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Abstract

Folding is an essential shape characteristic of the human cerebral cortex. Descriptors of cortical
folding patterns have been studied for decades. However, many previous studies are either based
on local shape descriptors such as curvature, or based on global descriptors such as gyrification
index or spherical wavelets. This paper proposes a gyrus-scale folding pattern analysis technique
via cortical surface profiling. Firstly, we sample the cortical surface into 2D profiles and model
them using a power function. This step provides both the flexibility of representing arbitrary shape
by profiling and the compactness of representing shape by parametric modeling. Secondly, based
on the estimated model parameters, we extract affine-invariant features on the cortical surface, and
apply the affinity propagation clustering algorithm to parcellate the cortex into cortical regions
with strict hierarchy and smooth transitions among them. Finally, a second-round surface profiling
is performed on the parcellated cortical surface, and the number of hinges is detected to describe
the gyral folding pattern. We have applied the surface profiling method to two normal brain
datasets and a Schizophrenia patient dataset. The experimental results demonstrate that the
proposed method can accurately classify human gyri into 2-hinge, 3-hinge and 4-hinge patterns.
The distribution of these folding patterns on brain lobes and the relationship between fiber density
and gyral folding patterns are further investigated. Results from the Schizophrenia dataset are
consistent with commonly found abnormality in former studies by others, which demonstrates the
potential clinical applications of the proposed technique.

1. Introduction

The cerebral cortex of the human brain is highly convoluted and folds itself into gyri and
sulci during brain development. As an essential characteristic of the human cerebral cortex,
the fold has shown quite different patterns on even major gyri and sulci across subjects
(Talairach and Tournoux, 1988; Van Essen et al., 1998; Fischl et al., 1999; Liu et al., 2004).
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In spite of this great variability, the folding pattern of human cortex seems to be closely
related to the architectonic, connectional and functional specialization of the cortical surface
(Welker, 1990; Toro and Burnod, 2005). Evidence also has shown that the folding pattern of
human cerebral cortex can predict its cytoarchitecture (Fischl et al., 2008). Therefore,
quantitative descriptions of folding patterns (Zilles et al., 1988; Yu et al., 2007a; Toro et al.,
2008) and understanding of the underlying mechanisms (Van Essen, 1997; Raghavan et al.,
1997; Toro and Burnod, 2005; Geng et al., 2007; Geng et al., 2009; Nie et al., 2009) have
emerged as important research goals.

The original concepts of fold and folding were adapted from geology (Davis and Reynolds,
1996). In structural geology, folds refer to the rock layers that bend themselves under the
forces acting in opposite directions, and folding is the process that forms folds. A hinge
point is the point of minimum radius of curvature for a fold, and hinge points on a fold
surface connect themselves to form a hinge line (Figure 1). As shown in Figure 1, the hinge
of a fold is the field of marked curvature adjacent to the hinge line (Davis and Reynolds,
1996; Donath and Parker, 1964). Similarly, folds in this paper refer to regions of the
convoluted human brain cortex, and folding is the convolution and gyrification process
during human brain development. A hinge line and a hinge are geological counterparts
defined on the human cerebral cortex.

The folding pattern of human cerebral cortex is a multi-scale concept whose research scope
can vary from a very small neighborhood to a whole brain cortical surface (Figure 2). There
are two major streams on cortical folding pattern analysis. One is based on the descriptor of
curvature and its derivations. Curvature, as show in Figure 2a, is a very local descriptor of
folding pattern. Its research scope is usually a small neighborhood that is one ring away
from the focused vertex. Conversely, the other mainstream is a quite global one. These
studies use gyrification index (Gl) (Zilles et al., 1988,Figure 2e) and spherical wavelets (Yu,
2007a and Yeo et al., 2008,Figure 2f) to analyze the folding pattern of the entire cortical
surface or a certain lobe of human brain. Both of these two major stream approaches have
generated many successful applications (Hardan et al., 2004;Schaer et al., 2006;Rettmann et
al., 2006;Bonnici et al., 2007;Neal et al., 2007). Recently, development of cortical folding
descriptors has attracted great interest in the literature. For example, Toro and colleagues
proposed using surface ratio to describe local cortical folding pattern (Toro et al., 2008).
This work extends the description from global scale such as Gl to local scale. Zhang et al
proposed a parametric representation of cortical folding patterns (Zhang et al., 2009). This
method has a strong local shape representation capability via polynomial models. Awate and
colleagues fused several cortical folding descriptors into a multivariate statistical framework
(Awate et al., 2009). Boucher and colleagues used discrete exterior calculus and Tikhonov
regularization to study the orientation of cortical folds, and applied the method to
Alzheimer’s disease (Boucher et al., 2009). It is expected that these effective folding pattern
descriptors will provide new insights into the mysterious cortical folding process and
effective description of its patterns. Notably, cortical folding is essentially a multi-scale
concept and one can obtain quite different descriptions if he/she focuses on different scales
for the same cortical surface.

Inspired by the methodology on folding pattern analysis of rocks in Geology, this paper
proposes a method to analyze the folding pattern of cortex at the gyrus scale via surface
profiling. This is a hybrid parametric method and profiling method in the sense that it
combines both advantages of parametric method (achieving compact representation of
shape) and profiling method (achieving flexibility of arbitrary shape representation). The
basic idea is to represent the 3D shape information of a cortical surface patch with modeling
parameters of a series of 2D profiles, and to cluster the cortex into regions with this shape
information. Then a second-round surface profiling is performed on the gyrus crown of the
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parcellated cortex, and the number of hinges is detected to describe the folding pattern of the
gyrus. With surface profiling on the gyri crowns, we can extend cortical folding analysis
from localized parametric representation to gyrus-scale representation. We also applied this
methodology to a Schizophrenia dataset and interesting results are obtained.

2. Methods

2.1 Overview

2.2 Profiling

As summarized in Figure 3, the proposed method for our gyral folding pattern analysis
includes the following steps. First, for each vertex of a reconstructed human brain WM/GM
surface, we sample its corresponding surface patch (e.g., the color-coded area in Figure 3b)
into a series of 2D profiles, and model these profiles using the power function, which is a
popular model in structural geology study (Bastida et al., 1999). The shape information of
the current surface patch then is encoded in the parameters of the power function. Second,
based on the model parameters and profiling information, we define several affine-invariant
features to represent each vertex’s folding information, and use these features to cluster the
vertices of the whole cortical surface by an affinity propagation algorithm. This step
segments the surface into several major classes including the gyrus crown. Finally, a second-
round profiling is applied to vertices of the gyrus crown on the parcellated cortex, and the
number of hinges of the current gyrus is detected to represent its folding pattern. These steps
will be detailed in Section 2.2~2.5.

The reason why we take two rounds of profiling on the cortical surface is that direct
profiling on the surface will not generate a descent hinge detection result (e.g., Fig.3e)
because of the complexity of gyral folding and the imperfect reconstruction of WM/GM
cortical surface. To overcome these barriers, we perform surface profiling on the parcellated
cortical surface (Fig.3c). This is a critical step that makes the proposed framework robust to
folding complexity and resistant to profiling noise from the imperfect cortical surface. The
first round surface profiling, model fitting and clustering are all preprocessing steps to
produce the parcellated cortical surface for the second round surface profiling.

of the cortical surface

Building a coordinate system for each vertex on a cortical surface is a necessary yet
practically difficult issue. The difficulties are twofold. First, considering the complexity and
high convolution of the human cortical surface, investigators may obtain quite different
descriptions of the same fold if they look from different points of view. Second, descriptions
of similar folding patterns at different locations and in different local coordinate systems
should be comparable. These two contradictory facets make building a coordinate system
challenging.

To deal with this problem, we build a 3D coordinate system that combines a 3D Cartesian
coordinate system (Tao et al., 2002) and a 2D polar coordinate system, as shown in Figure 4.
For any vertex O on the cortical surface S, there exists a normal direction N, as well as a
tangent plane P. We establish the normal direction N as one axis (like the Z direction in a 3D
Cartesian coordinate system), and build a polar coordinate system in plane P. The starting
direction Rq in the 2D polar coordinate system is randomly selected. This coordinate system
avoids the determination of the X axis and Y axis in a 3D Cartesian coordinate system, and
makes the cortical surface easier to profile.

After building the coordinate system, we sample the current vertex’s surface patch into
profiles as follows. Without losing the generality, we denote the radial direction as R, here
a is the angle between Ry and R,,. The profile of the current surface patch at R,, direction can
be recorded as C(a, x, y), here x is the radial distance of a point on profile to the normal

Neuroimage. Author manuscript; available in PMC 2011 October 1.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Lietal.

Page 4

direction N, and y is the normal distance of the point to the plane P. The profiling process is
conducted every 0 degrees around the circle direction, which will generate 360/6 profiles for
the current surface patch. For each profile, we discretize the profile at a radial step of r, and
the discretization stops if we reach a maximum number points of M. Figure 5 shows the
sampling results, as well as one profile.

The essense of surface profiling here is to simplify a 3D profiling problem down to a
collection of 2D profiling problems. This simplification is founded on the fact that the
human brain is highly convoluted and a surface patch can have very complex shape. Current
parametric models for 3D shape like polynomial and ellipsoid are often symmetric and may
be too simple to capture such complex shapes. Thus, the advantage of such a simplification
is the flexibility to describe an arbitrarily shaped cortical surface patch.

The disadvantage with the simplification is the possible loss of some 3D shape information.
However, the 360 degrees of profiling still captures much 3D information, especially when
we model the profiles (see the following section) and connect corresponding model
parameters of all profiles together to form a circle curve.

2.3 Model fitting of profiles

The essence of model fitting for profiles is to encode their shape information into a couple
of parameters, and to represent the shape information compactly. The model we use in this
paper is a power function, which is a popular model in Geology because of its simplicity and
intrinsic physical meaning (Bastida et al., 1999). The power function is expressed as:

y=yo(x/x0)" (1)

Here, (X, y) is the 2D Cartesian coordinate of a profile; xq, yg and n are parameters to
describe a profile shape; yg # 0, X,> 0 and n > 0. Figure 6 shows the power function with
different parameters. As we can see from the figure, the power function is good at 2D shape
representation.

In practice, we add a translational parameter b to model the introduced translation along y
direction by profile smoothing. Thus the final model will be:

y=b+yo(x/x0)" 2

The parameters of this model can be evaluated in a Least-square sense. Given the N sample
points of the profile (x;, yi), i = 1, 2, 3,..., N; the model parameters are those that minimize
the fitting residuals:

N
P=arg min )" (v = y1)°
L 3)

Here, P denotes the four parameters (b, Xo, yo and n) to be evaluated, yp; is the model output
at xj with the four parameters known as P, and yj is profile measurement at x;. The
minimization problem is known as a non-linear least square minimization problem, and
there are several solutions for it. In this paper, we adopt the Levenberg-Marquardt (LM)
algorithm, which has been proven to be fast and stable in many applications (See Levenberg,
1944; Marquardt, 1963 for details on the LM algorithm). Figure 7a and 7b show the
histograms of model parameters for 70, 000 randomly selected profiles.
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To evaluate the accuracy of model fitting, we define the fitting error of a profile as:

N
FittingError= J Z(y[ = Yp) Vi — Ypi)

i=1 (4)

Here yp; is the model value at x; with the global optimal parameters P, whereas y; is the
measurement at x; and N is the number of points used for model fitting. Figure 7c shows the
histogram of fitting error for the 70,000 profiles. As can be seen from the histogram, most of
the model fitting are reasonable and very accurate, and 98.28% of the profiles are fitted with
an error under 0.2 mm.

There are indeed some profiles that fail in modeling fitting using a power function. Most of
these failures come from profiles that are on relatively flat surfaces where small fluctuations
do exist. If these fluctuations are very small (less than 0.2mm for example, see Figure 7d),
corresponding profiles can be fitted with the high power parameter N. That is why we have
many fittings with N comparatively high in the histogram. However, this kind of failure is
not a severe problem in model fitting. The reason is twofold. For one thing, the ratio of these
failure cases to all fitting cases is quite small. Table 1 shows the failures of model fitting for
seven random subjects. Generally, only 6~7 profiles fail to fit the model in every 1000
profiles. For another, smoothing applied on all profiles of current vertex can be a good
compensation.

2.4 Feature extraction and clustering via affinity propagation

After the model fitting process, the shape information of the cortical surface is encoded in
the parameters of the power function at each vertex. Among these parameters, the ratio R
between yg and X and the power n are very information-rich descriptors of profile shape.
Figure 6 shows how the shape of a 2D profile changes with the two parameters. Profile
shape changes dramatically with R and n. Thus most of features extracted are based on them,
especially the ratio R, as this metric has proven to be more stable and change more smoothly
between adjacent profiles than the power n. Table 2 shows the definitions and descriptions
of features that we extract based on model parameters and profiling information.

Based on these features, we apply the unsupervised affinity propagation clustering algorithm
on the cortical surface. Affinity propagation clustering has been successfully used in many
applications because of its simplicity, general applicability and performance (Frey and
Dueck, 2007). The idea of affinity propagation clustering is to consider all data points as
potential cluster centers (exemplars), and exchange real-valued messages (responsibility and
availability) between data points based on similarity until a group of data centers are found
S0 that the net similarity is maximized.

In our application, the inputs of affinity propagation are pair-wise similarity and data point
preferences. The similarity s(i,k) indicates how well the data point k can be the exemplar for
data point i. The preference s(i,i) is defined such that points with high values are more likely
to be chosen as exemplars. The messages passed between data points include responsibility
and availability. The responsibility r(i,k), sent from data point i to candidate exemplar point
k, reflects the accumulated evidence for how well-suited point k is to serve as the exemplar
for point i, taking into account other potential exemplars for point i. Self-responsibility r(k,k)
reflects accumulated evidence that point k is an exemplar based on its input preference
tempered by how ill-suited it is to be assigned to another exemplar. The availability a(i k),
sent from candidate exemplar point k to point i, reflects the accumulated evidence for how
appropriate it would be for point i to choose point k as its exemplar, taking into account the
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support from other points that point k should be an exemplar. Self-availability a(k, k),
reflects accumulated evidence that point k is an exemplar, based on the positive
responsibilities sent to candidate exemplar k from other points. The affinity propagation is
performed as follows:

Step 1. Initialization. All availabilities are set to zero, and choose the damping
parameter A:

ao(i, k)=0; A € [0, 1] )

Step 2. Computer and update responsibility:

rre1 (G K)=Ar(i, k)+(1 — DAr (i, k)
Ar,(i, k)=s(, k) — max {a(i, k") +s(i, k’)}
K #k 6)

Step 3. Computer and update availability:

a1 (i, K)=Aa (i, K)+(1 = DAa k) (i # k)

Aay(i, Ky=min {0, r,(k, k)+ D" max {0, (", )}
i’ ¢(i.k)

a1 (k k)= ) max {0, (@, k)

i’ +k (7)

Step 4. Combine responsibility and availability:

E=ry 1@, k)+a G, k) (8)

Data point k will be an exemplar if E = 0.
Step 5. Go to step 2 until exemplars don’t change for certain iterations.

For more details of the affinity propagation method, please refer to (Frey and Dueck, 2007);

In this paper, the similarity s(i,k) of two random vertexes i and k is defined based on the
Mahalanobis distance:

N T N N
S(i. k)= - \/ (Vi= Vi) Cov (Vi = Vi) ©

Here \7, and \7k are the feature vector defined in Table 2; cov is the covariance matrix of the
feature vectors. Damping parameter A = 0.9, and preferences are the same for all data points.

Figure 8 shows the result of affinity propagation clustering. The cortex is segmented into
five classes: gyrus crown (red), sub gyrus crown (yellow), central area (green), sub sulcus
basin (light blue), and sulcus basin (blue, Lohmann and Cramon, 2000). The result has two
important properties. First, these parcellated cortical regions are very distinct in hierarchy.
From the corresponding patch of each cortical region in the right of Figure 8, we can see that
this hierarchy comes from the different shapes of different cortical regions. Second, the
transition between different cortical regions is smooth. This property results from the
smoothness of the cortical surface, and it brings a favorable characteristic, that is, if we
move from gyrus crown (red in the left figure) to sulcus basin (blue in the left figure) along
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any path, we will cross the other three transitional cortical regions (yellow, green, and light
blue) one by one. These two properties help us profile the gyrus crown (red area) on the
parcellated cortex and analyze the folding pattern of the gyrus.

It is noticeable that although we can obtain various numbers of classes from the clustering
algorithm by changing the clustering parameters, the algorithm outputs still have the two
properties mentioned above. The reasons why we choose five classes are two folds: 1) five
classes are sufficient to represent the folding hierarchy shown in Fig.8; and Fig.2) this
choice helps to generate distinct feature values defined by Eq. (10) in the following section.

2.5 Second-round profiling on the gyrus crown of parcellated cortex and hinge detection

After clustering the cortical surface into several regions based on their shape information,
we obtain a parcellated cortical surface which has strict hierarchy among different areas
while keeping the smooth transition from gyri to sulci, and therefore can conduct a second
round profiling on the gyrus crowns of the parcellated cortex. To conduct this, we firstly
assign a value to each parcellated cortical region. The assigned region value can vary, but
should reflect the hierarchy and transition between different cortical regions. In this paper,
gyrus crowns are assigned with a minimum value 1 whereas sulci are assigned with a
maximum value of 5, and other regions are assigned with values according to their
hierarchical level on the parcellated cortex. Then, a feature value f is created for each profile
of a gyrus crown in order to measure the depth profile extension, as well as the number of
different regions the profile crosses while extending. The feature value is defined as:

1 N
f_NZizlﬁ (10)

Here, N is the number of points on the profile. f; is the region value to which point i belongs.
For example, if point i is on a gyrus crown, f; will be 1, and f; will be 5 if point i ison a
sulcus basin.

Following the above two steps, we detect hinges of the gyrus on which the current vertex
sits. After 360 degree profiling, the feature values of all profiles for the current vertex will
join together to form a ring curve (Figure 9d). Local minima of the curve correspond to the
hinges of the gyrus, and the number of the local minima is the number of hinges of the
gyrus. Take the case shown in Figure 9 for example, vertex A has a very clear folding
pattern (three local minima) to indicate that it is on a 3-hinges gyrus.

Detection of hinge number has proven to be consistent and smooth, e.g., as shown in Figure
9c, almost all neighboring vertexes of vertex A are detected on the 3-hinge gyri. However,
there may be false positives (Figure 9e). The typical profile pattern for them is depicted in
Figure 9e. As we can see from the curve, it does have three local minima, but the second
local minimum is obviously much higher than the other two. Considering the feature value
definition, the strict hierarchy, and the smooth transition between different regions of the
parcellated cortex, a profile on the gyri should not have feature values like that, even when
we take the smooth effect into consideration. To remove these false positives, we apply a
local adaptive threshold method in the detection of hinges number. We first obtain the
minima feature f,j, Of all concave inflections. Then, if the concave value f; of the curve
exceeds the minima fy;, for a certain threshold fy,esn the profile of this concave should not
be recognized as a profile on the gyri. Otherwise, the profile will be considered.
Mathematically, the decision is simple. Let us create a boolean variable ProfOnGyri to
indicate whether or not on gyri the corresponding profile is of f.:
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ProfOnGyri= { False, [c> fmin+ [inresh }

True, fe < fuin finresh (11)

In our work, the fihresh is set to be 0.5.

3. Results

3.1 Hinge patterns detection

In this section, we applied the above methods to 10 constructed GM/WM cortical surfaces.
The MR image dataset we used here were obtained from NIHPD public data released on
March 2008 (http://www.bic.mni.mcgill.ca/nihpd/info/index.html). Subjects are youths
(mean age: 17.98(y); standard variance: 0.37(y)). GM/WM cortical surfaces were
reconstructed using home-built software (Liu et al., 2004). Topology correction and
smoothing were applied to the cortical surfaces (Shattuck and Leahy, 2001). The
reconstructed cortical surfaces have 300,000 vertexes and double sized triangle faces on
average.

Our experimental results demonstrate that human gyral folding patterns can be divided into
3 classes according to their number of hinges: 2-hinge, 3-hinge and 4-hinge gyri. Figure 10a
shows examples of the three folding pattern categories and Figure 10b shows their
corresponding feature curves respectively. As we can see from the figure, the hinges of gyri
correspond well to the local minima of the feature curves (Figure 10b). The number of local
minima of the connected feature curve, therefore, is considered as the number of hinges for
the current gyrus. Besides the number of local minima of the connected feature curve, the
distance between local minima is also an important feature that could be used to further
classify the detected gyral folding patterns. This distance actually represents the degree to
which the gyrus bends itself. Take the 2-hinge gyrus in Figure 10a3 as an example; its
bending degree is apparently larger than Figure 10al and Figure 10a2 in the same category.
We can also see the differences from the feature curves in Figure 10b, that is, the distance of
the two local minima in Figure 10b3 is larger than those of the other two gyri in Figure 10b1
and Figure 10b2. Figure 10c provides the gyri pattern detection result on a whole cortical
surface. Most of the gyri patterns are correctly detected, indicating reasonably good
performance of the proposed method. In particular, the detected 4-hinge patterns are
highlighted by dashed circles. One zoomed example is shown in Figure 10d.

3.2 Pattern detection accuracy

To evaluate the accuracy of our proposed method, we had two experts manually check the
detected patterns, and count the number of two types of detection errors: Typel error (false
positive) and Type2 error (false negative). We express the accuracy as:

TypelErrors+Type2Errors
x 100%
AllDetectedPatterns ) 0 (12)

DetectionAccuracy=(1 —

The detection accuracy for 3-hinge gyri pattern is summarized in Table 3. The average
detection accuracy was over 90%, indicating relatively good detection accuracy. For 2-hinge
and 4-hinge patterns, our algorithm had a similar detection accuracy of over 90%.
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3.3 Hinge pattern distributions on lobes

To quantitatively study the distribution of 3-hinge gyri and 4-hinge gyri across the human
lobes, we mapped the number of these folding patterns onto a parcellated model cortical
surface. The process has three steps which include: (1) brain registration using HAMMER
(Shen and Davatzikos, 2002); (2) mapping the lobe labels onto the reconstructed GM/WM
cortical surface, which generates a parcellated cortical surface into lobes; (3) mapping the
average number of three-hinge and four-hinge gyri at each lobe onto the surface.

As shown in Figure 11, the distribution of 3-hinge and 4-hinge gyri across the lobes has
shown some interesting patterns. For example, the frontal lobe has more 3-hinge and 4-hinge
gyri than any other lobes, possibly indicating the more complicated gyrification process in
the later stage of neurodevelopment (Brown et al., 2002). Another interesting observation is
the left hemisphere shows more foldings than the right hemisphere, both for 3-hinge gyri
and 4-hinge gyri, which may indicate more complicated gyrification and functional
specification process in the left hemisphere (Sun and Walsh, 2006; Boni et al., 2007). This
result reflects the asymmetry of the human brain from a gyral folding perspective.

3.4 Relationship between gyral folding pattern and fiber density

Although the mechanisms underlying the formation of gyri and sulci remain an open
question, evidences have demonstrated that cortical wiring has played an important role in
cortical gyrification (Goldman-Rakic and Galkin, 1978; Goldman-Rakic, 1980; Goldman-
Rakic, 1988; Dehay et al., 1996). A natural question following these evidences is: is there
any relationship between different cortical folding patterns and the cortical wiring?

To study this relationship, we applied our proposed method to a new nine-subject dataset
containing Diffusion Tensor images (DTI). The cortical surface was reconstructed from
WM/GM segmentation using DTI images (Liu et al., 2007). Fibers were extracted from DTI
data using fiber tractography (Fillard and Gerig, 2003). The fiber density py on any vertex x
of the cortical surface is defined as:

S
Pxr—=
Z’i (13)

Here, n; is the number of fibers penetrating the it neighboring triangle of x; r; is the area of
this triangle in mm2. The fiber density of two-hinge gyri is calculated as the average fiber
density of vertices on the crowns of 2-hinge gyri (green regions in Fig. 10c), whereas the
fiber density of three-hinge gyri is calculated as the average fiber density of vertices on the
junctions of 3-hinge gyri ( yellow regions in Fig. 10c).

Figure 12 depicts the average fiber density of gyri with 2 hinges and 3 hinges. As we can see
from this figure, 3-hinge gyri have larger fiber density than its 2-hinge counterpart for all the
nine subjects. This indicates the cortical axongenesis might take effect in the formation of
these different gyral patterns. However, to what degree and how the brain wiring affect this
differentiation of gyral folding pattern need further investigation.

3.5 Gyral folding patterns for Schizophrenia patients

Schizophrenia (SZ) is a psychiatric disorder characterized by abnormalities in the perception
or expression of reality. It most commonly manifests as auditory hallucinations, paranoid or
bizarre delusions, or disorganized speech and thinking with significant social or

occupational dysfunction. Cortical folding abnormalities of SZ patients and people with high
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risk of SZ have been reported in several studies (Kulynych et al., 1997; Paulo et al., 2003;
Jou et al., 2005; Wisco et al., 2007; Cachia et al., 2008). All of them reported a folding
reduction on the left hemisphere of SZ patients, while some (Paulo et al., 2003; Cachia, et
al., 2008) reported a bilateral folding reduction on both hemispheres of SZ patients.

Since the left brain is the speech and communication center, and the number of three-hinge
gyral patterns can be used as an indicator of gyral folding complexity, it is natural to
hypothesize that SZ patients have the reduction of three-hinge gyri on the left brain.. In this
section, we apply our surface profiling analysis to SZ patient MRI data to test this
hypothesis. Eleven SZ patients and eleven health controls were used in this study. Left and
right GM/WM surfaces were reconstructed using FreeSurfer
(http://surfer.nmr.mgh.harvard.edu/). Table 4 shows the number of 3-hinge gyri of left and
right hemisphere for both SZ patients and normal controls. The left hemisphere of SZ
patients has less 3-hinge patterns than normal controls (p<0.04, one-tailed t-test assuming
equal group variance), which may indicate abnormality of the left hemisphere of SZ
patients. This finding is consistent with former studies (Kulynych et at., 1997;Paulo et al.,
2003;Jou et al., 2005;Wisco et al., 2007;Cachia et al., 2008). For the right hemisphere, we
do not have statistical evidence to prove a similar hypothesis. This result is consistent with
Kulynych et al., 1997 on SZ patients and Jou et al., 2005 on people with high risk of SZ.
The statistics of these results, including means and standard deviations, are visualized in Fig.
13.

However, it needs to be noticed that there are different views about cortical folding for SZ
patients. For example, Highley et al., 2003 reported that there was no gyrification difference
for schizophrenia; Narr et al., 2004 even reported an increase in cortical folding in the right
superior frontal cortex of male schizophrenic patients. It is evident that there are still no
common agreements on this issue across the whole community. Therefore, people should be
cautions to interpret our analysis result in the above paragraph.

4. Discussion and Conclusion

In this paper, we propose a method to analyze human brain cortical gyral folding patterns
via surface profiling. The method focuses on the detection of hinge numbers of gyri, which
is converted to the problem of finding local minima on the feature curve. The proposed
method has been applied to two normal brain datasets and a Schizophrenia dataset. Our
preliminary results demonstrate that the proposed surface profiling method is able to
accurately classify gyri into three folding patterns according to the number of gyral hinges.

In the literature, there has been significant amount of research work on sulci analysis, e.g.,
Li etal., 2008, Lohmann et al., 2008. The reasons that we focus on gyri in this paper are two
folds: 1) Published data showed that gyri have significantly more neurons than sulci
(Hilgetag and Barbas, 2005), suggesting that the morphogenesis of gyri has significant roles
in the development of shape of the cerebral cortex; 2) gyri have significantly more long fiber
connections than sulci, as shown in Fig 12a, suggesting that gyri might be the central
structural substrate of interaction between corticogenesis and axogenesis (Van Essen, 1997).
Hence, quantitative description of gyral shape patterns is of potentially significant interests
to the neuroscience and neuroimaging community.

In the literature, several methods have been proposed to automatically label human brain
surface into gyri and sulci (Cachia et al., 2003; Fischl et al., 2004). In comparison, our
segmentation of the cortical surface is based on clustering using profile shape information,
and three more classes in addition to gyrus crown and sulcus basin are segmented to fill the
transitional area from gyri to sulci. Though the segmented gyrus crown might be broken
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somewhere (Figure 14a), it seems that these breaks have little impact on the final results of
gyral folding patterns (Figure 14b). This robustness may come from the profiling method
itself. As we profile the cortical surface at a macro level, small breaks of a gyrus crown
probably will not change the fact that the majority of the profile is on a gyrus.

Our research on gyral folding pattern analysis has shown that 3-hinge and 4-hinge gyri
(Figure 10) are common across different subjects, and the distribution of them among
individuals can vary significantly. This result puts forward new challenges for registration-
based analysis of the human brain (Thompson, 1996; Shen and Davatzikos, 2002; Liu et al.,
2004; Fischl et al., 2004). For example, how to establish correspondence between different
patterns of gyri, e.g., 3-hinge gyri and 4-hinge gyri, in brain registration remains a
challenging and open problem.

Currently, our method only classifies gyral folding patterns into 3 broad classes: 2-hinge, 3-
hinge, and 4-hinge gyri. A more detailed classification of the folding patterns, however, is
possible via surface profiling. For the 2-hinge gyri, we could use the angle between local
minima to recognize whether it is a “~" shape gyrus or “U” shape gyrus. For the three-hinge
gyri, we could also use the angle information to further classify the gyri into “Y” shapes and
“T” shapes. The more detailed classification of 2-hinge gyri and 3-hinge gyri could
potentially provide additional important features for self-contained parcellation of the
cerebral cortex into anatomically meaningful regions, as well as for automatic recognition of
them.

We already showed the applications of the gyral folding analysis techniques in the
understanding of cortical folding mechanisms and in the study of Schizophrenia diseases. In
the future, this technique may be applied in many other diseases associated with abnormal
cortical folding (Levine and Barnes, 1999; Mochida and Walsh, 2004) such as Down’s
syndrome (Venita, 1996), the Donnai-Barrow syndrome (Kantarci et al., 2007) and
lissencephaly, in which brain folds are less numerous and smaller (Clark, 2004).
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Hinge Point

Sulcus

Figure 1.
An illustration to show the concepts of hinge point (the purple point), hinge line (the red
line), hinge (the blue field) and gyrus crown.
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Figure 2.

Multi-scale description of cortical folding patterns. (a): micro-scale (red area, described by
curvature); (b): meso-scale (yellow area, described by polynomial model, Zhang et al., 2009;
or Bezier surface model, Zhu et al., 2009); (c): gyrus scale (blue patch, our method); (d):
sulcus scale, Mangin et al., 2004; (e): lobe scale (by gyrification index, Zilles et al., 1988);
(F): global scale (by spherical wavelets,Yeo et al., 2008; Yu et al., 2007a; Yu et al., 2007b).
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Figure 3.

Flowchart of the surface profiling method. (a). Original cortical surface; (b). Profiles on the
original cortical surface; (c). Parcellated cortical surface; (d). Feature surfaces with shape
information; (e). Gyral folding pattern surface; (f). Profiles on parcellated cortical surface.
Steps: (1) Profiling; (2) Model fitting; (3) Feature extraction; (4) Affinity Propagation
clustering; (5) Second round Profiling; (6) Hinge detection.
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Figure 4.
An illustrative figure to show the coordinate system. O is any vertex on the cortical surface

S; P is the tangant plane; N is the normal direction of vertex O; Ry is the starting direction of
sampling; R,, is the sampling direction with a degree away from Rg; C is the sampling
profile at direction Ry,.
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An Example Profile
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Figure 5.
An example of profiles. Samping parameters: 6=5°, r = 0.1, and M = 45.
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Figure 6.
Power function shape changes with parameters. Left: power function shape change with

ratio of y0/x0 while n holds constant; Right: power function shape change with power n
while y0/x0 holds constant.
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Figure 7.

Model fitting results from 70,000 profile fittings. (a): histogram of the ratio between yg and
Xo (b): histogram of N; (c): histogram of fitting error defined in Eq.(4); (d): typical profiles
that the fitting algorithm doesn’t converge.
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Figure 8.

The five parcellated cortical regions and their typical corresponding patches: gyrus crown
(red, &), sub gyrus crown (yellow, b), central area (green, c), sub sulcus basin (light blue, d),
and sulcus basin (blue, e).
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Profiling Angle in Polar Coordinate System
Figure 9.

The profiling process on gyri of a segmented surface. Figure 9b shows the profiling at a
certain vertex on gyri (vertex A in b and c¢). As we can see from Figure 9b, the profiling
starts from the blue arrow direction and was conducted every 5 degrees in a counter-
clockwise direction around the vertex; Figure 9e shows the typical curve of false positive
hinge (corresponds to the inflection in red circle).
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Figure 10.

Pattern detection results. (a): Examples for each detected pattern. Small triangles denote the
centers of detected gyri patterns. 1-3: 2-hinge gyri; 4-6: 3-hinge gyri; 7-9: 4-hinge gyri. (b):
Corresponding feature curve for each sample. (c): Detected patterns on a whole cortical
surface. The three patterns are color-coded. (d): An example of detected 4-hinge gyri.
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Figure 11.

Gyral folding pattern distribution on lobes. The lobe parcellation was generated by brain
volume parcellation using HAMMER first and then mapped to the cortical surface.L1 and
L2 are left hemispheres and R1 and R2 are right hemispheres.

Neuroimage. Author manuscript; available in PMC 2011 October 1.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuei\ Joyiny Vd-HIN

Lietal.

Piseeemoe 18
FiberDensity
2 3
T -

M

Gyral Fiber Density by Cortical Folding

= 2Hinge ™ 3Hinge

subl sub2 sub3 sub4 sub5 sub6 sub?7 sub8 sub9

Figure 12.

Top: (a) Fiber overlaid on the WM/GM surface; (b) magnified view of the region in the
black rectangular of (a); (c) fiber density of this region; (d) average fiber density of gyri with
2 hinges and 3 hinges for the whole dataset. Fiber density for 4-hinge gyri is not calculated
since not every subject has this pattern in this dataset.
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3-hinge Gyri Number for SZ Patients and Normal Controls
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Figure 13.

Statistics of 3-hinge gyri for SZ patients and the normal controls. Red bars for left

pti3

ptr3

hemisphere, and blue bars for right hemisphere. ncl3, ncr3, ptl3and ptr3 are defined at table

4.
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Figure 14.
(a) Examples of broken gyrus connections. (b) Result of gyral folding detection in regions
with broken connections.
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Table 1

Failures of model fitting using power function.

Subject ID Number of Profiles  Number of Fitting Failures  Failures Percentage
Subl 11,532,960 70,868 0.61%
Sub2 11,894,904 84,840 0.71%
Sub3 11,962,800 90,689 0.76%
Sub4 12,472,704 76,250 0.61%
Sub5 11,999,736 67,887 0.57%
Sub6 11,743,560 81,382 0.69%
Sub7 11,941,704 83,001 0.70%
Average(Stdev)  11,935,481(286,945) 79,274(9.31) 0.66% (0.07%)
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The features extracted for clustering.

Table 2
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Feature Name

Definition

Visualization

SulciOrGyri

A vertex
that has
more
profile
points
above its
tangent
plane will
be
considered
as asulci
vertex, and
vice versa.
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Feature Name

Definition Visualization

AverageRatio

The
average R
of all
profiles for
current
vertex.
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Feature Name

Definition Visualization

AverageMinR

Average R
for all
profiles that
correspond
to local
minima at
R curve.
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Feature Name

Definition Visualization

AverageMaxR

Average R
for all
profiles that
correspond
to local
maxima at
R curve.

AllInflectionsDis

Sum of
distances
between
neighboring
local
maxima
and
minima.
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Feature Name

Definition Visualization

AverInflectionDis

Average of
distances
between
neighboring
local
maxima
and
minima.
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Feature Name

Definition Visualization

MaxInflectionDis

Max of
distances
between
neighboring
local
maxima
and
minima.
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Feature Name

Definition Visualization

AverSampleDis

Average of
the first
order
moment of
all profiles
about
tangent
plane.
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Feature Name

Definition Visualization

MaxSampleDis

Maximum
of the first
order
moment of
all profiles
about
tangent
plane.

AverPower

Average of
fitted
parameter n
of all
profiles.
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Table 4

3-hinge gyri number for SZ patients and the normal controls.

ncl3®  ner3” ptl3* ptr3*
144 157 142 151
170 136 150 160
151 140 145 136
154 146 141 142
165 148 164 167
155 159 161 150
143 150 140 147
151 152 145 159
169 165 148 155
144 152 149 164
168 165 147 150

Page 39

*
ncl3: three-hinge gyri number of LH for controls; ncr3: three-hinge gyri number of RH for controls; ptl3: three-hinge gyri number of LH for SZ
patients; ptr3: three-hinge gyri number of RH for SZ patients.
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