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Abstract

Brain-Computer Interfaces (BCIs) allow a user to control a computer appli-

cation by brain activity as measured, e.g., by electroencephalography (EEG).

After about 30 years of BCI research, the success of control that is achieved by

means of a BCI system still greatly varies between subjects. For about 20%

of potential users the obtained accuracy does not reach the level criterion,

meaning that BCI control is not accurate enough to control an application.

The determination of factors that may serve to predict BCI performance, and

the development of methods to quantify a predictor value from psychological

and/or physiological data serves two purposes: a better understanding of

the ‘BCI-illiteracy phenomenon’, and avoidance of a costly and eventually
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frustrating training procedure for participants who might not obtain BCI

control. Furthermore, such predictors may lead to approaches to antagonize

BCI-illiteracy. Here, we propose a neurophysiological predictor of BCI per-

formance which can be determined from a two minutes recording of a ‘relax

with eyes open’ condition using two Laplacian EEG channels. A correlation

of r = 0.53 between the proposed predictor and BCI feedback performance

was obtained on a large data base with N = 80 BCI-naive participants in

their first session with the Berlin Brain-Computer Interface (BBCI) system

which operates on modulations of sensory motor rhythms (SMRs).

Key words: Brain-Computer Interface (BCI), Sensory Motor Rhythms

(SMRs), Event-Related Desynchronization (ERD), Neurophysiological

Predictor, BCI Illiteracy

Introduction

Amplitude modulations of sensory motor rhythms (SMRs) can be volun-

tarily controlled by most subjects, e.g., by imagining movements. Recently

evidence was provided that also patients diagnosed with amyotrophic lateral

sclerosis (ALS) can accomplish SMR modulations (Kübler et al. (2005)). This

ability can be taken as a basis for Brain-Computer Interfaces (BCIs) which

are devices that translate the intent of a subject, as derived from measuring

brain signals, directly into control commands, e.g., for a computer application

or a neuroprosthesis (Dornhege et al. (2007); Allison et al. (2007); Birbaumer

et al. (2006); Pfurtscheller et al. (2005); Wolpaw et al. (2002); Kübler et al.

(2001)). For alternative applications of BCI technology, see Kohlmorgen

et al. (2007); Müller et al. (2008); Gerson et al. (2006); Tangermann et al.
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(2009). More specifically, SMR-based BCI operation has its neurophysiologi-

cal grounds in the observation that macroscopic brain activity during resting

wakefulness is comprised of distinct ‘idle’ rhythms located over distinct brain

areas, e.g., the parieto-occipital α-rhythm (8–12Hz), cf. Berger (1933). The

perirolandic sensorimotor cortices show rhythmic macroscopic EEG oscilla-

tions (µ-rhythm) (Jasper and Andrews (1938); Hari and Salmelin (1997)),

with spectral peak energies at about 9–14Hz localized predominantly over

the postcentral somatosensory cortex. Typically phase coupled components

can be found in the beta band (16–25Hz) over the precentral motor cor-

tex. Modulations of the µ-rhythm have been reported for different manipu-

lations, e.g., motor activity, both actual and imagined (Jasper and Penfield

(1949); Pfurtscheller and Aranibar (1979); Schnitzler et al. (1997)), as well

as somatosensory stimulation (Nikouline et al. (2000)). Trial averages of µ-

rhythm power reveal attenuation of SMR, termed event-related desynchro-

nization (ERD, Pfurtscheller and da Silva (1999)), or increase (event-related

synchronization, ERS). Typically, ERD indicates cortical activity, while ERS

is observed as a rebound after ERD or during cortical idling (Pfurtscheller

and da Silva (1999); Pfurtscheller et al. (2006)).

Several EEG-based BCI systems rely on voluntary modulations of SMRs,

e.g., by imagining movements as explained above. Fig. 1 shows the power

spectral density (in particular the amplitude of SMRs) in two channels over

the hand areas of the sensorimotor cortex during left hand and right hand

motor imagery and the corresponding topographies.

However, due to large inter- and intra-subject variability of the frequency

band and spatial patterns of SMR modulation, most SMR-based BCI systems
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Figure 1: Modulated power spectral density during motor imagery of left

and right hand in participant kg. The shaded area indicates the frequency

range that was used for BCI feedback. The maps show the topographical

distribution of band-power in the selected frequency range for left and right

hand movement imagery conditions. Band-power during the reference inter-

val -2000 to 0 ms was subtracted to obtain the maps. It is important to

note that such prototypical patterns of band power can only be observed in

a minority of participants.

require several training sessions in which participants learn the ability to

modulate their SMR appropriately to control a BCI application (Wolpaw

and McFarland (2004); Kübler et al. (2005); Vidaurre et al. (2006)). Other

approaches are able to provide BCI control already in the very first session,

but still need a calibration period of about 30 minutes (Guger et al. (2000);

Blankertz et al. (2008a, 2007)). Additionally, some of those latter systems

typically use many electroencephalography (EEG) channels which require a

substantial amount of time for preparation with current sensor technology.

However, new experimental dry sensors have been demonstrated successfully

for BCI use (Popescu et al. (2007)).
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One of the biggest challenges in BCI research is to solve the problem of

BCI illiteracy1, which is that BCI control fails to work for a non-negligible

proportion of participants (estimated 15% to 30%). The development of pre-

dictors of BCI performance may serve to gain a deeper understanding of this

phenomenon. Until the problem of BCI-illiteracy is solved, such predictors

may also serve to avoid the frustrating and costly procedure of trying to

establish BCI control. On the other hand, the study of predictors of BCI

performance may lead to novel approaches, e.g., training procedures or alter-

native experimental designs, which antagonize some causes of illiteracy and

thereby help to provide more people with the possibility of BCI communica-

tion.

Some literature exists on predictors of performance with a BCI system

based on the control of slow cortical potentials (SCPs, Elbert et al. (1980)).

A correlation of the ability for implicit learning with BCI performance was

found in Kotchoubey et al. (2000). Other work demonstrated the correlation

between performance in early neurofeedback sessions with the success to

control a BCI application in later sessions (Neumann and Birbaumer (2003),

Kübler et al. (2004)). In Daum et al. (1993) a correlation between attention

span tests and the ability to learn SCP regulation was found in a study with

14 participants with epilepsy.

Regarding SMR-based BCIs, to our knowledge Burde and Blankertz (2006)

was the only approach to predict feedback performance. In that work a signif-

icant (α = 0.05) correlation of r = 0.59 was found between the psychological

1By the term ‘BCI illiteracy’ we denote the case that a BCI system fails to correctly

detect the mental state of its user.
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variable ‘locus of control with regard to technology’ (Beier (2004)) and BCI

feedback performance in a group of N = 17 participants.

The aim of the current study was to develop a neurophysiological predic-

tor for a participant’s performance of operating an SMR-based BCI. As we

wanted to draw conclusions that generalize beyond the investigated sample,

we included a large corpus of N = 80 BCI-naive participants. We propose

a resting EEG-based neurophysiological- mathematical procedure with high

predictive quality for later BCI performance. Additionally, our approach is

effective with respect to cap montage and recording time. Finally we provide

interpretable insight into the neurophysiological reasons for good resp. bad

BCI performance and BCI illiteracy.

Material and methods

Experimental Setup

Eighty healthy BCI-novices (41 female, age 29.9±11.5 years; 4 left-handed)

[Requirements: full contractual capability, mother tongue German (since a

series of psychological tests had to be accomplished), no neurological disease,

e.g., epilepsy] took part in this one-session study. All measurements (cali-

bration and feedback runs) of a participant were recorded on the same day

(one ‘session’). Subjects were paid 8 EUR per hour for the participation in

the study.

The participants were sitting in a comfortable chair with arms lying re-

laxed on armrests. Brain activity was recorded from the scalp with multi-

channel EEG amplifiers (BrainAmp DC by Brain Products, Munich, Ger-

many) using 119 Ag/AgCl electrodes (reference at nasion; manufacturer
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EasyCap, Munich, Germany) in an extended 10-20 system, and sampled

at 1000Hz with a band-pass of 0.05Hz to 200Hz. Additionally, we recorded

electromyogram (EMG) from both forearms and the right leg as well as hori-

zontal and vertical electrooculogram (EOG). The EMG/EOG channels were

exclusively used to control for physical limb/eye movements that could cor-

relate with the task and could be reflected directly (artifacts) or indirectly

(afferent signals from muscles and joint receptors) in the EEG channels.

The session started with an EEG artifact recording during which the

participant performed tasks such as particular eye movements, blinking, or

maximum voluntary contraction of the hand. Then, ten periods of 15s were

recorded with the alternating tasks to ‘relax with eyes open’ and to ‘relax

with eyes closed’.

After this baseline recording and at the very end of the experimental ses-

sion, one run with the task ‘observation of movements’ was recorded. Video

clips of 10s duration showed either left hand, right hand or feet movement

from a first person’s perspective, which were presented in random order, 20

of each type. Results of the observation task will be presented elsewhere.

During ‘calibration’ every eight seconds one of three different visual cues

(arrows pointing left, right, or down) indicated to the participant which

type of motor task to perform: left hand, right hand, and right foot or feet

movement (according to the preference of the participant), see Fig. 2. A

15s break followed after every 20 trials. In one run, 25 trials of each motor

condition were recorded. First, we recorded one run of performed movements

(results will be presented elsewhere) and subsequently three runs of imagined

movement resulting in 100 trials altogether.
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Between the calibration runs of imagined movement, participants were

confronted with a computerized version of the d2-test (Brickenkamp and

Zillmer (1998)), which was part of an extended psychological test battery

(results will be presented elsewhere).

2 sec 2 sec4 sec

baseline motor imagery rest

Figure 2: Course of a calibration trial. 2s fixation cross, 4s motor imagery

cued by arrows (left, right, or down), 2s blank screen.

After the calibration, participants performed three runs each of 100 trials

with BCI ‘feedback’ (for some participants only one or two runs were recorded

due to fatigue (N = 3) or lack of time (N = 7)). The first 20 trials were used

for adapting the bias of the classifier (see section ‘BBCI Feedback’). Each

trial of feedback started with a period of 2s with a black fixation cross in

the center of a gray screen. Then an arrow appeared behind the cross to

indicate the target direction of that trial (left or right for motor imagery

classes left hand and right hand and downward for class foot) and 1s later

the cross turned purple and started moving according to the classifier output,

as described in section ‘BBCI Feedback’. If the foot classes was selected, the

cursor moved on a corner shaped trajectory: For left hand vs. foot, e.g., the

cursor moved from the center to the left of the screen for detected left hand

motor imagery, and the cursor moved from the center downwards for detected
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foot imagery. After 4s of cursor movement the cross froze at the final position

and turned black again. Two seconds later the cross was reset to the center

position and the next trial began. Hits or misses were counted according to

this final position, but the score was only indicated during a break of 15s

after every block of 20 trials (see Fig. 3 for timing during feedback runs).

of target
indication indication

of result

2 sec 2 sec4 sec1 sec

fixation feedback

Figure 3: Course of a feedback trial. 2s fixation cross (black), 1s indication of

target direction cued by arrows, 4s feedback (cross turns magenta and moves

according to BBCI classifier), 2s indication of result (cross turns black and

freezes at its final position).

BBCI Feedback

The EEG signals of the calibration measurement were band-pass filtered

in a subject-specific frequency band and temporally filtered in a subject-

specific time interval. The start of that interval varied between 480 ms and

2720 ms (median 930 ms) after cue onset and its end varied between 1700 ms

and 4990 ms (median 3810 ms). The median length of the interval was

2730 ms (range 1000 ms to 3890 ms). Details on the heuristics underlying the

selection of frequency band and time interval can be found in Blankertz et al.

(2008b). Note that also subject-optimized spatial filters were determined by
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common spatial pattern (CSP) analysis (Blankertz et al. (2008b)). From

these signals the log-variance was calculated in each trial of the calibration

data. This procedure resulted in a feature vector with dimensionality equal to

the number of (heuristically) selected CSP filters (Blankertz et al. (2008b)).

To our experience, those features can be classified well by linear methods

like linear discriminant analysis (LDA). Other paradigms and feature repre-

sentations may however require non-linear modeling (see, e.g., Müller et al.

(2001); Müller et al. (2003)).

For online operation, features were calculated every 40ms with a sliding

window of 750ms (applying CSP filters, band-pass filtering, calculating log-

variance and applying the LDA classifier, see Blankertz et al. (2008b)). The

output of the classifier was translated into cursor movement in a rate control

manner: At the beginning of each trial, the cursor started in the center

of the screen and every 40ms a fraction of the classifier output was added

to the current cursor position (see also section ‘Experimental Setup’). CSP

filters calculated from the initial calibration measurement were not adapted

during online operation. The bias of the linear classifier was adapted on the

basis of the data of the first 20 trials of each feedback run (see Krauledat

et al. (2008)). (By bias we denote the term b in the separating hyperplane

formulation y = wx + b which can be used to adjust the output of a binary

classifier toward one class or the other). These 20 trials were not included in

the calculation of the feedback performance.

Performance Predictor

To construct our novel SMR predictor, only a short two minutes record-

ing of EEG under the condition ‘relax with eyes open’ using two Laplacian
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channels (C3 and C4, calculated from nine original monopolar channels) was

required. For this purpose we used the concatenated segments of the same

condition during the baseline recording (see section ‘Experimental Setup’).
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Figure 4: Illustration of the calculation of the performance predictor. The

plots depict the power spectral densities (PSDs) of a relax measurement (eyes

open) of one participant for two Laplace-filtered channels over sensorimotor

cortex (solid blue line), the estimated noise floor g1(f ; λ,k) (dashed purple

line) and the fitted values g(f ; λ, µ, σ,k) (dotted red line). In each channel

the maximum elevation of the peaks over the noise floor was determined

(vertical black lines). The value of the SMR predictor is the average of these

two values, in this example (9.0 + 8.3)/2 = 8.65.

From these data we calculated the power spectral density (PSD) in the

Laplace-filtered channels C3, C4 and determined for each of those channels

the maximum difference between the PSD curve and a fit of the 1/f noise

spectrum as explained below (cf. Fig. 4). These two values were estimates

of the strength of the SMR over the hand areas. The SMR-predictor was
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calculated as the average of those two values. It quantified the potential

for desynchronization of the SMRs at rest as an indicator of SMR strength

during feedback.

We modeled each PSD curve as a function g of the frequency f with two

additive components of the form

g(f ; λ, µ, σ,k) = g1(f ; λ,k) + g2(f ; µ, σ,k) with

g1(f ; λ,k) = k1 +
k2

fλ
and

g2(f ; µ, σ,k) = k3ϕ(f ; µ1, σ1) + k4ϕ(f ; µ2, σ2),

where k = (k1, k2, k3, k4) ∈ R4, λ ∈ R and ϕ(·; m, s) denotes the probability

density function (pdf) of a normal distribution with mean m and standard

deviation s. Function g1 is a model for the noise spectrum.The parameters

λ and k2 determine its shape and k1 its power level. Function g2 models the

additional peaks in the PSD around α and β frequency ranges. Thereby, µ1

resp. µ2 are the corresponding location parameters, σ1 resp. σ2 the scale

parameters and k3 resp. k4 determine the amplitudes of the two peaks.

As objective function for the optimization of the nine parameters (λ, µ =

(µ1, µ2), σ = (σ1, σ2), and k) we chose the L2-norm of the difference vector

PSD(f)−g(f ; λ, µ, σ,k), where f is the vector of all available frequency values

for the PSD; in our case f = (2Hz, 3Hz, . . . , 35Hz), see Fig. 4.

Since we decomposed the PSD into the noise component g1 and the two

peak components g2, the contribution of one channel to our proposed in-

dicator was simply maxf∈f g2(f ; µ, σ,k) ≈ maxf∈f{PSD(f) − noise(f)}. It

is worth noting that this PSD model with additive components g1 and g2

provides distinctly higher predictive accuracy than a simpler model which
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does not explicitly take into account the noise floor of the PSD. For example,

averaging the peak PSD values in channels C3 and C4 without subtracting

the corresponding estimated noise floor values led in our sample to a dete-

rioration of the correlation coefficient with BCI feedback performance from

0.53 to 0.33.

Determining Foci of SMRs

We used two methods for determining which channels were best suited

for the SMR predictor, one based on the relax condition, the other based on

the separability of the motor imagery conditions. Using the data of the relax

condition of each participant, we did the same optimization as explained in

section ‘Performance Predictor’ for the SMR predictor to quantify separately

the strength of the SMR rhythm in each Laplacian channel. The obtained

values were averaged across all 80 participants.

Using the data of the motor imagery conditions, we determined the clas-

sification error for each participant when using logarithmic band power in a

single Laplacian channel as a feature. Here, a classifier was trained on the

data of the calibration measurement and evaluated on the feedback measure-

ment data. The resulting values were averaged across participants who had

the same combination of motor imagery classes in the feedback (left-right

(LR) for N = 30, left-foot (LF) for N = 34, and foot-right (FR) for N = 16

participants).
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Results

BBCI Feedback

Feedback accuracy varied largely between participants (mean 74.4% ±

16.5%), covering the full range from chance-level performance (50%) to per-

fect control (100%), see Fig. 5. For most participants performance also varied

strongly between runs. More specifically, the intra-participant performance

variability between runs ranged from 0% to 19.8% (mean 5.3%± 3.7%).

On average, feedback performance decreased from run to run (medians of

subjects who completed all three runs: 77.5% – 75% – 68.8%). Self-assessed

fatigue increased on average within the three feedback runs (2.8 – 3.3 – 3.8

on a scale from 1 to 7).

Selection of Channels for the SMR Predictor

Scalp maps of the grand average amplitudes of local rhythmic activity

are displayed in Fig. 6a. The focus of the SMR of the left and the right hand

was at location C4 and C3, respectively. No consistent SMR focus was found

over the foot area.

Scalp topographies of the grand average classification error, when using

single-channel features, are shown separately for the three binary combina-

tions of motor imagery conditions in Fig. 6b. For combinations LR (left-

right) and LF (left-foot), positions C3 and C4 were the foci of the lowest

classification error. For combination FR (foot-right) there was only one fo-

cus of minimal classification error, which was between positions C3 and CFC3

(CFC3 is located in the middle between C3 and FC1).
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Figure 5: Feedback Performance. The black crosses show the feedback per-

formance averaged over all recorded runs for each participant. Connected

gray dots indicate the corresponding accuracy per run.

Performance Predictor

In Fig. 7, the values of the proposed SMR-predictor are plotted against

the BCI feedback performance.

A correlation coefficient (Pearson) of r = 0.53 was obtained. This means

that the SMR predictor explained as much as r2 = 28% of the variance in

feedback accuracy in our sample of N = 80 participants. To obtain a more

robust correlation analysis data were trimmed (Huber and Ronchetti (2009))
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Figure 6: (a) Topography of the SMR idle rhythm. For each Laplacian chan-

nel the amplitude of the idle rhythm during a relax condition was calculated

as in the proposed SMR predictor (see section ‘Performance Predictor’).The

resulting values were averaged across all 80 participants and displayed as

scalp topography. Larger crosses mark the channels C3 and C4. (b) Average

classification error utilizing only one Laplacian channel per motor imagery

class. For each binary combination of motor imagery classes left-right (LR),

left-foot (LF), and foot-right (FR), the classification error in single Lapla-

cian channels was determined, averaged across participants for whom the

respective class combination was chosen for feedback and displayed as scalp

topographies. Larger crosses mark the channels C3 and C4.

by removing points of the sample that have the 10% largest Malahanobis

distances to the data center (consisting of the arithmetic means of the SMR

predictor and the BCI feedback performance values). Applying this technique

results in removal of the data points which are shaded in Fig. 7 and in an

increase of correlation to r = 0.61.
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Figure 7: Correlation of SMR-predictor with BCI performance. Each dot

corresponds to one participant. The value of the proposed SMR-predictor

(abscissa) is plotted against the average BCI feedback performance (ordi-

nate). The solid line is the result of a linear regression analysis of the BCI

performance onto the SMR-predictor (r = 0.53, Pearson correlation). The

slope parameter of this regression line was estimated as β̂ = 2.38. This has

the interpretation that the expected increase in BCI feedback accuracy in

case that the predictor value increases by one unit equals 2.38%. Removing

outliers by trimming with a level of 10% (shaded points) increases the Pear-

son correlation coefficient to r = 0.61 (corresponding regression line dashed,

β̂ = 3.39).

Discussion

BBCI Feedback

Feedback results of 77.5% on average were remarkably high for first-time

BCI users in their first run. Notably, even better results have been obtained17



in earlier studies Blankertz et al. (2007, 2008a). This can be understood

from the fact that the demands were high on the participants in this study.

Because we used 128 EEG/EMG/EOG channels, the preparation of the cap

often took more than one hour. Then there was a sequence of several off-line

measurements such that the actual feedback only started after several hours.

The complete session took 5.5 to 6.5 hours. This may have had negative

influence on the performance compared to the earlier studies which ere per-

formed under more convenient conditions. Self-assessed fatigue increased and

feedback performance decreased on average from run to run. This suggests

that effects of fatigue were more prominent than potential improvement of

performance by practice.

Selection of Channels for the SMR Predictor

Raw EEG scalp potentials are known to have a poor spatial resolution due

to volume conduction. This implies the need for spatial filtering if the signal

of interest is weak, like SMRs, compared to other potentials of the brain. If

no prior data is available to optimize subject-specific spatial filters, Laplacian

filters are a good first choice, see Blankertz et al. (2008b). Consequently, our

aim was to operate with two or three Laplacian channels only to minimize

the effort that is needed to predict BCI performance.

We conclude from our results that single Laplacian channels C3 and C4

are a reasonable choice for the SMR predictor. Those locations showed the

strongest SMR amplitude in the relax condition and provided most informa-

tion for the discrimination of the motor imagery conditions, see Fig. 6.
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Peri-Imagery ERS

Several studies found an ERS during motor imagery (‘peri-imagery ERS’).

This ERS was typically located either ipsilateral during hand motor imagery,

or bilaterally over both hand areas during foot motor imagery (Pfurtscheller

et al. (2006)). One interpretation of the peri-imagery ERS is that it is a sur-

round ERS reflecting an active inhibition of non-involved areas. Pfurtscheller

and colleagues observed the peri-imagery ERS in motor imagery trials with-

out feedback as in our offline calibration and the band power increased rel-

ative to a pre-stimulus interval. The peri-imagery ERS phenomenon might

deteriorate the performance of our proposed SMR predictor provided that

(1)during motor imagery band-power increases substantially over the level

of a (longer lasting) relax condition, and (2) the phenomenon can also be

observed during feedback operation. In this situation (weak SMR peak in

the relax condition, but successfully control BCI feedback by an ERS) our

SMR predictor would underestimate the BCI performance

In our data base of 80 participants, we found 51 cases of peri-imagery ERS

(over pre-stimulus level) in at least one of the three motor imagery classes

(mostly foot) during calibration, which is in line with Pfurtscheller et al.

(2006). But, remarkably, only four of those still produced a substantial ERS

during feedback operation. In three of these cases, the SMR predictor indeed

underestimated the BCI performance; in the forth, the raise of the SMR peak

above the relax level was of negligible magnitude, such that it did not matter

for the SMR predictor. Another four participants were moderately successful

in producing an ERS during feedback (mean BCI feedback accuracy 73%).

Seventeen participants had an ERS relative to pre-stimulus level, which did
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not exceed the SMR level of the relax condition. Notably, 19 participants

who had a peri-imagery ERS during calibration had none during feedback

runs. For the seven remaining participants, the binary class combination

that was chosen for feedback did not include the class for which an ERS was

observed during calibration. Thus, it cannot be judged how many of those

would have produced a similar peri-imagery ERS during feedback. However,

since the selection of classes was based on classification performance during

calibration, it can be concluded that the ERS effect was less reliable than

the ERD.

To conclude, with respect to the proposed SMR predictor, we could not

find evidence in our data that peri-imagery ERS caused a substantial source

prediction error. However, the role of peri-imagery ERS during calibration

has to be studied in more detail, in particular, why the phenomenon rarely

carries over to the feedback condition.

Implications for the Illiteracy Problem and Limitations

The finding of our study suggests that the strength of the SMR idling

rhythm in the EEG is an essential property for successful performance with

an SMR-based BCI. This might be seen as a drawback of this type of BCI

system. As one alternative, features derived from slow movement related

potentials could be used, which are known to vary independently from SMR

modulations, cf. Dornhege et al. (2004). On the other hand, the relationship

that was found in this study may pave a way to approach the BCI illiteracy

problem: further studies will evaluate a specifically tailored neurofeedback

training to enhance the SMR idle rhythm and, hopefully, feedback perfor-

mance in subsequent BCI applications.
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While present results were restricted to data recorded within the same

session, the intra-subject variability of SMR-predictor values as well as the

relation of the predictor to performance in future BCI sessions need to be

investigated in further studies. Likewise, the value of the SMR predictor in

BCI approaches that require more individual learning by means of neurofeed-

back remains to be elucidated [Kübler et al. (2005); Neuper et al. (2003)].

Despite our SMR predictor being to date the strongest described in the neu-

rofeedback/BCI literature, it has to be kept in mind that two-third of the

variance is caused by other factors.

Cases of Prediction Failure

Our performance predictor essentially estimated the amplitude of the

SMR to assess the potential for BCI performance assuming that motor im-

agery leads to an attenuation of the SMR (Pfurtscheller and da Silva (1999)).

There were, however, several cases in which the SMR predictor failed. (1) Some

participants had a detectable SMR but no class-specific attenuation of that

rhythm. One possible reason for this phenomenon could be that these par-

ticipants used a wrong strategy, e.g., only visually imagining the movements

instead of kinesthetically (Neuper et al. (2005)). Participant ji, e.g., reported

to have used abstract thoughts (“I rather thought left and down.”) during

feedback instead of motor imagery as in the calibration measurement. For

this participant the actual feedback performance was at chance level, while

the SMR predictor indicated fair performance. But the phenomenon of miss-

ing ERD was also observed in participants whose self-assessments provided no

evidence for non-compliance with instructions. Here, an alternative approach

suggested in Nikulin et al. (2008) could be useful: In this study, individuals
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were guided to perform quasi-movements, which are volitional movements

that are minimized under instructions of the experimenter to an extent that

they become undetectable by peripheral physiological measures. Although

they are similar to imagined movements, the attitude of the performers is dif-

ferent. Classification rates (for left vs. right hand) were significantly better

for quasi-movements than for imagined movements in a study with seventeen

volunteers. Consequently, participants in who the BBCI fails to detect task

related ERD could be instructed to perform quasi movements. Whether this

approach would be applicable in paralysed patients who are a target popula-

tion for BCI remains an empirical question. (2) In some participants motor

imagery lead to an enhancement of the SMR (event-related synchronization,

ERS) compared to the measurement under the relax condition. In some of

those cases the SMR predictor underestimated the performance, but these

were few, see section ‘Peri-Imagery ERS’. (3) Some participants had a pro-

nounced SMR which they managed to attenuate by motor imagery, but they

were not able to sustain this attenuation long enough (i.e., until the end of

the feedback trial), e.g., participants lc and ky. Those participants would

have performed well if the feedback had been adapted to shorter trial dura-

tions. (4) The feedback runs started about 2.5 hours after the beginning of

the experiment. This may have lead to problems in vigilance and may have

degraded the feedback performance.

Possible Improvements of the SMR Predictor

Our observations indicated that the SMR predictor can be distorted by

contributions from the occipital visual idling rhythm, which has a peak in

the alpha frequency range and is typically much stronger than the SMR
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idling rhythm. Although the Laplacian filter over sensorimotor areas should

cancel out contributions from the occipital site, this seemed not to be com-

pletely true in practice. To address the contribution of occipital alpha, we

did the same analysis as above with segments acquired under the condition

‘relax with eyes closed’- a condition know to substantially increase power in

the alpha band over occipito-parietal areas. The results were substantially

worse; namely, the correlation coefficient dropped from r = 0.53 to r = 0.27.

But even with eyes open, the visual alpha rhythm does not disappear com-

pletely, and therefore it might deteriorate the predictive value of the SMR

predictor. There are two approaches to counteract this potential problem.

(1) The experimental paradigm can be changed such that there is a task

which requires some visual processing during the ‘relax’ condition to sup-

press the visual alpha rhythm, e.g., watching a small abstract animation on

the screen. (2) Spatial filters that are specifically designed for the positions

C3 and C4 might be better in eliminating contributions from occipital sites

than the Laplacians filters.

Conclusion

While some publications focus on reporting results for successful partic-

ipants only, a percentage of 15-30% cases of BCI illiteracy are common in

every BCI laboratory. So far, very little was known about possible reasons

of such failures in BCI control. In the present study we found a reliable

predictor of BCI performance: Two minutes of resting state EEG with eyes

open measured at two Laplacian channels over left and right hand motor ar-

eas (positions C3 and C4) were sufficient to predict BCI performance during

later feedback runs within the same BCI session.
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Our results contribute to speed up studies that focus on SMR-based BCI

based on a machine learning approach, because potentially non-successful

subjects can be identified at the very beginning of a session. Further, our

findings point at a versatile direction to counteract BCI illiteracy: In sub-

jects who present with no SMR peak that could be modulated, operant

conditioning procedures similar to [Birbaumer et al. (1999); Kübler et al.

(2005); McFarland et al. (1998)] could be applied in a pre-training session

to specifically enhance the power of the SMR idling rhythm. Future studies

will therefore contrast and unite psychological shaping strategies with online

machine learning approaches where the SMR is enhanced by individually

optimized classification procedures.
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