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Abstract
Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain
activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed
resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes
are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical
synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI
functional connectivity during the two states we adopted a data-driven approach that fuses the
multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial
domain and of the EEG data in the spectral domain. The power variation of a posterior alpha
component was used as a reference function to deconvolve the hemodynamic responses from
occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the
functional connectivity between these components. The results showed widespread alpha
hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes
open (EO) resting abolished many of the hemodynamic responses and markedly decreased
functional connectivity. These data suggest that generation of local hemodynamic responses is
highly sensitive to state changes that do not involve changes of mental effort or awareness. They
also indicate the localized power differences in posterior alpha between EO and EC in resting state
data are accompanied by spatially widespread amplitude changes in hemodynamic responses and
inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an
equivalent of alpha reactivity.
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INTRODUCTION
One of the central questions in imaging neuroscience is how electrical and hemodynamic
signals that are acquired by e.g. electroencephalography (EEG) and functional magnetic
resonance (fMRI) relate to each other during different states of brain activity. The scalp
EEG samples the synchronous post-synaptic potentials in the cerebral cortex that ensue
neuronal input processing, whereas blood-oxygen-level dependent (BOLD) fMRI measures
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a delayed hemodynamic response to neuronal activity (Bandettini et al., 1993). Previous
research has shown a linear relationship between local field potentials and multi-unit activity
and the BOLD signal (Logothetis et al., 2001; Logothetis and Wandell, 2004). With the
advent of recording techniques that allow concurrent data acquisition, the ability to study the
link between electrophysiology and hemodynamics non-invasively has drastically improved,
and has permitted assessment of a variety of phenomena in the background EEG, event
related responses, and pathologies (Debener and Herrmann, 2008; Laufs et al., 2003a). Also,
suitable methods for handling multivariate concurrent data are becoming available (Eichele
et al., 2009).

In this work, we performed a concurrent EEG-fMRI study to evaluate the differential effect
of eyes open (EO) versus eyes closed (EC), a simple operation to tests alpha reactivity on
EEG-fMRI coupling in the alpha band, and then examined the fMRI connectivity. The
motivation for this is two-fold: Firstly, de Munck and others have recently reported
widespread alpha hemodynamic responses (ARF’s) estimated from EEG power fluctuations
during relaxed resting with EC (de Munck et al., 2007), and we aim to test the possible state-
sensitivity of ARF’s. Secondly, it has recently been shown that resting state fMRI activity
and connectivity is affected by this manipulation (McAvoy et al., 2008; Zou et al., 2009),
leading to the suggestion that differences in functional connectivity represent an analogue to
alpha reactivity in EEG. We therefore estimate functional connectivity differences between
the two states.

The posterior alpha rhythm, a prominent phenomenon in the EEG typically located in the 8–
12 Hz frequency band, is easily identified in the EEG of relaxed awake subjects with EC
(Berger, 1929). In contrast, the absence of alpha rhythm is often related with the first stages
of sleep (Lopes da Silva, 1991; Steriade et al, 1990). Subsequent studies furthermore
discovered distinct decreased alpha activity in posterior regions with individuals’ EO (Barry
et al., 2007; Chapman et al., 1962; Gale et al., 1971). One proposed explanation is that the
alpha desynchronization can be associated with increased visual system functioning due to
the visual stimulation and intervention by reticular activating system (Gale et al., 1971;
Volavka et al., 1967); in contrast, alpha desynchronization to visual input has also been
argued to reflect the widespread communication of cortical and thalamo-cortical
interactions, to aid information processing (Basar et al., 1997; Broyd et al., 2009; Gevins et
al., 1997; Klimesch, 1999; Raichle et al., 2001; Thirion et al., 2006). Alpha
desynchronization to visual input is generally considered to reflect increased functional
inner-activation of the visual system, which activates the entire cortex (Basar et al., 1997).
These findings all suggest that the alpha rhythm is associated with a relatively inactive
functional state of the brain, and therefore frequently treated as a hallmark of the resting
state (Goncalves et al., 2006).

The cortical origin of the alpha rhythm as well as its connection to thalamic activity is well
established (Hughes and Crunelli, 2005; Lopes da Silva, 1991; Steriade et al., 1990), and
recent EEG-fMRI studies (Goldman et al., 2002; Goncalves et al., 2006; Laufs et al., 2003a;
Moosmann et al., 2003) have documented the regional hemodynamic correlates. Generally,
researchers have reported a negative correlation between the alpha rhythm and the BOLD
signal in the occipital lobe, and a positive correlation to thalamus in particular (Feige et al.,
2005; Goldman et al., 2002; Laufs et al., 2003a; Moosmann et al., 2003). The increases in
alpha power are related to decreases in the BOLD signal (deactivations) in occipital-parietal
lobes (de Munck et al., 2007), albeit with large individual variability (Goncalves et al., 2008;
Goncalves et al., 2006). Using an EO and EC block design, Feige and colleagues found that
there were significant positive correlations between the alpha power and thalamic BOLD
signals within the EC sections, but the correlations were lessened within the EO sections
(Feige et al., 2005). Also, it has been shown that power fluctuations of different EEG bands
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are significantly correlated and are similar to the alpha harmonics (de Munck et al., 2009),
though other studies performed on different frequency bands yield different results (Laufs et
al., 2003b; Tyvaert et al., 2008).

The main objective of this investigation is to observe the difference between EO and EC
resting states and to determine which brain regions, both cortical and sub-cortical, are
affected by power modulation of the alpha rhythm. To this end, we use a parallel ICA
implementation on group level in which the fMRI data are decomposed into spatially
independent maps and associated timecourses (Calhoun and Adali, 2006; Calhoun et al.,
2001), while the EEG is transformed into the frequency domain and decomposed into
spectrally independent components with associated topographies on group level, adapting a
model recently suggested by Eichele, Calhoun and coworkers (Calhoun et al., In Press;
Eichele et al., 2008a; Moosmann et al., 2008). In an extension of de Munck’s work (de
Munck et al., 2007) we expected to find robust ARFs in multiple brain regions including but
not restricted to the posterior cortex and thalamus during EC. During EO we hypothesized
that the reduction of alpha power as a function of inter-regional desynchronziation would
diminish the ARFs (Zou et al., 2009). We also expected functional connectivity, estimated
as maximal lagged correlation between component timecourses (Jafri et al., 2008) to show a
corresponding pattern, i.e. increased during EC and decreased during EO.

The results indicate prevalent alpha rhythm hemodynamic responses and high functional
network connectivity during EC rest session; whereas EO rest eliminates many of the
hemodynamic responses and markedly reduces functional network connectivity. These data
suggest that apart from changes to hemodynamic response magnitude widespread changes in
inter-regional low-frequency (<0.1Hz) functional connectivity shown in fMRI are related to
the changes in neuronal synchronization as indicated by power fluctuations in higher
frequency (>lHz) EEG rhythms such as posterior alpha. They also suggest that generation of
local hemodynamic responses is highly sensitive to global state changes that do not involve
changes of mental effort or awareness.

METHODS
Participants

Participants were recruited via advertisements at the University of New Mexico and by
word-of-mouth. Twenty-five healthy participants (17 males, 8 females, Age 29±8years),
provided written, informed consent at Mind Research Network and were compensated for
their participation. Prior to inclusion in the study, participants were screened to ensure they
were free from DSM-IV Axis I or Axis II psychopathology (assessed using the SCID
(Spitzer et al., 1996)) and also screened to determine that there was no history of
neurological diseases. All participants had normal vision and hearing (assessed by self-
report).

Experimental Design
The entire experiment for each subject contained a single session of simultaneous EEG-
fMRI recording. The session was composed of four parts, a scout scan (10 seconds) and
structural MRI scanning (7 minutes), followed by a recording with EO without fixation (7
minutes) and with EC (7 minutes). Subjects were instructed to simply lie still awake and
relax inside the dimly lit scanner and keep their EO or EC, respectively.

EEG Acquisition
A 32-channel BrainAmp MR-compatible system (Brainproducts, Munich, Germany) was
used for EEG recordings using the BrainCap electrode cap (Falk Minow Services,
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Herrsching-Breitbrunn, Germany). Ring-type sintered nonmagnetic Ag/AgCl electrodes
electrodes were placed on the scalp according to the international 10–20 system. Two
additional channels were recording electrocardiogram (ECG) and eye movements (EOG).
The reference channel was placed at FCz. The impedance of each electrode was kept lower
than 5 kΩ using conductive and abrasive electrode paste. Data were collected with a
sampling rate of 5 kHz; band-pass filtering from 0.016 to 250 Hz was applied. To avoid
temporal jitter the EEG amplifier and fMRI were synchronized using an in-house device.

EEG Preprocessing
The preprocessing of EEG data was performed in Matlab (www.mathworks.com), with the
software toolboxes EEGLAB (http://sccn.ucsd.edu/eeglab) and EEGIFT for group-level ICA
(http://icatb.sourceforge.org) in addition to customized functions for deconvolution and
inference testing. After removal of EPI gradient artifacts using standard moving average
subtraction (Allen et al, 1998) continuous EEGs were down-sampled offline to 1000 Hz and
filtered from 1–45 Hz (24 db/octave). EEG data were also corrected for ballistocardiac
artifacts by an effective heart beat detection from electrocardiogram (ECG) channel
followed by an optimal basis set technique (Niazy et al., 2005), which is implemented in the
EEGLAB-plugin FMRIB. Hereafter the EEG was re-referenced to a common average
reference, segmented into epochs for each EPI volume acquisition, and subjected to an
individual temporal ICA as implemented in EEGLAB (Delorme and Makeig, 2004; Eichele
et al., 2009; Makeig et al., 2004). This step was used to identify and remove residual pulse
and eye movement artifacts from the data (Debener et al, 2006; Eichele et al., 2009; Eichele
et al., 2008a; Jung et al., 2000), retaining minimally 12 out of 30 components.

Spectral Independent Component Analysis (spICA) of EEG
After preprocessing, the EEG single sweeps at all channels of each participant were
frequency transformed using the fast Fourier transform retaining the spectral content from
1–30 Hz. The data were then concatenated in a 2d matrix (epoch-by-[channels, spectrum])
for each session of each subject, compressed through principal components analysis (255
epochs reduced to 30), concatenated across subjects, sessions and epochs, and then subjected
to a single group ICA analysis between EO and EC conditions in EEGIFT
(http://icatb.sourceforge.org), estimating 12 components (PC/IC), determined by the
dimensionality of the data after artifact removal. After that, we performed a back-
reconstruction to attain single-subject maps and power fluctuations (across TR) on both
sessions for each component. For details about this model see (Eichele et al., 2008a). From
the decomposition output we selected a single component with a spectral peak in the alpha
range (11Hz) and a topography with a posterior maximum.

FMRI Acquisition
Functional images were acquired with a Siemens Sonata scanner at 1.5 T by means of T2*-
weighted echo planar imaging free induction decay sequences with the following
parameters: repeat time (TR) = 2s, echo time (TE) = 39ms, field of view = 224mm,
acquisition matrix = 64×64, flip angle = 80°, voxel size = 3.5×3.5×3mm, gap = lmm, 27
slices, ascending acquisition. A high-resolution structural anatomy was acquired via a 3D
MPRAGE T1 sequence (sagittal; matrix, 256×256; FOV, 256 mm; slice thickness, 1.5 mm;
no gap; in-plane voxel size, 1 mm×l mm; flip angle, 20°; TR, 12 ms; TE, 4.76 ms) to
provide the anatomical reference for the functional scan.

FMRI Preprocessing
FMRI data were preprocessed using the software package SPM5. Images were realigned
using INRI align – a motion correction algorithm unbiased by local signal changes (Freire
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and Mangin, 2001). Next, data were spatially normalized into standard Montreal
Neurological Institute space (Friston et al., 1995), spatially smoothed with a 8×8×8 mm full
width at half-maximum Gaussian kernel. The data (originally acquired at 3.5×3.5×3mm or
3.75×3.75×3mm) were slightly sub-sampled to 3×3×3 mm, resulting in 53×63×46 voxels.

Spatial Independent Component Analysis (sICA) of FMRI
The preprocessed fMRI data of both sessions were subjected to a single group spatial ICA as
implemented in GIFT http://icatb.sourceforge.net, and followed by back-reconstruction for
each subject (Calhoun et al., 2001). ICASSO with 100 re-runs and random initial conditions
was used to arrive at a robust decomposition (Himberg et al., 2004), and high model order
was used to provide a finer-grained regional separation of components in the cortical and
subcortical compartments (Abou-Elseoud et al., 2010; Kiviniemi et al., 2009). The model
order was tested according to the spatial map quality as well as the stability and empirically
adjusted to 71 components (Abou-Elseoud et al., 2010). Components were selected in a two-
step procedure: first, all components co-localizing with nuisance processes, i.e. motion,
large vessels, ventricles and susceptibility were identified and discarded (26 nuisance
components), and secondly, from the remaining components we selected those that co-
localized with regions that earlier concurrent studies have shown to be linked to alpha
power.

Ten sICs were selected that were tested for their relationship to the alpha spIC: in the
occipital lobe these were located in the lingual gyri, calcarine gyri, cuneus and middle
occipital gyrus, typically displaying negative correlations with alpha (de Munck et al., 2007;
de Munck et al., 2009; Feige et al., 2005; Goldman et al., 2002; Laufs et al., 2003a). In the
temporal lobe we selected components in the left and right hemisphere mapping onto the
superior and middle temporal gyri (Goldman et al., 2002; Goncalves et al., 2006). In the
frontal lobe components including the pre/postcentral cortex, inferior frontal gyrus, insula
were selected. Among the subcortical components we focused on one in the thalamus,
typically showing positive correlations/ARFs. Additionally, we selected regions of the
default mode network (Laufs et al., 2003b; Raichle et al., 2001) in the anterior/middle
cingulate cortex and the precuneus.

Integration of fMRI and EEG components
Instead of a convolution approach that has dominated previous work (Goldman et al., 2002;
Laufs et al., 2003a; Moosmann et al., 2003) we here use deconvolution of ARF’s akin to de
Munck (de Munck et al., 2007). The major advantage of deconvolution is that inter-modal,
inter-regional and inter-individual variability can be taken into account in the estimation
(Aguirre et al., 1998; de Munck et al., 2007; Glover, 1999; Handwerker et al., 2004) rather
than assuming a fixed canonical estimate. This is particularly useful for application to
resting state data since this type of data does not contain sparse/blocked stimulus inputs and
neuronal responses that are assumed in models for hemodynamic transfer functions (Buxton
et al., 2004; Friston et al., 2000). We used a simple deconvolution method in which the
pseudoinverse of the convolution matrix generated from the alpha cross-epoch power
modulation is multiplied with each of the fMRI component timecourses for each subject and
session separately (Eichele et al., 2008b). While this method is unconstrained regarding the
shape of the output and thus prone to fitting noise, note that sICA summarizes many volume
elements into one component which typically entails denoising of the related timecourse,
while the EEG estimate similarly is derived from all channels. ARF estimates were then
averaged for visualization, subjected to point-wise one-sample T-tests against zero mean for
both sessions, and to point-wise paired T-tests between sessions to test the difference
between EO and EC (see Figure 2, Table 2).
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Functional Network Connectivity of sICs
Functional network connectivity (FNC) analysis offers an approach to examine the inter-
network neural relations during either particular cognitive tasks or from spontaneous activity
during rest. FNC is performed by computing cross-correlations among the time courses from
brain networks estimated using ICA (Jafri et al., 2008; Rzepecki-Smith et al., 2009; Sakoglu
et al., In Press). We computed the maximal correlation within a ±5 seconds’ window, after
interpolating the timecourses of fMRI sICs to 100ms as in our previous work (Jafri et al.,
2008). To assess the variation of brain region functional connectivity between the EO and
EC sessions, we used paired T-tests between conditions in a permutation procedure to
directly estimate the null hypothesis from the data. Thus a single test for differences between
EO and EC was performed on the maximal correlation for both conditions. A correction for
multiple comparisons was also applied for the number of tests (e.g. number of pair-wise
correlations). The description of the algorithm and its implementation is provided in detail
elsewhere (Jafri et al., 2008), the FNC toolbox is available at http://mialab.mrn.org/software.

RESULTS
EEG component

Figure 1 shows the selected spectral component. This spIC had its spectral peak at 11 Hz in
the upper alpha band (middle), and shows a topography with the expected posterior
maximum (left). The spectrum power modulation of the component over time is consistently
higher level in EC compared to EO (right), which is consistent with previous findings (Barry
et al., 2007;Basar et al., 1997).

FMRI Components
Resting state spatial modes were identified from the BOLD signals by using ICA, a
technique that extracts maximally independent patterns of brain activity (or independent
components, sICs). Each sIC consists of a temporal waveform and an associated spatial
map; the latter is expressed in terms of z-scores that reflect the degree to which a given
voxel time-course correlates with the specific IC temporal waveform. Ten sICs associated
with alpha spIC were found and shown in Figure 2. Talairach coordinates for the peak
voxels in the ten fMRI spatial components are presented in Table 1.

Integration
Next, we analyzed the electrophysiological relationship of each network by estimating the
ARF for each sICs derived from the alpha spIC power modulation across epochs. The ARFs
in Figure 2 display some interesting features. During EC all components display significant
ARFs (see Table 2), with predominant negative peaks in occipital, temporal and frontal
regions, biphasic responses in the DMN and a positive peak in the thalamus. In contrast,
ARFs were diminished in amplitude or inverted during EO with changes to the shape and
peak latency, especially at occipital lobe, medial parieto-occipital lobe (default mode) and
thalamus. Though the amplitude, latency as well as direction of ARFs showed regional
dissimilarity, they did not indicate (by visual inspection) a significant left/right side
difference on the selected regions.

Table 2 represents the statistics of ARFs. From left to right, it shows the ARF’s peak
latency, the maximum t-value on the time course of the ARF and corresponding p-value on
EC session, then on EO session, as well as EO versus EC group difference latency.
Consistent with the data presented in Figure 2, the EC ARFs attained much higher t-statistics
than EO. Strong t-statistic differences between EO and EC were found in the occipital lobe,
superior temporal gyrus, pre/post central gyrus, and thalamus, while the differences in other
components including the DMN were less substantial.
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Functional Network Connectivity
FNC analysis in Figure 3 indicated BOLD sIC regions in EC condition have stronger (the
intensity of arrows) and broader (the quantity of arrows) correlations than in EO condition.
There were eleven connectivity pairs that showed a significant difference (p<5e-3, Table 3)
between EO and EC, arranged in a descending order, from pre/post central gyrus and lingual
right lobe, to lingual right lobe and thalamus.

In Figure 3, the top represents the significant functional network connectivity differences
found among EO and EC (p<5e-3, FDR corrected) via a paired T-test. Occipital lobe,
including right and left lingual gyrus, calcarine components and frontal lobe, pre/post central
gyrus as well as thalamus were the most highly interconnected regions that also display the
most significant difference between EO and EC sessions. The color of the arrows indicates
the correlation difference (red: EO > EC; blue: EO < EC); the directions of the arrows
indicate the lead/lag between the components. The results showed that overall EO session
was less correlated across all sIC combinations than in EC session, with the exception of the
thalamus. The bottom of Figure 3 shows the networks of EO (left) and EC (right) session
respectively. The colors of the arrows indicate positive correlation (red) and negative
correlation (blue); the directions of the arrows indicate the lead/lag. As can be seen,
although all ten sICs were highly connected to each other for both sessions, the EC sICs
display significantly stronger functional network connectivity. Also, most sICs show
positive correlations whereas only the thalamus region has negative correlations (blue) with
all connected brain regions, for both EO and EC sessions.

DISCUSSION
The alpha rhythm is an established trait of spontaneous EEG and the reactivity of alpha to
EO vs. EC is a robust phenomenon (Broyd et al, 2009; Goldman et al., 2002; Goncalves et
al, 2006). A number of papers have elaborated on the generator mechanism and localization
of alpha (Goldman et al., 2002; Lopes da Silva et al., 1973; Moosmann et al., 2003). Various
source localization models on EEG or MEG (Hari et al., 1997; Lopes da Silva et al., 1973;
Makeig et al., 2002), or through indirect functional imaging techniques like PET (Sadato et
al., 1998) and fMRI (Goldman et al., 2002; Moosmann et al., 2003) support the notion of
an ’idling’, relatively more deactivated posterior cortex as a generator for alpha observed on
the scalp. Similarly, the thalamus shows evidence for generating/modulating alpha activity
(Moosmann et al., 2003; Schreckenberger et al., 2004). Our results suggest in addition more
widespread cortical correlates of posterior alpha in line with de Munck (de Munck et al.,
2007) including occipital and thalamic but also frontal, temporal and parietal sources, which
may relate to the more global functional roles assumed for alpha-band oscillations
(Klimesch et al., 2007; Palva and Palva, 2007). This was achieved by a data-driven
spatiotemporal integration approach linking brain rhythms and low-frequency coherent
fluctuations of the BOLD signal analysis under concurrent multi-subject EEG-fMRI
recordings.

1. Group ICA for EEG spectra
Independent component analysis (ICA) provides a data driven approach for feature
extraction and we then can test for differences in these features between the two conditions.
In our previous studies (Calhoun et al., 2001; Eichele et al., 2009; Eichele et al., 2008a), we
applied a group temporal ICA strategy to probe sources that are consistently expressed in the
population by accumulating data from EEG observations of all the subjects, estimating a
single set of ICs and then back-reconstructing into the individual data, so that those subject/
condition-specific contributions can be recognized. Group ICA provides a straight-forward
solution for multi-subject component estimation and directly affords population inferences
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(Calhoun et al., 2001; Calhoun et al., 2009). We have previously adopted this model for
EEG data in the time domain in order to extract event related response processes, which
implied that processes which are not well time/phase-locked across subjects, such as the
ongoing EEG rhythms during the resting state as in this study were not well captured
(Eichele et al., 2008a). In order to decompose EEG background activity in this study we
transformed the EEG data in the frequency domain and used the power fluctuations across
trials and frequencies to maximize spectral independence. Since particular spectral peaks,
especially in the alpha band are consistent across epochs and participants despite variable
phase, this enables a group-level decomposition and back-reconstruction. This method is
related to other frequency-domain ICA applications (Anemuller et al, 2006; Anemiiller et
al., 2003; Hyvarinen et al., 2010; Onton et al., 2005; Zibulevsky and Pearlmutter, 2001).
Other options could be canonical correlation analysis (CCA) or non-negative matrix
factorization (NMF) to deal with the same problem, however, suitable multi-subject
extensions have only recently become available (Correa et al., 2010).

2. Convolution versus deconvolution
The localization of brain regions that are involved in the generation of the different EEG
components remains a central challenge, due to the geometrical model fitting difficulty and
the time/memory demands of the inverse calculation, therefore limiting its application
(Koles, 1998). Correlation analysis of concurrent EEG-fMRI however provides an
alternative technique of addressing the source localization problem, relieving the
dependence on conductor geometry estimation or dipole model fitting, as well as providing
insight into the physiological meaning of spontaneous EEG and trial-by-trial variations of
event-related responses (Debener et al., 2006; Debener et al., 2005; Eichele et al., 2005;
Goldman et al., 2002; Goncalves et al., 2006; Laufs et al., 2003a; Laufs et al., 2003b;
Moosmann et al., 2003). In most previous concurrent EEG-fMRI studies where EEG and
fMRI were correlated a generic hemodynamic response function (Buxton et al., 2004;
Friston, 2005) was applied to model the expected BOLD response on the observed EEG
features (Eichele et al., 2005; Goldman et al., 2002; Moosmann et al., 2003), whereby the
parameters of the HRF such as shape and latency of the peak and undershoot are assumed to
be fixed across the entire brain and across subjects. However, multiple sources of variability
of the HRF exist across brain regions and individuals (Aguirre et al., 1998; Glover, 1999;
Handwerker et al., 2004), such that application of a convolution model with a fixed HRF
may decrease sensitivity and yield false negatives (Handwerker et al., 2004). It also appears
that the application of a canonical HRF is somewhat less justifiable in resting state data
since sparse stimulation, i.e. the input that the HRF models typically assume is not given. In
line with this, the findings presented here and previous reports indeed show systematic
deviations of EEG-derived hemodynamic responses from the canonical HRF in peak/
undershoot latency and ratio (de Munck et al, 2008; de Munck et al., 2007; de Munck et al.,
2009). Accordingly, we followed a strategy initially suggested by de Munck (de Munck et
al., 2008; de Munck et al., 2007; de Munck et al., 2009; Eichele et al., 2009). Here, instead
of estimating the HRF from a posterior average of alpha power directly, we estimated ARFs
from independent component modulations. The estimated ARFs from Figure 2 indeed show
systematic latency and shape differences from the canonical HRF and regional activation
with significant ARFs was much more widespread than what was previously reported, which
can be taken as an indication that the sparser activation patterns in earlier studies (Goldman
et al., 2002; Moosmann et al., 2003) may have resulted from weaker sensitivity. Comparing
Figure 2 with Figure 3, it is easily observed that the significant amplitude increase of ARF in
EC sessions is linked to the rising of intensity as well as the range of inter-region correlation
(connectivity). It is intriguing to note the substantial change to the ARFs across EO/EC
states that are attainable in an effortless way, which suggests that the transfer functions that
mediate the coupling between EEG and fMRI are not stationary, and seem to depend on
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inter-regional synchronization (Deco et al., 2009; McAvoy et al., 2008; Zou et al., 2009).
This is analogous to the finding that (local) measures of event related fMRI activity are
affected by (global) connectivity measures (Fox and Raichle, 2007). We can speculate that
this effect is even more preponderant during different states of alertness such as sleep and
anesthesia. The difference between states stems most likely from the changes of the
neuronal contributions of the regional source to alpha generation/modulation since it appears
considerably less likely in this case that variations in ARFs can be accounted for by state-
dependent differences in properties of the vascular bed. The ARF results (Figure 2),
combined with the information from functional network connectivity (Figure 3) indicate that
the hemodynamic responses contain information about the coupling of the electrical sources
(Deco et al., 2009).

4. Functional Network Connectivity
FNC based upon slow (<0.08 Hz), spontaneous BOLD fluctuations in resting fMRI provide
a powerful tool to characterize intrinsic functional associations among brain regions. It has
been widely demonstrated that the spontaneous fluctuations are highly coherent within
multiple functional brain networks, such as motor, visual, auditory, and memory systems
(Fox and Raichle, 2007). First, we examined the temporal correlation of spontaneous low-
frequency fluctuations between the multiple brain regions associated with alpha rhythm,
since previous studies showed limited (mostly on thalamus and occipital lobe) and
contradictory results with positive correlations (Beckmann et al., 2005), negative
correlations (Mantini et al., 2007), or no significant correlation (Kiviniemi et al., 2004),
which also may be a function of the state-dependency. The comprehensive relationship
between these alpha-related regions remains to be further explored. Second, we examined
the spontaneous FNC modulation between multiple brain regions under different
physiological conditions by comparing the correlation patterns between EO and EC two
resting conditions. Previous studies have indicated that the alpha power is connected to
different resting states (Berger, 1929; McAvoy et al., 2008). They showed that the alpha
rhythm had significant amplitude when one was in an awake and relaxed state with EC,
while this phenomenon was attenuated by EO. In our study, we computed the connectivity
among the time courses of fMRI spatial components to assess the variation of brain region
functional connectivity between EO session and EC session. The results showed that the EC
session generally showed stronger functional network connectivity than the EO. This finding
is consistent with previous studies (McAvoy et al., 2008; Zou et al., 2009).

CONCLUSION
We implemented a concurrent EEG-fMRI study to evaluate the differential effect of EO
versus EC in resting state, by estimating the ARF in the alpha band and fMRI connectivity
with parallel ICA. The spectra ICA and ARF estimation helps to focus on particular
frequency bands and components of interest, while at the same time incorporating inter-
regional and inter-subject differences. The results show widespread alpha hemodynamic
responses and strong functional connectivity during EC rest, while EO rest alters the
hemodynamic response as well as functional connectivity.
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Figure 1. EEG alpha-spIC’s spectra and topography
Left: the topography of alpha-spIC. Middle: the spectra of alpha-spIC component. Right: the
power modulation of alpha-spIC. EO rest indicates in blue lines, EC in red lines.
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Figure 2. Resting state spatial components and alpha hemodynamic responses
Ten fMRI spatial components were selected. Left to right: three in occipital lobe (Lingual L,
yellow; Lingual R, blue; Calcarine, cyan); two in temporal lobe (STG L, yellow; STG R,
blue); two in frontal lobe (PreC/PostC, yellow; IFG, blue); two in default mode network
(Precuneus, yellow; ACC/MCC, blue); and one in subcortical region (Thalamus, yellow).
Spatial components top to bottom: axial direction, sagittal direction, coronal direction.
ARFs: corresponding to each sIC separately by arrows, red: EC ARFs, blue: EO ARFs.

Wu et al. Page 15

Neuroimage. Author manuscript; available in PMC 2011 March 16.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Functional network connectivity of spatial components
Top: The significant functional network connectivity among EO and EC differences
(p<5e-3, FDR corrected) under paired T-tests (red: EO > EC; blue: EO < EC). Bottom: the
networks of EO (left) and EC (right) session respectively (red: positive correlation; blue:
negative correlation). The directions of the arrows indicate the lead/lag.
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Table 1
Talairach coordinates for fMRI spatial components

The table summarizes the Talairach coordinates (x, y, z in mm) and Brodmann area labels for clusters of
significant activity (p<0.001, FDR corr.).

Anatomic Label Brodmann Area* MNI Coordinate Peak
Voxel (t)

Occipital

Lingual gyrus, L 18,19 (15,−52,5) 11.1

Lingual gyrus, R 19,18 (−15,−49,2) 8.0

Calcarine 17,18,23,30,19 (3,−81,10) 12.3

Temporal

Superior temporal gyrus, L 41,13,42,22 (50,−28,15) 9.9

STG, R 22,21,13,41,42,38 (−48,−11,3) 12.5

Frontal

Pre/Postcentral Cortex 6,4,43,9,44,3,1,2 (53,−10,31) 16.3

Inferior frontal gyrus, R 9,8 (−48,19,24) 6.8

Default mode Network

Precuneus 7,31,19 (3,−53,39) 11.7

Anterior/mid cingulate cortex 32,9,24 (−3,25,37) 13.9

Subcortical

Thalamus N/A (−3,−17,6) 10.2

*
Brodmann Areas(BA) are only approximate, based upon the Talairach Atlas
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