ratio (SFNR) between the sites
[Friedman 2006b]. We found the SFNR for each site in our study to be 110 (UNM), 156
(Iowa), 149 (MGH), and 149 (Minnesota). Repeating our ANOVA with SFNR as a
regressor did not yield an improvement in reliability, thus we chose not to include it in the
results reported here.

We did not perform any explicit correction for image distortions due to field
inhomogeneities. Since inhomogeneity effects are expected to be more salient in 3T sites
(MGH and Minnesota), correction based on field maps could lead to better alignment of the
images from those sites, both to the individual T1 and to the standard brain images. There
are two kinds of field inhomogeneity artifacts in EPI: geometric distortions of the images in
the phase-encode direction and signal loss in tissue interface areas. The functional-to-
anatomical registration strategy employed here could mitigate geometric distortion effects
but of course it could not compensate for signal loss effects.

As discussed in the Methods section, identifying outlier scans based on image intensity and
motion criteria and removing them from the analysis did not have an impact on the
reliability of the estimated activation measures in this study. However, the participating
subjects were highly motivated and healthy volunteers. We still believe that data quality
assurance checks like these are important and may have a greater impact on studies of
clinical populations, such as schizophrenia patients, where we expect to see more subject
motion.

When pooling the data from all four sites, we found a positive slope of activation versus
memory load in a number of regions. For example the estimated slope for Avg%Δ, as seen
in Figure 7, was greatest in the left IPS, followed by left PSM, left PM, left DLPMC, and
right DLPFC. Maps of load-dependent activations obtained when we pool data from all four
sites are shown in the supplemental material. Note that in the left hemisphere a high
activation peak occurs just posterior to the DLPFC/DLPMC border. This border was based
on the Talairach coordinate suggested in [Rajkowska 1995]. A slight change in that
coordinate could include that activation peak in the left DLPFC ROI and thus lead to higher
load dependence in that ROI than what we report here. In addition, some areas of high load-
dependent activation, such as the left inferior frontal cortex, were not among the ROIs that
we studied. However, we believe that the ROIs included here represent a reasonably broad
range of areas and we would not expect dramatically different results in other ROIs.

In conclusion, our study illustrates the feasibility of deriving fMRI-based measures of
working-memory processing that are much more variable across subjects than they are
across sites in the brain regions studied here. This is attainable even across sites with
different scanner manufacturers and field strengths, as long as appropriate scanner
calibration and data processing methods are used. Our results are encouraging for multi-site
studies of similar paradigms, where subjects are recruited at different geographic locations
to improve the generalizability of the results, to accelerate subject accrual, or to investigate
conditions with low prevalence in the general population.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

References
Costafreda SG, Brammer MJ, Vêncio RZ, Mourão ML, Portela LA, de Castro CC, Giampietro VP,

Amaro E Jr. Multisite fMRI reproducibility of a motor task using identical MR systems. J Magn
Reson Imaging. 2007; 26(4):1122–1126. [PubMed: 17896376]

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R,
Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM. Whole brain segmentation:
automated labeling of neuroanatomical structures in the human brain. Neuron. 2002; 33:341–355.
[PubMed: 11832223]

Forman SD, Cohen JD, Fitzgerald M, Eddy WF, Mintun MA, Noll DC. Improved assessment of
significant activation in functional magnetic resonance imaging (fMRI): Use of a cluster-size
threshold. Magn Res Med. 1995; 33(5):636–647.

Friedman L, Glover GH. Report on a Multicenter fMRI Quality Assurance Protocol. J Magn Reson
Imaging. 2006; 23(6):827–839. [PubMed: 16649196]

Friedman L, Glover GH, The FBIRN Consortium. Reducing interscanner variability of activation in a
multicenter fMRI study: Controlling for signal-to-fluctuation-noise-ratio (SFNR) differences.
Neuroimage. 2006; 33(2):471–481. [PubMed: 16952468]

Friedman L, Stern H, Brown GG, Mathalon DH, Turner J, Glover GH, Gollub RL, Lauriello J, Lim
KO, Cannon T, Greve DN, Bockholt HJ, Belger A, Mueller B, Doty MJ, He J, Wells W, Smyth P,
Pieper S, Kim S, Kubicki M, Vangel M, Potkin SG. Test-retest and between-site reliability in a
multicenter fMRI study. Human Brain Mapping. 2008; 29(8):958–972. [PubMed: 17636563]

Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R. Movement-related effects in fMRI time-
series. Magn Res Med. 1996; 35(3):346–355.

Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration.
NeuroImage. 2009; 48(1):63–72. [PubMed: 19573611]

Han X, Jovicich J, Salat D, van der Kouwe A, Quinn B, Czanner S, Busa E, Pachec J, Albert M,
Killiany R, Maguire P, Rosas D, Makris N, Dale A, Dickerson B, Fischl B. Reliability of MRI-
derived measurements of human cerebral cortical thickness: the effects of field strength, scanner
upgrade and manufacturer. Neuroimage. 2006; 32(1):180–194. [PubMed: 16651008]

Jenkinson M, Smith SM. A Global Optimisation Method for Robust Affine Registration of Brain
Images. Medical Image Analysis. 2001; 5(2):143–156. [PubMed: 11516708]

Jenkinson M, Bannister P, Brady M, Smith S. Improved optimisation for the robust and accurate linear
registration and motion correction of brain images. NeuroImage. 2002; 17(2):825–841. [PubMed:
12377157]

Jovicich J, Czanner S, Han X, Salat D, van der Kouwe A, Quinn B, Pacheco J, Albert M, Killiany R,
Blacker D, Maguire P, Rosas D, Makris N, Gollub R, Dale A, Dickerson BC, Fischl B. MRI-
derived measurements of human subcortical, ventricular and intracranial brain volumes:
Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner
vendors and field strengths. Neuroimage. 2009; 46(1):177–192. [PubMed: 19233293]

Kristofferson MW. Effects of practice on character-classification performance. Canad J Psychol/Rev
Canad Psychol. 1972; 26:54–60.

Manoach DS, Schlaug G, Siewert B, Darby DG, Bly BM, Benfield A, Edelman RR, Warach S.
Prefrontal cortex fMRI signal changes are correlated with working memory load. NeuroReport.
1997; 8(2):545–549. [PubMed: 9080445]

Manoach DS, Press DZ, Thangaraj V, Searl MM, Goff DC, Halpern E, Saper CB, Warach S.
Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task as
measured by fMRI. Biol Psychiatry. 1999; 45(9):1128–1137. [PubMed: 10331104]

Manoach DS, Gollub RL, Benson ES, Searl MM, Goff DC, Halpern E, Saper CB, Rauch SL.
Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal

Yendiki et al. Page 15

Neuroimage. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



ganglia during working memory performance. Biol Psychiatry. 2000; 48(2):99–109. [PubMed:
10903406]

Manoach DS, Halpern EF, Kramer TS, Chang Y, Goff DC, Rauch SL, Kennedy DN, Gollub RL. Test-
retest reliability of a functional MRI working memory paradigm in normal and schizophrenic
subjects. Am J of Psychiatry. 2001; 158(6):955–958. [PubMed: 11384907]

Mitsis GD, Iannetti GD, Smart TS, Tracey I, Wise RG. Regions of interest analysis in pharmacological
fMRI: How do the definition criteria influence the inferred result? NeuroImage. 2008; 40(1):121–
132. [PubMed: 18226552]

Ragland JD, Yoon J, Minzenberg MJ, Carter CS. Neuroimaging of cognitive disability in
schizophrenia: Search for a pathophysiological mechanism. Int Rev of Psychiatry. 2007; 19(4):
419–429.

Rajkowska G, Goldman-Rakic PS. Cytoarchitectonic Definition of Prefrontal Areas in the Normal
Human Cortex: I. Remapping of Areas 9 and 46 using Quantitative Criteria. Cerebral Cortex.
1995; 5:307–322. [PubMed: 7580124]

Smith S. Fast Robust Automated Brain Extraction. Human Brain Mapping. 2002; 17(3):143–155.
[PubMed: 12391568]

Sternberg S. High-speed scanning in human memory. Science. 1966; 153:652–654. [PubMed:
5939936]

Suckling J, Ohissen D, Andrew C, Johnson G, Williams S, Graves M, Chen CH, Spiegelhalter D,
Bullmore E. Components of variance in a multicentre functional MRI study and implications for
calculation of statistical power. Human Brain Mapping. 2008; 29(10):1111–1122. [PubMed:
17680602]

Sutton BP, Goh J, Hebrank A, Welsh RC, Chee MW, Park DC. Investigation and validation of intersite
fMRI studies using the same imaging hardware. J Magn Reson Imaging. 2008; 28(1):21–28.
[PubMed: 18581342]

Talairach, J.; Tournoux, P. Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical
Publishers; 1988.

Whitfield-Gabrieli, S. Artifact Detection Tools. 2009. http://web.mit.edu/swg/software.htm

Woolrich MW, Ripley BD, Brady JM, Smith SM. Temporal Autocorrelation in Univariate Linear
Modelling of FMRI Data. NeuroImage. 2001; 14(6):1370–1386. [PubMed: 11707093]

Worsley KJ, Evans AC, Marrett S, Neelin P. A three-dimensional statistical analysis for CBF
activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism. 1992; 12:900–
918. [PubMed: 1400644]

Zou KH, Greve DN, Wang M, Pieper SD, Warfield SK, White NS, Manandhar S, Brown GG, Vangel
MG, Kikinis R, Wells WM III, FIRST BIRN. Reproducibility of Functional MR Imaging:
Preliminary Results of a Prospective Multi-institutional Study Performed by the Biomedical
Informatics Research Network. Radiology. 2005; 237:781–789. [PubMed: 16304101]

Yendiki et al. Page 16

Neuroimage. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://web.mit.edu/swg/software.htm


Figure 1. Anatomical ROIs shown on the inflated cortical surface of an individual
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Figure 2. Response accuracy at each site in the order the sites were visited. Each plot
corresponds to a different subject
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Figure 3. Reaction time versus memory load, averaged over all scans for each site
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Figure 4. Activation (Avg%Δ) by memory load in three ROIs of the left hemisphere. From left to
right: average activation over all data, by site, and by subject. P-values on the difference between
load 5 and load 1 have been marked as follows; p<.1: •; p<.05: *; p<.01: **; p<.001: ***

Yendiki et al. Page 20

Neuroimage. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Activation (Max%Δ) by memory load and field strength in three ROIs of the left
hemisphere
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Figure 6. Variance components (subject  site  subject-by-site
interaction  Residual ) of Avg%Δ, Max%Δ, and NVox for every ROI in the left and right
hemispheres
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Figure 7. Estimated slope of Avg%Δ, Max%Δ, and NVox versus memory load in the left and
right hemispheres, using all data
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Figure 8. Top 2% of z-values for contrast of highest versus lowest memory load, shown for each
of the 10 subjects
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Figure 9. Top 2% of z-values for contrast of highest versus lowest memory load, shown for each
of the 4 sites. (Clockwise from top left: UNM, Iowa, Minnesota, MGH.)

Yendiki et al. Page 25

Neuroimage. Author manuscript; available in PMC 2013 October 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yendiki et al. Page 26

Table 1
Median percentage of variance attributed to subject, site, and subject-by-site interaction
for activation measures derived from each COPE

Avg%Δ Max%Δ NVox

Load 1 vs. fixation Subject 25% 26% 19%

Site 7% 11% 18%

Subject x Site 21% 25% 25%

Load 3 vs. fixation Subject 31% 33% 29%

Site 7% 10% 14%

Subject x Site 18% 23% 20%

Load 5 vs. fixation Subject 36% 39% 43%

Site 6% 10% 10%

Subject x Site 18% 21% 16%

Load 5 vs. load 1 Subject 18% 33% 36%

Site 3% 5% 4%

Subject x Site 4% 9% 19%
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Table 2
Median relative magnitude of subject-dependent components of variance: intercept
variance , slope variance , and covariance of intercept and slope 

Avg%Δ Max%Δ NVox

0.0335 0.0357 0.1792

0.0760 0.0647 0.0970
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Table 3
Median change in the percentage of overall variance due to site, when one of the sites is
excluded from the analysis (calculated at memory load 3)

Excluded site Avg%Δ Max%Δ NVox

UNM +0.1% -2.7% -3.7%

Iowa +0.2% +0.2% -5.0%

MGH +0.3% +1.9% +5.7%

Minn +0.6% +3.6% +2.9%
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Table 4
Normalized mean squared error between slopes of activation versus memory load
estimated with one site excluded and those estimated from all four sites

Excluded site Avg%Δ Max%Δ NVox

UNM 8% 11% 7%

Iowa 9% 14% 9%

MGH 15% 12% 18%

Minn 14% 12% 15%
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