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Abstract
Many network analyses of fMRI data begin by defining a set of regions, extracting the mean
signal from each region and then analyzing the correlations between regions. One essential
question that has not been addressed in the literature is how to best define the network
neighborhoods over which a signal is combined for network analyses. Here we present a novel
unsupervised method for the identification of tightly interconnected voxels, or modules, from
fMRI data. This approach, weighted voxel coactivation network analysis (WVCNA) is based on a
method that was originally developed to find modules of genes in gene networks. This approach
differs from many of the standard network approaches in fMRI in that connections between voxels
are described by a continuous measure, whereas typically voxels are considered to be either
connected or not connected depending on whether the correlation between the two voxels survives
a hard threshold value. Additionally, instead of simply using pairwise correlations to describe the
connection between two voxels, WVCNA relies on a measure of topological overlap, which not
only compares how correlated two voxels are, but also the degree to which the pair of voxels is
highly correlated with the same other voxels. We demonstrate the use of WVCNA to parcellate
the brain into a set of modules that are reliably detected across data within the same subject and
across subjects. In addition we compare WVCNA to ICA and show that the WVCNA modules
have some of the same structure as the ICA components, but tend to be more spatially focused.
We also demonstrate the use of some of the WVCNA network metrics for assessing a voxel’s
membership to a module and also how that voxel relates to other modules. Last, we illustrate how
WVCNA modules can be used in a network analysis to find connections between regions of the
brain and show that it produces reasonable results.
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1 Introduction
It has long been recognized that understanding brain function requires a characterization of
both functional localization and functional integration or connectivity (Friston, 1994).
Although functional integration has historically been studied in the context of task-driven
functional connectivity, recent work has focused heavily on the pattern of intrinsic
functional connectivity present in resting-state fMRI data (Biswal et al., 1995; Greicius et
al., 2003; Fox et al., 2005; Beckmann et al., 2005; DeLuca et al., 2006; Jafri et al., 2008;
Damoiseaux et al., 2006; Dosenbach et al., 2007; Liu et al., 2008; Salvador et al., 2005;
Achard and Bullmore, 2007; Cohen et al., 2008). In particular, there is growing evidence
that functional networks in the brain exhibit “small world” properties, with a high degree of
clustering and a short average path length between any two voxels (Bassett and Bullmore,
2006; Bullmore and Sporns, 2009).

Network analyses of fMRI data generally proceed by defining a set of regions, extracting the
mean signal from each region, and then analyzing the correlations between regions. One
essential question that has not been addressed in the literature is how to best define the
network neighborhoods over which signal is combined for network anlayses. Most studies
have used regions defined either on the basis of functional imaging activation or on the basis
of anatomy. Here we present a novel unsupervised method for the identification of tightly
interconnected voxels (or modules) from fMRI data. This method, weighted voxel
coactivation network analysis (WVCNA), is based on an approach developed for the
detection of gene co-expression networks (Zhang and Horvath, 2005). It employs the graph-
theoretic concept of topological overlap (TO) (Ravasz et al., 2002), in which the relation
between two voxels is determined not by their correlation with one another, but by the
degree to which they are both highly correlated with the same other voxels. Further, rather
than using thresholded correlation measures, it uses a weighted correlation measure that
removes the need to choose an arbitrary correlation threshold. Finally, the weighting
coefficient is chosen to maximize the scale-free nature of the network, thus resulting in a
network with a biologically plausible connectivity distribution. Scale free networks are a
class of small world networks characterized as having many nodes with few connections to
other nodes and fewer highly connected nodes. By clustering the resulting topological
overlap values, it is possible to detect a set of functionally coherent network modules, which
can then be used for further analyses of network characteristics. Like independent
components analysis (ICA), WVCNA can be considered a data reduction technique, but
unlike ICA it does not impose independence (or orthogonality) on the resulting components.
While the independence assumption has statistical advantages, it is biologically implausible
in the context of fMRI data. It is quite possible that a module (corresponding to one brain
region) is correlated with another (corresponding to another brain region). What also sets
WVCNA apart from ICA is that it includes a whole host of measures for assessing the
network structure, such as the connectivity of a voxel to other voxels overall and within a
module. In addition, a module membership measure can be computed that reflects how
strongly a voxel belongs to a particular module and can be used to identify voxels that are
highly associated with a particular module versus those that are equally related to multiple
modules. These measures will be useful in characterizing individual networks as well as
comparing network structures between populations.
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We first present an overview of the WVCNA method, and then demonstrate its application
to a resting state fMRI data set. We show that it reliably detects network modules across
independent resting state fMRI acquisitions within subjects, and that the resulting modules
are anatomically plausible. We then compare it to independent components analysis (ICA)
on the same dataset, showing that WVCNA detects much of the same structure as ICA, but
that it provides a more spatially localized and separable decomposition of the brain into
functionally coherent regions. We also illustrate some applications of WVCNA metrics for
assessing network structure. Last, we show how WVCNA modules can be used in a network
analysis to find connections between brain regions.

2 Methods
2.1 Data

The BOLD fMRI data were originally collected by Fox et al. (2007), and were obtained
from the fBIRN Data Repository (http://fbirnbdr.nbirn.net:8080/BDR/). The data consisted
of 4 fixation runs from each of 16 subjects using a 3T Siemens Allegra MR scanner (4 × 4 ×
4 mm voxels, TE 25 ms, TR 2.16 s), as described in Fox et al. (2007). Subjects were
instructed to look at a crosshairs, remain still and not fall asleep during the scans. Structural
data included a high resolution (1 × 1 × 1.25 mm) sagittal, T1-weighted MP-RAGE
(TR=2.1s, TE=3.93ms, flip angle=7°) and a T2 weighted fast spin echo scan.

2.2 Preprocessing
The first four TRs of each run were discarded to allow for scanner stabilization, for a total of
190 TRs per run. FMRI data preprocessing was carried out using the fMRI Expert Analysis
Tool (FEAT) Version 5.98, part of the fMRIB Software Library (FSL, http://
www.fmrib.ox.ac.uk/fsl/). The MCFLIRT tool was used to motion-correct each functional
run of data and simultaneously created 6 transformation parameter time courses that were
later modeled as nuisance (Jenkinson et al., 2002). The brain extraction tool (BET) of FSL
was used for skull stripping and other preprocessing included multiplicative mean intensity
normalization of the volume at each time point and highpass temporal filtering (Gaussian-
weighted least-squares straight line fitting with σ = 30s). The six motion parameters as well
as their first derivatives were regressed out of the data on a voxelwise basis using FSL’s
FILM. The residuals from this analysis were registered to standard space using FSL’s
FLIRT (Jenkinson and Smith, 2001; Jenkinson et al., 2002) using a 3 degree of freedom
(dof) transformation from the functional to a T2-weighted image, a 6 dof registration
between the T2 and T1-MPRAGE and a 12 dof transformation between the T1-MPRAGE
and the MNI152 standard 2mm template. Data were then upsampled to 6mm voxels and
grey matter voxels were isolated using grey matter regions of the Harvard Oxford
Probabilistic Atlas thresholded at 25 percent and then upsampled from 2mm to 6mm.

2.3 Weighted voxel coactivation analysis
The methods used in the data analysis are based on the weighted gene co-expression
network analysis approach of Zhang and Horvath (2005). Unlike other network approaches,
where connections between voxels are either considered to be present or absent, the
weighted network approach allows the connection between two voxels to be a continuous
measure ranging between 0 and 1. In the present study, the measure of connectivity is
topological overlap (TO), which differs from pairwise correlations in that it not only
considers the adjacency between two voxels, but also the overlap of the two groups of
voxels connected to the two original voxels (Zhang and Horvath, 2005; Ravasz et al., 2002;
Yip and Horvath, 2007). Because it pools over a much larger set of correlations, it is less
susceptible to noise than correlation between two single voxels. Another feature of TO is
that the adjacency measure on which it is based is derived such that that the resulting
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network is a scale-free network, which is a class of small world networks. This is a desirable
property as functional brain networks have been shown to have small world network
characteristics (Bassett and Bullmore, 2006; Bullmore and Sporns, 2009).

For the within-run analyses, WVCNA was carried out on each run independently and for the
subject analysis across runs, the within-run time series were normalized and concatenated.
We will first describe how the adjacency measure is derived and then how this is used in the
calculation of topological overlap. Last, we discuss how the modules are formed through the
use of hierarchical trees.

Adjacency measure and the scale free topology criterion—The first step in the
analysis is to calculate the Pearson correlation between all pairs of voxels, rij. Since we want
to distinguish between positive and negative correlations, we use a signed similarity measure

defined as  and then the soft power adjacency function is defined as  for i ≠ j
and 0 when i = j (Zhang and Horvath, 2005). There are two types of weighted correlation
networks. Signed networks lead to modules of positively correlated voxels while unsigned
correlation networks lead to modules of highly positively or highly negatively correlated
voxels (Mason et al., 2009). In genetic applications both signed and unsigned correlation
networks have been successfully used and it is plausible that both types of networks will be
useful in voxel network applications as well. Future empirical studies are needed to provide
evidence of the utility of both types of networks.

We use the scale free fit index, R2 = Scale Free Fit Index = cor(log(p(k)), log(k))2, to inform
the parameter choice (the power) of the adjacency matrix. Many (but certainly not all) real
networks have been found to exhibit approximate scale-free topology (Barabasi and Albert,
1999; Albert et al., 2000; Barabasi and Oltvai, 2004). The scale free fit index, R2, of a
transformed network is a function of the power parameter β. In some network applications,
prior knowledge suggests that the network should satisfy scale-free topology at least
approximately. In this case, one can ignore power values that do not lead to approximately
scale-free networks. Toward this end, one can use a signed version of the scale-free
topology fitting index. Since it is biologically implausible that a network contains more hub
genes than non-hub genes, we multiply R2 with -1 if the slope of the regression line between
log(p(k)) and log(k) is positive. These considerations led Zhang and Horvath (2005) to
propose the following scale-free topology criterion: Only consider those parameter values
that lead to a network satisfying scale-free topology at least approximately, e.g. signed R2 >
0.80. In correlation network applications, we often find the relationship between R2 and the
power parameter is characterized by a saturation curve type of relationship (see Figure 1).

In many correlation network applications, we have used the first parameter value where
saturation is reached as long as it is above 0.8. But is worth repeating that there does not
have to be a monotonic relationship between the adjacency parameter and the scale free fit.
Sometimes the scale free fitting index, R2, decreases for large values of the power
parameter. Further, when dealing with a correlation network constructed on the basis of two
heterogeneous and distinct groups, the scale free topology criterion may not work well. In
this case, we recommend to choose a default values for the parameters, e.g. β = 6 for an
unsigned correlation network and β = 12 for a signed correlation network.

It should be noted that it is possible to use other degree distribution criteria to choose the
parameter, β. For example, it has been shown that the exponentially truncated power law
distribution is a better fit to the degree distribution than the power law for resting state fMRI
data (Achard et al., 2006) and for yeast co-expression networks (Zhang and Horvath, 2005).
Due to the flexibility of the exponentially truncated power law distribution, all values of β
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tend to be associated with very good fits of the model. Because of this, the exponentially
truncated power law distribution is not useful in tuning the parameter β in these brain
networks or in gene networks (Zhang and Horvath, 2005).

Topological Overlap—As mentioned previously, the topological overlap measure
compares the similarity of two voxels, as well as the groups of voxels connected to each
voxel. The equation is given by

(1)

where aij is the adjacency measure, ki is the connectivity of voxel i, and lij = ∑u aiuauj
measures the overlap between the two voxel neighborhoods. The numerator of wij is the
strength of the overlap and will be largest when the two voxels are highly related and have
common voxels that are also highly related to them. The denominator of wij is a
normalization term.

Identifying modules—Modules are identified in a two step process. First, a dendrogram
is created using average linkage hierarchical clustering with the TO dissimilarity measure,
1–wij. The clusters in the resulting dendrogram are then identified using the dynamic branch
cutting algorithm of Langfelder et al. (2008). This approach finds clusters in a hierarchical
tree based on the tree shape, as opposed to using a fixed height branch cutting technique
where a cut height is chosen and continuous branches below the cut comprise the clusters.
For all applications of the dynamic tree cutting algorithm to the first level dendrograms, a
minimum module size of 20 voxels was specified. Once the first level modules are
identified, the eigenvoxel time series (first principal component) for each module is
calculated and used in a simple second level analysis. For the second level, correlations
between the eigenvoxels are calculated and the correlation is subtracted from 1 and used to
create the second level dendrogram using average linkage hierarchical clustering. The
second level modules are found by again using the dynamic tree cutting algorithm with a
minimum module size of 1. The dendrograms from the second level analysis are much
simpler since the number of eigenvoxels (approximately 100) is much smaller than the
original number of voxels (approximately 5000) and so this simpler method is appropriate.

WVCNA measures of connectivity—There are different connectivity measures that can
be used to evaluate and study the modules that WVCNA creates. For example, to find the

most highly connected voxels within a module, the measure of intramodule connectivity, 
for voxel i in module q is given by

(2)

where n(q) is the number of voxels in module q (Mason et al., 2009). If the network were

unweighted,  would be a count of how many voxels the ith voxel is connected to within
module q. This measure can be thought of as the degree to which that voxel belongs to that
module, where higher intramodular connectivity values correspond to more central voxels in
the module.

A second connectivity measure is the module eigenvoxel based connectivity, , which is
defined as
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(3)

where xi is the original time series data for voxel i and E(q) is the eigenvoxel of module q.
Since this value is a correlation, standard correlation hypothesis tests can be used to assess
module membership.

2.4 Independent Component Analysis
Analysis was carried out using Probabilistic Independent Component Analysis (Beckmann
and Smith, 2004) as implemented in Multivariate Exploratory Linear Decomposition into
Independent Components (MELODIC) Version 3.09, part of FSL. Data were normalized
and concatenated prior to analysis as well as converted to percent BOLD signal change. The
data were whitened and projected into a 46-dimensional subspace using Principal
Component Analysis.

The whitened observations were decomposed into sets of vectors which describe signal
variation across the temporal domain (time-courses) and across the spatial domain (maps) by
optimising for non-Gaussian spatial source distributions using a fixed-point iteration
technique (Hyvarinen, 1999). Estimated component maps were divided by the standard
deviation of the residual noise and thresholded by fitting a mixture model to the histogram
of intensity values (Beckmann and Smith, 2004). The number of components was specified
to match the number of modules that were found using the WVCNA approach so
comparisons between the two approaches could be made.

2.5 Comparing Modules Across Runs
Since in each set of modules for each run of each subject the number of modules is not fixed
and the module labels are not comparable across module sets, pairwise comparisons of sets
of modules were carried out using a normalized version of the mutual information index
(Kuncheva, 2004; Meunier et al., 2009). For two sets of modules A and B, where the
number of modules in A and B are given by NA and NB, respectively and Nij is the number
of voxels in the intesection of module i from set A and module j from set B, the normalized
mutual information is given by,

(4)

Note that N is the total number of voxels and Ni. and N.j are the number of voxels in module
i of set A and module j of set B, respectively. The mutual information index ranges between
0 and 1, where independent module sets would have a mutual information of 0 and identical
sets would have a mutual information of 1.

2.6 Comparing Modules to ICA Components
In order to make a comparison between the WVCNA modules and ICA components, a
similarity measure was needed to match each module to the most similar ICA component.
Individual modules were compared to individual components using the Sorensen similarity
measure, which is defined as the number of voxels in common to both the module and
component divided by the average of the sizes of the module and component. This can also
be expressed as
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where M is a module, C is a component and the # operation counts how many voxels are in
a set. This measure is preferred to Euclidean similarity since it takes into account the module
sizes.

3 Results
3.1 WVCNA within subject

For each subject, the preprocessed data from the four runs were normalized and then
concatenated for use in the WVCNA analysis. On average the adjacency power parameter,
β, was set at 12.4 (sd=1.7), based on the criteria discussed in the Methods section. Figure 2
shows the dendrogram and modules resulting from using the dynamic tree cutting algorithm
to cut the tree and the left panel of Figure 3 shows the second stage dendrogram and second
stage modules found when setting the minimum number of modules to 1 in the dynamic tree
cutting algorithm. The stage 1 dendrogram is based on all voxels of data (5054 voxels),
whereas the stage 2 dendrogram illustrates the relationship between the eigenvoxels
corresponding to each stage 1 module. Branches of the stage 2 dendrogram correspond to
meta-modules, i.e. modules of module eigenvoxels (Langfelder and Horvath, 2007). On
average over subjects, a total of 111.9 (sd=10.8) first level modules were found and after
merging modules in the second stage analysis, an average of 42.9 (sd=5.6) modules were
found per subject. The right panel of Figure 3 displays the second level modules on the
brain, matching the colors indicating the second level modules in the left panel. Another
view of 6 of the second stage modules is shown in Figure 4, illustrating modules
corresponding to the motor system network, left frontal and middle temporal regions that are
part of the language network, midline regions that are part of the default mode network,
bilateral dorsal visual stream, and right and left dorsal fronto-parietal networks.

The comparison of WVCNA modules to ICA components is shown in Figure 5, where the
left column displays modules in blue and are arranged in panels according to the ICA
component in the right panel that they were closest to according to the Sorensen similarity
measure. On average across subjects, 79% of the module/component groupings consisted of
a single module grouped with a single component, 19.2% included 2 modules with 1
component and in a limited number of cases more modules (3-5) were grouped with a single
component. Panels A, B and C of Figure 5 show examples of 1, 2, and 3 module matches,
respectively, where 3-4 slices of the brain image are displayed to show the module location.
The similarity distances between matched components and modules tended to be large (0.82
on average across all subjects), but this was due to the modules being much smaller than the
components. On average the module size was 100.4 voxels, compared to the matched
component, which had an average size of 342.1 voxels. The module/component intersection
on average comprised 71.1% of the module and 23.1% of the matched component across all
subjects, so modules tended to be mostly contained within a single component. In panel A
the module location is very similar to the component, with the component slightly more
dispersed. In panel B the component is bilateral, the modules separate the region into a
medial component (MB1) as well as a unilateral component (MB2). Panel C shows a case
where three modules matched with a single component, where the component is separated
into two lateral modules (MC1 and MC3) and one medial module (MC2).

We ran simple a simple fast greedy modularity-based (FGMB) algorithm (Clauset et al.,
2004) based on a hard thresholded correlation matrix and found that generally very few
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modules resulted in these networks. Specifically, with a hard threshold of 0.5 on raw
correlations an average of 5 FGMB modules were found across our 16 subjects. On average,
each WVCNA module was 86% contained within a single FGMB module, indicating the
WVCNA modules are a finer subdivision of the larger FGMB modules.

As described in the methods section, modules were compared between runs using the
normalized mutual information measure. There were 16 subjects with 4 runs each, which
yields the 64 × 64 similarity matrix shown in the top left panel of Figure 6. Larger values of
the measure indicate higher levels of similarity and since each run has a similarity of 1 with
itself, the diagonal elements are left blank. The entries are grouped by subject, so the bright
red blocks along the diagonal illustrate that the module sets across runs within subject are
more similar than between subject comparisons. The top right panel of Figure 6 shows a
magnification of the lower right-hand corner of the similarity matrix, comparing the last 5
runs. Although the similarities are lower comparing the fourth run of subject 15 to the runs
of subject 16, the images of the modules in the bottom of Figure 6 show that the module sets
between subjects are still quite similar. Another view of this comparison is shown in the
histograms in Figure 7. The top panel shows the distribution of the unique pairwise
comparisons between runs within subject (within the blocks along the diagonal). The middle
panel looks at the distribution of the normalized mutual information between runs between
subjects (unique pairs only). The mean of this distribution is less than that of the runs within
subject, indicating that the modules are more similar within subject than between. After
concatenating runs and calculating the modules, comparisons were made between subjects
(bottom panel) showing that after concatenation of runs the resulting modules are more
similar than the individual runs were between subject. Using the same number of modules
and module sizes as in the 16 subject specific module sets, random networks were found to
have an average normalized mutual information of 0.07 over all pairwise comparisons. This
is significantly different than the pairwise comparisons of the 16 subjects, which had a
normalized mutual information of 0.58 (Kolmogorov-Smirnov test, D=1, P< 2 −16).

An illustration of the use of the eigenvoxel based connectivity is shown for a single subject
(data over all four runs concatenated) in Figure 8. The top panel of the figure shows the
location of module #15 and the middle panel shows the eigenvoxel based connectivity
between all voxels and the eigenvoxel for module #15, where blue and red correspond to
negative and positive correlations, respectively. The bottom panel focuses on the eigenvoxel
based connectivity for a single voxel in module #15 (marked by the green hash in the top
two panels) across all eigenvoxels for the 46 second stage meta-modules. Although this
voxel is strongly connected to the module to which it is assigned (#15, corr=0.45), it is also
strongly correlated with module #11 (corr=0.44) and negatively correlated with module #12
(corr=−0.31). Arrows point from the correlation in the bottom left to the module locations
on the bottom right.

Recall that one of the goals of WVCNA is to parcellate the brain into functionally distinct
regions in a data reduction step prior to running a network analysis. To illustrate that
WVCNA modules are fit for this purpose we took the eigenvoxels from the 46 second level
meta modules from a single subject and entered them in a standard network analysis. First
pairwise correlations were calculated between the meta module eigenvoxels and then
thresholded so that only connections with correlation magnitudes above 0.5 were considered
connected. This binary adjacency matrix was then used in a greedy modularity-based
approach for community detection (Clauset et al., 2004) and the resulting network is
illustrated in Figure 9. The nodes represent second level meta-modules and are labeled
according to their locations, where labels beginning with R/L indicate unilateral modules.
The colors of the nodes correspond to the communities that were found using the
community detection algorithm and show reasonable groupings of meta-modules according
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to spatial locations. Results from this network analysis thus support the usefullness of
WVCNA as a data reduction step for identifying regions for use in a network analysis.

4 Discussion
In this study we present a novel approach for clustering the brain into functionally related
modules, based on resting state fMRI time series. This approach, the weighted voxel
coactivation network analysis, is different from other approaches that find correlated clusters
of voxels in many different ways. First, the modules that are identified are non-overlapping,
leading to a parcellation of the brain into functionally distinct regions. Secondly, unlike
ICA, this approach has been developed in the small world network framework, which has
been shown to be an appropriate framework for fMRI networks. Additionally, WVCNA
does not require that the modules are spatially or temporally independent, as it is assumed in
ICA. Also, unlike alternative methods that use a hard threshold of pairwise correlations, this
approach uses a weighted network approach using the topological overlap measure with soft
thresholding. The topological overlap measure is somewhat similar to a measure used in a
parcellation approach based on diffusion tensor imaging, where a set of seed voxels were
correlated with all other voxels and then the seeds were split into two groups based on the
correlation of the correlation profiles (Johansen-Berg et al., 2004). The modules are found
using the dynamic tree cutting algorithm (Langfelder et al., 2008), which does not require a
single cutoff for the hierarchical tree. Another benefit of WVCNA is that there are different
network metrics that can be used to assess voxels as they are related to the modules that they
are located in and other modules.

Our results illustrate that the modules found using WVCNA are similar to components
found using ICA. On average, 79% of the module/component groupings consisted of a
single module with a single component. Typically, in these cases, the module tended to be
more spatially focused than the component. On average, in 19.2% of the matches, two
modules were paired with the same ICA component and in a small number of other cases
3-5 modules were paired with the same component. As shown in the bottom two panels of
Figure 5 when multiple modules are paired with a single component it is possible that the
modules are separating out functionally distinct parts of the component. For example, in the
bottom panel it is evident that whereas ICA collapses a large set of prefrontal regions into a
single component, WVCNA separates these regions (e.g., anterior cingulate and dorsolateral
prefrontal cortex, which are known to have distinct functions).

In order to verify that WVCNA consistently identifies modules, we examined the
normalized mutual information measure for all pairs of module sets across all runs and all
subjects. As Figure 6 shows, the similarity is much higher within subject and slightly lower
across subjects. Additionally Figure 7 shows that similarity is highest between runs within
the same subject and lowest between runs between subjects.

The similarity between subjects of the concatenated runs is higher that the between run
between subject similarity, which is due to higher power in the concatenated runs data
analysis. These comparisons using the normalized mutual information measure show that
the consistency across modules follows a pattern expected based on previous knowledge
about the sources of variability in fMRI data. Preliminary analyses have found that, despite
the relatively lower agreement across subjects, it is possible to meaningfully align modules
across subjects; these results will be expanded in a future publication.

Our results also illustrate the use of module eigengene based connectivity measures for
assessing how central certain voxels are within a module and whether a voxel is solely
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related to a single module or if it is equally related to multiple modules. The metrics of
WVCNA are another benefit over ICA.

Since one use of WVCNA would be to use it as a data reduction technique for identifying
regions to use in a separate network analysis, we illustrate the use of second level
metamodule eigenvoxels in a standard network analysis, where correlations were
thresholded and used in a modularity algorithm for detecting communities (Clauset et al.,
2004). Our network result, shown in Figure 9 illustrates that WVCNA can indeed be used to
suit this purpose.

One of the innovations in the present study was the use of weighted networks rather than
hard thresholding; the only previous examination of of weighted networks for fMRI analysis
(Achard and Bullmore, 2007) found that weighted networks and hard thresholding produced
similar networks, but there has been relatively little examination of this question. Previous
work comparing hard-threshold and weighted network approaches to gene expression
network analysis also found that similar networks were obtained using the two approaches.
However, an important difference was found in the robustness of the approaches. The choice
of the correlation threshold in a hard-threshold analysis is analogous to the choice of the
adjacency parameter, β, in the present approach. Zhang and Horvath (2005) used the same
small world criteria that were used to select β in the present analysis to select hard
thresholds as well, specifically choosing a threshold for which the power law distribution
was satisfied with high mean connectivity. Although this work also showed similar networks
could be derived from both approaches, the major difference between the hard and soft
thresholding techniques was in how robust measures, such as intramodular connectivity,
were to misspecification of β and the hard threshold. They found that the measure of
weighted intramodular connectivity for a gene, defined as g=wi = ∑j ωij, where ωij is the
topological overlap between two genes, was robust to misspecification of the adjacency
parameter β, whereas the hard threshold criteria only had a small window over which the
intramodular connectivity measure performed well.

There have been applications of other graph theoretical methods for whole brain parcellation
into functional regions based on resting state fMRI (van den Heuvel et al., 2008; Shen et al.,
2010). van den Heuvel et al. (2008) also used a weighted network approach via the
normalized cut algorithm (Shi and Malik, 2000) and compare to ICA results from other
studies. In contrast, our work compared ICA results to the WVCNA results directly using
analyses on the same data sets. Shen et al. (2010) compare the normalized cut algorithm,
Gaussian mixture models and a modularity detection algorithm. In order to make direct
comparisons between methods, simulated data with two distinct regions as well as a real
data analysis parcellated into two regions were studied to rank these methods from best to
worst, finding the normalized cut algorithm to work the best. Although this ranking of the
methods is useful, it is limited in that the approach only looked at cases where a single
region was divided into two functionally distinct sets. On the other hand, the WVCNA
method proposed here divides the brain into multiple modules and by using the normalized
mutual information measure we compared sets of parcellations with multiple regions. In
addition, methods such as Gaussian mixture models, the normalized cut algorithm and
modularity-based community algorithms favor larger modules (van den Heuvel et al., 2008;
Newman, 2006; Fortunato, 2010; Meunier et al., 2009), whereas WVCNA is capable of
finding both large and small modules. For example, our network analysis results using a fast
greedy modularity-based (FGMB) algorithm using a hard thresholded correlation matrix
resulted in large modules such that single FGMB modules tended to almost fully contain the
smaller WVCNA modules (on average 86% was contained). For the normalized cut
algorithm, an important consideration is that it requires the specification of the number of
regions, which is an unknown quantity.
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As a caveat of our network construction approach we should point out that it is not yet clear
whether a functional connectivity matrix is best modelled using a scale free network.
Whether functional connectivity in the human brain is scale-free or not remains an open
question. Future research evaluating many functional connectivity matrices should provide
empirical evidence that (approximate) scale free topology is a reasonable assumption. While
scale-free networks have small-world properties of brain networks, it is entirely possible to
create small-world networks that are not scale-free (see, e.g. the original Watts-Strogatz
model). We are not aware of a neurobiological justification for scale free topology. The
scale free topology criterion provides a heuristic for choosing the value of the power
parameter. It has led to meaningful biological results in dozens of genetic applications but
there are situations in which it is not meaningful (as described in the methods) A major
advantage of weighted networks (visa vis unweighted networks) is that weighted networks
are highly robust with regard to the parameter choice, i.e. very similar modules result for
different choices of the power beta.

In conclusion, we have shown that it is possible to detect localized and functionally coherent
brain regions from resting state fMRI data in an unsupervised manner, using methods
originally designed to analyze gene expression data. The methods described here could
potentially improve the modeling of large-scale brain networks by providing more
biologically plausible specifications for the regions that enter into network analyses. Further
work is necessary to establish the degree to which these methods can identify common
modules between individuals.
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Figure 1.
Illustration of the scale free index and mean connectivity for a range of soft threshold values
for a representative subject. The power was chosen such that the signed R2 was greater than
0.8 for all data sets.
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Figure 2.
First stage dendrogram and modules found using the dynamic tree cutting algorithm. The
dendrogram is based on all grey matter voxels (5054) based on data from all four runs
(concatenated) for a single subject. Minimum module size was set to 20 voxels in the
dynamic tree cutting algorithm. Dedrograms for other subjects were qualitatively similar.
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Figure 3.
Dendrogram from the second stage of the WVCNA analysis and second stage modules
displayed on the brain for a single subject (all 4 runs concatenated). The dendrogram shown
in the left panel illustrates the relationships between eigenvoxels based of the first level
modules, revealing a higher order organization. The top row of colors correspond to the first
stage modules and the bottom row correspond to the second stage modules found using
dynamic tree cut. The right hand panel displays the second stage modules on the brain,
where the colors corresponding to the second level modules in the image on the left match
the colors of the modules on the brain.
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Figure 4.
Illustration of 6 individual modules from Figure 3, showing the anatomical plausibility of
the modules. The modules in panels A-F reflect the motor system network (A), left frontal
and middle temporal regions that are part of the language network (B), midline regions that
are part of the default mode network (C), bilateral dorsal visual stream (D) and the left and
right dorsal fronto-parietal network (E and F).
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Figure 5.
Modules and the most highly related ICA components, found using the Sorensen distance
measure. The left column displays individual modules, where each row displays 3-4 slices of
brain to illustrate a single module. The right column displays the corresponding ICA
components. Examples when 1, 2 and 3 modules matched with a single component are
shown in panels A, B and C respectively. Only pertinent slices of the brain were displayed
in each case.
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Figure 6.
The top left panel shows the normalized mutual information measures between modules for
each specific run. The red blocks along the diagonal illustrate that the four runs within each
subject create modules that are more similar to each other than modules from runs of other
subjects and the blocks along the diagonal are left blank since a module set matches itself
exactly. The top right panel is a magnification of the bottom corner of the first matrix and
illustrates the normalized mutual information values. To gain intuition about the similarity
measure, the bottom panel illustrates the module sets for these 5 runs. Note the colors in
each image are arbitrary.
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Figure 7.
Histograms showing the distribution of normalized mutual information measures between
modules across runs within subjects (top) across runs between subjects (middle) and across
subjects when using concatenated runs (bottom). The modules within subject are most
similar to each other and the between subject similarities using concatenated runs are more
similar than the separate runs (bottom vs. middle).
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Figure 8.
Module membership for meta module #15. The top image shows the module of interest
(#15) and the middle image shows the module eigenvoxel based connectivity for all voxels
compared to module 15. In addition to looking at how voxels are related to a single module,
the bottom panel also shows how a single voxel’s connectivity to other modules can be
studied. Focusing on a voxel located within module #15 (indicated by crosshairs), this voxel
is not only strongly correlated with the eigenvoxel from the module it belongs to (cor=0.45),
but is also strongly correlated with the 11th module eigenvoxel (corr=0.44) and negatively
correlated with the 12th module eigenvoxel (cor=−0.31). The bottom panel illustrates the
module eigenvoxel based connectivity for this voxel and the arrows point to images of the
11th and 12th modules.
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Figure 9.
An illustration of the use of the second level meta-modules. The WVCNA second level
meta-module eigenvoxels were entered into a network analysis to see if eigenvoxels
clustered in a meaningful way. In this case the eigenvoxels were correlated and using a hard
threshold of 0.5 to create a hard threshold adjacency measure that was used in the greedy
modularity-based method of community detection (Clauset et al., 2004), which identified the
communities illustrated by the colors of the nodes. The labels on the nodes indicate where
the meta-modules were located and illustrate that reasonable groups of modules are created
in this analysis. If a label does not lead with a hemispheric label (R/L) the module was
bilateral. Note that singletons have been removed from the graph.
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