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Abstract

Increasing interest in understanding dynamic interactions of brain neural networks leads to 

formulation of sophisticated connectivity analysis methods. Recent studies have applied Granger 

causality based on standard multivariate autoregressive (MAR) modeling to assess the brain 

connectivity. Nevertheless, one important flaw of this commonly proposed method is that it 

requires the analyzed time series to be stationary, whereas such assumption is mostly violated due 

to the weakly nonstationary nature of functional magnetic resonance imaging (fMRI) time series. 

Therefore, we propose an approach to dynamic Granger causality in the frequency domain for 

evaluating functional network connectivity in fMRI data. The effectiveness and robustness of the 

dynamic approach was significantly improved by combining a forward and backward Kalman 

filter that improved estimates compared to the standard time-invariant MAR modeling. In our 

method, the functional networks were first detected by independent component analysis (ICA), a 

computational method for separating a multivariate signal into maximally independent 

components. Then the measure of Granger causality was evaluated using generalized partial 

directed coherence that is suitable for bivariate as well as multivariate data. Moreover, this metric 

provides identification of causal relation in frequency domain, which allows one to distinguish the 

frequency components related to the experimental paradigm. The procedure of evaluating Granger 

causality via dynamic MAR was demonstrated on simulated time series as well as on two sets of 

group fMRI data collected during an auditory sensorimotor (SM) or auditory oddball 

discrimination (AOD) tasks. Finally, a comparison with the results obtained from a standard time-

invariant MAR model was provided.
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Introduction

Functional magnetic resonance imaging (fMRI) utilizing the blood oxygen level dependent 

(BOLD) effect as an indicator of local activity is a very useful technique to identify brain 

regions of interest that are especially active during perception, cognition, action, but also 

during rest. There is considerable interest in identifying relationships between the active 

regions in order to better understand neural organization. It is already generally believed that 

human higher cognitive functions emerge from dynamic interactions of brain networks 

(McIntosh, 2000). This leads to formulation of connectivity analysis methods which attempt 

to identify associated brain connectivity networks and their interactions.

The concept of functional connectivity in the analysis of fMRI data, which is defined as the 

correlations between spatially remote neurophysiological events (Friston, 1994), was 

recently extended to the concept of functional network connectivity (FNC) (Jafri et al., 

2008; Londei et al., 2006). The goal of FNC is to characterize distributed changes in the 

brain by examining the functional interaction among different correlated brain networks, 

usually identified by independent component analysis (ICA) (Calhoun et al., 2001b; 

McKeown et al., 1998).

ICA is a method for recovering underlying signals from linear mixtures of these signals and 

draws upon higher-order signal statistics to determine a set of components that are 

maximally independent of each other (Calhoun and Adali, 2006). ICA is known to 

effectively find and characterize functional networks in fMRI data collected during the 

performance of a task as well as in resting state (Van de Ven et al., 2004). Within a given 

spatial component, the regions are by definition strongly temporally coherent due to the 

linear mixing assumed by ICA. In the FNC context we consider weaker dependencies 

among components. In spatial ICA the spatial maps are maximally independent, but the time 

courses of the components are not independent and can exhibit considerable mutual 

temporal dependencies. These temporal dependencies among components time courses are 

significant, but are not as large as those between regions within a component (where such 

large dependences are the case, they would likely have been included within a single 

component) (Calhoun et al., 2003).

In order to quantify the strength of interactions between brain regions and to reveal directed 

interactions of activated brain areas, Goebel et al. (2003) proposed using a Granger causality 

test (GC) (Granger, 1969) on fMRI time series of selected regions of interest. They 

employed the measure of linear influence between two time series suggested by Geweke et 

al. (1982). Londei et al. (2006; 2007) carried out an analysis similar to (Goebel et al., 2003) 

except that Granger causality was applied to the time courses associated with ICA 

components. Subsequently, Demirci et al. (2009) followed the same concept by utilizing GC 

in the frequency domain. Similarly, Liao et al. (2010) applied conditional Granger causality 

(Chen et al., 2006) to the ICA time courses extracted from resting state data.

The principle of GC is based on the concept of temporal predictability and its calculation 

rests upon multivariate autoregressive (MAR) modeling. Accordingly, if considering past 
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values of time series A improves the future prediction of time series B, then A is said to 

have a causal influence on B.

GC is frequently compared with another common brain connectivity method, dynamic 

causal modeling (DCM) (David et al., 2008; Friston et al., 2003; Roebroeck et al., 2009). 

Both of them have their own advantages. Unlike DCM, GC only requires the pre-

specification of regions of interest (ROIs) and does not make any assumption about the 

connections between them. In this sense, the role of GC in fMRI connectivity analysis is 

rather exploratory (without need of a prior hypothesis). Second, it has the potential to 

incorporate a large number of ROIs (Deshpande et al., 2008), where the constraint that the 

number of time points must be greater than number of ROIs is easily satisfied in typical 

fMRI experiments. On the other hand, GC is based only on predictive power between fMRI 

signals, i.e. it points out the directional linkage between signals, but it does not have to be 

consistent with the underlying neurophysiologic mechanism (David et al., 2008).

Recently, a measure of GC more suitable for application to neurophysiologic data, called the 

generalized partial directed coherence (GPDC) was introduced by Baccala et al. (2007). This 

measure enables an appropriate extension to multivariate (not only bivariate) analysis and is 

represented in the frequency domain.

Concerning the frequency domain representation of fMRI data in a connectivity framework, 

Cordes et al. (2001) performed spectral analysis using cross-correlation maps obtained from 

time courses of voxels. They found that low frequency fluctuations (< 0.1 Hz) constituted 

more than 90% of the correlation coefficient spectrum. Physiological (respiratory, 0.1 Hz to 

0.5 Hz and cardiac, 0.6 Hz to 1.2 Hz) noise contributed only by 10 % to the functional 

connectivity maps. Similarly, Sun et al. (2004) found that low frequency coherence maps (< 

0.15 Hz) identified functionally relevant regions. Therefore, we believe that investigating 

the spectral behavior of FNC can also be useful in understanding the complex interactions in 

the brain and their impact on the brain disorders.

The standard MAR modeling is an adequate approach only when time series are stationary. 

However, fMRI times series are always at least weakly nonstationary (Gaschler-Markefski 

et al., 1997). Therefore, the application of a dynamic MAR model should be preferable to 

trying to make time series stationary by using their time-derivatives (i.e. differences in the 

discrete case) of each time series (Sato et al., 2009), because this procedure could 

complicate the interpretation of results; what is being assessed then is the causal 

connectivity among changes in each time series. Sato et al. (2006) introduced dynamic MAR 

by fitting time-varying coefficients using wavelet basis functions to access Granger causality 

in time domain. However, in later publications, the same author returned to using time-

invariant MAR models in combination with GPDC (Sato et al., 2009).

Our main aim is to deal with nonstationary properties of fMRI time series, assessing also the 

interaction of FNC in the frequency domain. For this purpose, we propose a dynamic MAR 

model based on Kalman filtering (Kalman, 1960) in combination with GPDC as a measure 

of Granger causality. The utilization of the Kalman filter in order to adaptively estimate the 

MAR models found an already successful application in processing of EEG data (Arnold et 
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al., 1998). In the present paper, we introduced the combination of forward and backward 

Kalman filters to obtain smoothed and more consistent results.

The paper is organized as follows. First, we derive an extension of the time-invariant MAR 

model to a dynamic model based on the Kalman filter. Next, we compare the performance of 

the standard MAR model with that of our dynamic MAR model on simulated nonstationary 

fMRI time series. Finally, we apply our proposed approach to two different fMRI group data 

sets obtained during an auditory sensorimotor task and an auditory oddball task analyzed 

with group ICA (Calhoun et al., 2001a). We make a comparison with the results obtained by 

a standard MAR model and investigate the effect of different model orders on results from 

both models and evaluate results when utilizing fMRI time courses from original data in 

contrast to ICA time courses.

Methods

Dynamic MAR by two Kalman filters

In this section we present a state-space MAR model with time dependent coefficients and 

provide a recursive algorithm for implementation of a Kalman filter followed by Kalman 

smoother based on estimates of two optimal filters. MAR modeling represents a discrete-

time multivariate linear stochastic process given by

(1)

for t = 1, 2, …, N. Thus, the time series can be considered as the output of a linear all-pole 

filter driven by a white noise signal, where N is the signal length, p the order of MAR 

model, yt the i-th measurement vector of dimension d × 1, Ak the k-th d × d coefficient 

matrix weighting the measurement yt−k, and εt an d × 1 sequence of zero-mean white 

Gaussian measurement noise.

Considering nonstationarity of fMRI time series we assume the coefficient matrices of the 

above MAR model to be time-varying,

(2)

In order to utilize the Kalman filter algorithm, it is necessary to create a state-space 

representation of the model shown in Equation (2). This can be achieved by arranging the 

coefficient matrices into a vector and using the following notation

(3)

(4)
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(5)

where Id is an d × d identity matrix and ⊗ represents Kronecker product. An appropriate 

state-space representation of the MAR model with time-varying stochastic coefficients can 

be formulated as

(6)

(7)

where at is the pd2 × 1 coefficient state vector, f(․) is the linear function which describes the 

state evolution over time, and νt is a pd2 × 1 sequence of state process noise modeled as 

zero-mean white Gaussian noise with covariance matrix Qt. The measurement equation (7) 

describes the observation model which transforms the state vector into the measurement 

space. In this case, the time-varying measurement matrix Ct is assumed to be linear with 

additive measurement noise εt. The additive measurement noise is considered to be white 

Gaussian with noise covariance matrix Rt and uncorrelated to the state noise process. 

Suppose that the evaluation law of the state vector at is a random walk process, which 

results in the following state space representation instead of Eqs. (6) and (7)

(8)

(9)

The initial coefficient state vector a0, which is generally unknown, is thus modeled as a 

random variable, with Gaussian distribution of mean value â0 and covariance matrix P0|0. It 

is considered to be uncorrelated to the noise processes, ∀t > 0.

According to the standard forward Kalman filter, the recursion prediction step consists of:

(10)

(11)

where Pt|t−1 is the one step ahead prediction of the state covariance matrix, Pt−1|t−1 is the 

estimate (error) covariance matrix of the state vector, ât|t−1 is one step ahead prediction of 

state vector, and ât−1 is the filtering estimate of the state vector at−1.

After the prediction step, the update step follows, where the current state of the system is 

estimated given the measurement at that time step

(12)
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(13)

(14)

(15)

(16)

(17)

From the incoming measurement yt and the optimal state prediction ât|t−1 obtained in the 

previous step, the innovation sequence is defined by (12), which leads to the estimate of 

noise covariance matrix Rt (13) using the t most recent residuals (Schlogl et al., 2000). The 

update coefficient λ ∈ (0,1], also referred to as the forgetting factor, is a constant that has to 

be selected a priori. The matrix Gt is the filter gain, which tells us how much the prediction 

ât|t−1 should be corrected on time step t, and the covariance matrix Qt of state noise can be 

calculated according to Eq. (16).

Once the forward recursion estimate of the Kalman filter is performed, we suggest running 

the filter also in the backward direction using the estimates from the last step of forward 

filter as an initialization. Finally, by combining the two filters (forward and backward 

estimates), the optimal smoothed solution (Fraser and Potter, 1969) of the dynamic MAR 

model is obtained as:

(18)

where superscripts f and b represent the pertinence to forward and backward estimates, 

respectively. In our case, this procedure turned out to be more efficient than the typical 

Kalman smoother known as the Rauch Tung Striebel smoother (Rauch et al., 1965).

Model order selection criteria

A major concern with parametric analysis methods is the order selection of the 

autoregressive (AR) model. If the order is too small, the frequency content in the data cannot 

be resolved and the spectral estimates will be biased and smoothed and consequently, some 

information will be lost. On the other hand, if the model order is overly large, spurious peaks 

(instabilities) can occur in the spectral estimates, which result in a large variance of error 

and might be misleading thus causing wrong identification. AR order selection criteria based 

on information theoretic criteria are available, e.g. the Akaike information criterion (AIC, 

(Akaike, 1974) or Bayesian information criterion (BIC, (Schwarz, 1978). Their advantages 

and disadvantages have been addressed extensively, e.g. (Lütkepohl, 2005).
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(19)

(20)

where p is the model order; T is the length of time series; R is the covariance matrix of the 

measurement noise; and d is the number of the time series under investigation. Both of these 

criteria using maximum likelihood principle, make a compromise between model 

complexity and goodness of fit, and track both the decreasing error power and the increasing 

spectral variance with respect to an increasing model order. The measurement noise 

covariance matrix might be obtained as a part of the Kalman algorithm or alternatively, as 

preferred here, through the standard MVAR model (Schneider and Neumaier, 2001), 

because we can thus notably cut the computation cost related to this estimation. However in 

the case of nonstationary time series, this is at the expense of possible less accurate estimate 

of the model order. The optimal solution could provide order-recursive filters, e.g. adaptive 

lattice filters (Haykin, 2002), which similarly as the standard MVAR enable obtaining 

covariance matrices of measurement noise for all model orders less or equal to p during a 

single run.

Generalized partial directed coherence

The conceptually interesting measure of Granger causality originates in econometrics 

(Granger, 1969) where it passed several statistical testing procedures (Lütkepohl, 2005). In 

general, Granger causality is not reciprocal since aij(k) = 0 does not imply aji(k) = 0, which 

allows detection of possibly uni/bidirectional interactions and one can then speak about 

directional connectivity. The original version of Granger causality defined in time domain 

was later extended also to frequency domain (Geweke, 1982), both based on estimates of 

MAR model. These measures are well defined especially for the pairs of time series, 

whereas multivariate generalization is not that obvious. The first multivariate approach in 

the frequency domain based on GC was directed transfer function (DTF) suggested by 

(Kaminski and Blinowska, 1991). However, a disadvantage of this measure is the inability 

to distinguish direct and indirect relationships between signals, i.e. if the causality from 

source A to source B is mediated by a third source C, the DTF would identify a connection 

between A and B, even though there is no direct relation between these two sources. Later, 

partial directed coherence (PDC) and direct DTF were introduced, both of which can 

distinguish direct and indirect connections (Baccala and Sameshima, 2001; Korzeniewska et 

al., 2003). These quantities were shown to be more appropriate in application to multivariate 

data and keep the advantage of discriminating frequency content of the involved signals. 

Both of these properties can contribute to better interpretation and understanding of brain 

connectivity results deduced from fMRI experiments. Conditional Granger causality 

(Geweke, 1984) is another measure whose application is restricted to three signals. Because 

of this, for higher dimensional systems, this method has to be applied multiple times (Chen 

et al., 2006). In order to improve this procedure, Zhou et al. (2008) suggested using the 

reference signal based on principal component analysis (PCA) reduction as a composite 
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vector of the remaining signals. Possibly better solution offers partial Granger causality 

(Guo et al., 2008).

Most recently, a normalized PDC metric called generalized partial directed coherence 

(GPDC), which includes variance stabilization of the frequency domain representation of 

Granger causality, was derived (Baccala et al., 2007). It was shown in (Baccala et al., 2006) 

that this variance stabilization property improves the decision error rate of classified causal 

influence and is thus especially important in bootstrap-based approaches to test for 

significant connectivity.

Based on previous experiences (Florin et al., 2010; Sato et al., 2009), we believe that out of 

all the above mentioned measures the GPDC is the most appropriate for application to fMRI 

data. Therefore, GPDC will be considered as a representative of multivariate frequency 

domain Granger causality in our paper.

The GPDC involves the transformation of MAR coefficients into frequency domain via 

Fourier transform:

(21)

where A(f) is the spectral representation of the coefficient matrix A(t) that can be - thanks to 

our dynamic MAR model - calculated for each time point of time series using smoothed 

estimates of MAR coefficients. The estimation of GPDC for the information flow from yi 

time series to yj time series for each time step t is then defined as

(22)

here σ2 are diagonal elements of noise covariance matrix Rt. The GPDC is normalized such 

that |GPDCij(f, t)|2 ≤ 1 and  for all 1 ≤ j ≤ N; this can be interpreted 

as the strength of connectivity between neural structures, when the square modulus of 

GPDC value from i-th time series to j-th one is understood as the proportion of the power 

spectra of the j-th time series, which is sent to the i-th series including the effects of other 

time series. Furthermore, calculating GPDC over time propagation of the dynamic MAR 

estimates enables us to visualize this measure also in the form of spectrograms.

Hypothesis Testing of Connectivity

The measure of Granger causality is known to have highly nonlinear relationship with 

original time series from which it is derived, resulting in nonestablished distribution of 

applied estimator (Kaminski et al., 2001). Additionally, noise in fMRI signals is non-

Gaussian (Wink and Roerdink, 2006), which also contributes to difficulty in obtaining null 

hypothesis of no causality (GPDC = 0) across multiple subjects, especially when number of 

subject is usually small. Therefore, the performance of statistical significance testing is 

fastidious task.
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Here we have adopted the procedure suggested in (Sato et al., 2009), based on resampling of 

residuals of estimated MAR model in order to obtain empirical null distribution of no 

connectivity for group of subjects. The following steps are considered: (1) fit dynamic MAR 

models for the BOLD time series of each subject separately and obtain residuals and median 

of coefficient estimates over time for each subject; (2) for each frequency, calculate the 

GPDC measure according to Eq. (22); (3) obtain the median GPDC across subjects at each 

frequency (observed GPDC); (4) for each subject, resample the residuals (random sampling 

with replacement) stored in step 2; (5) to test the influence from time series j to i, assume a 

model where the MAR coefficients , l = 1, …, p, are set zero. The other coefficients 

remain as originally estimated by dynamic MAR; (6) by using the resampled residuals 

obtained in step 4, and the model coefficients specified in step 5, simulate a bootstrap 

multivariate time series to generate time series under the null hypothesis of “no causality” 

from time series j to i; (7) calculate the median GPDC for this bootstrap sample; (8) repeat 

steps 4–7 until desired number of bootstrap samples is achieved; (9) estimate the critical 

value for each frequency using the median GPDC bootstrap samples. The critical value is 

defined as the (1 − α) quantile of bootstrap samples, where α is the expected Type I Error; 

(10) compare the observed median GPDC with the estimated critical value.

Alternative way for statistical significance testing of no causality suggested by (Deshpande 

et al., 2009) would be to perform bootstrap procedure by reshuffling the phase of time series 

without replacement in the frequency domain and then transform back into the time.

Simulations

The main purpose of this section is to demonstrate superiority of GPDC obtained by 

dynamic MAR method based on Kalman filtering compared to standard MAR estimation. In 

the ideal case when no nonstationarities, only additive Gaussian noise, and no region 

specific hemodynamic response function are present in the simulated time series, both 

approaches can perform very well obtaining almost identical results. However, this situation 

is far away from what is present in real fMRI data. Time series of fMRI data are always at 

least weakly nonstationary (Gaschler-Markefski et al., 1997), additive noise does not have 

Gaussian distribution (Wink and Roerdink, 2006), and it is well known that different regions 

in the brain can have their specific shape of hemodynamic response function (HRF) (Aguirre 

et al., 1998). Therefore, in order to compare performance of our proposed dynamic method 

and standard MAR method one needs to consider more realistic simulations, when their 

properties are closer to real fMRI time series.

Here we consider two times series A and B of the length of 256 samples with repeat time 

(TR) 1.5 s, when the time series A causes B modeled as follows. Stimulation onset function 

consists of two different stimuli (Fig. 1a). Duration of the first onset set is 10 samples, 

repeating with 20 samples period. Onset of the second stimulus takes 2 samples, repeating 

with a period 11 samples. Also the variability of amplitude of stimuli is present. The 

stimulation function is convolved with HRF modeled as difference of two gamma functions 

using Matlab (MathWorks, Inc.) function from SPM5 toolbox (www.fil.ion.ucl.ac.uk/spm). 

The HRF is specified by seven model parameters: delay of response relative to onset (in 

seconds); delay of undershoot relative to onset (in seconds); dispersion of response; 
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dispersion of undershoot; ratio of response to undershoot; onset (in seconds); length of 

kernel. In order to simulate region specific shape of HRF, for time courses A and B we used 

HRF parameters (6; 10; 1; 2; 6; 0; 20), and (8; 16; 1; 1; 6; 0; 20), respectively. From the first 

parameter it is obvious that these two time series are mutually delayed by 2 samples. Next, 

low frequency drift modeled by cosine functions was added. Finally, to simulate realistic 

fMRI noise we utilized residual estimates obtained during the typical general linear model 

approach applied to fMRI data of the auditory sensorimotor task. Twenty percent of the 

normalized functional maximum of resampled residuals (with replacement) was added to the 

simulated time series.

In this way we have generated 100 pairs of time series. All with the same causal 

predetermination and character of hemodynamic response, but with slightly different 

variability of amplitude of stimulation function, with different low frequency drift, and 

different additive noise.

Before accessing the MAR modeling all pairs of time series were adjusted to have zero 

mean and unit variance. After this preprocessing step, simulated time courses were further 

analyzed by the standard MAR model based on the ARfit algorithm (Schneider and 

Neumaier, 2001) as well as by our dynamic MAR procedure. The selection of model order 

in this bivariate case was based on AIC, estimated for each of 100 pairs of time series. The 

common model order 13 was identified as a minimum of the average AIC function. In the 

case of dynamic model we also had to choose the update coefficients (λ = 10−4) a priori, 

when this selection was based on minimization of relative error variance (Schlogl et al., 

2000) in combination with previously selected model order. In general, slow signal changes 

require a smaller update coefficient. Also, with a smaller update coefficient (forgetting 

factor), the previous (older) state estimates are remembered longer by the Kalman filter, 

resulting in the presence of earlier estimated frequency components in the later time 

evolution of spectra. Generally, one can expect that a larger model order requires a smaller 

update coefficient and vice versa.

The GPDC was calculated for each pair of the time series (of 100) based on estimates of the 

dynamic and standard MAR models, respectively. The dynamic approach allowed us to 

calculate the GPDC measure for each time point of the time series, i.e. we obtained 

spectrograms of Granger causality for both tested causal directions. Additionally, we 

provide also a comparison between results obtained by using only forward Kalman filter 

estimates and by using Kalman smoother estimates. In this case, it is apparent that using the 

Kalman smoother step leads to cleaner results. The final results are obtained as a median 

over all spectrograms (or spectra for standard MAR) related to 100 generated pairs of time 

series and single frequency profile (in the case of dynamic approach) is received as a median 

over spectrogram time axis of the smoothed estimate. In principle, it is not necessary to 

always calculate GPDC for each point of the time series and thus to create spectrograms. 

Usually, it is sufficient to calculate the median of the estimated MAR coefficients matrices A 

and the covariance matrices of measurement noise R (over time points), and to obtain GPDC 

estimate only of single spectra. However, spectrograms can be helpful in order to inspect if 

the spectral results are more or less stable as time evolves. Since the time resolution is rather 
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low in fMRI and measured sessions are not very long, the spectrograms provide (in case of 

real data) useful information about the progress of MAR coefficient estimation.

In order to distinguish between relevant causal relations indentified by models and causal 

relations estimated by chance, a 2000 repetition bootstrapping procedure was performed. We 

considered the upper bound of 95 % confidence interval from the generated empirical null 

distribution as a threshold above which the estimated GPDC values are assumed to be 

consistent and significant (Fig.1c dashed line). This threshold is estimated for each causal 

direction between time series. Only one threshold for both directions is shown in the Fig. 1c 

because they were very similar.

From Fig. 1c, it can be seen that the causal influence from time series A to B was identified 

by both approaches with driving frequencies 0.034 Hz, 0.06 Hz. The first frequency 

corresponds almost exactly to the repetition period of the first stimulation function, and 

second frequency matches the period of the second stimuli. However, only results based on 

the dynamic MAR modeling are consistent within the 95 % confidence interval.

Our simulations show that when nonstationarities are present in the time series, the dynamic 

MAR model based on Kalman filter and smoother performs better than the standard MAR 

model, leading to more consistent results of Granger causality (GPDC).

Beside this, we also observed that the lower performance of the standard MAR model is 

caused mainly by the variation of the HRF shape. For simulations, we defined the shape of 

HRF by using 6 model parameters. Each of the two time courses (A and B) had different 

sets of parameters. However, in case of using the same sets of parameters for both time 

courses and considering a small delay between them, the performance of the standard MAR 

model turned out to be higher than if the HRF variation was present. Our dynamic approach 

proved to be more robust with respect to this kind of variation and also more stable in case 

of increased measurement noise. In real fMRI data, the variability of the HRF including 

latency can be also severe, resulting in estimation of a directional flow which is opposite the 

ground truth (David et al., 2008).

fMRI Data

To demonstrate our method applied to real fMRI data we used data collected during both 

block and event-related experimental designs. The block design was an auditory 

sensorimotor task (SM) and the event-related design was an auditory oddball discrimination 

task (AOD). The data set for the SM task was acquired at four different sites: the University 

of Iowa Hospital (IA); Harvard’s Massachusetts General Hospital (MA); the University of 

Minnesota (MN) and the Mind Research Network (NM), collected from 70 healthy subjects, 

as a part of the Mind Clinical Imaging Consortium. The data from the AOD task was 

acquired at the Olin Neuropsychiatry Research Center at the Institute of Living/Hartford 

Hospital, collected from 28 healthy subjects.

Havlicek et al. Page 11

Neuroimage. Author manuscript; available in PMC 2015 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Auditory sensorimotor task

The SM task consists of an on/off block design each with duration of 16 s. During the on-

block, 200 ms tones were presented with a 500 ms stimulus onset asynchrony (SOA). There 

were eight tones at different pitches along a scale. These tones were presented in ascending 

and descending cycles and this pattern continued for the ‘on’ block duration. This was 

followed by an ‘off’ block of 8 s. After each tone, participants are required to quickly press 

the right thumb using the input device. There were two runs and each lasted about 4 min.

Auditory oddball discrimination task

The AOD task consists of detecting an infrequent sound within a series of regular and 

different sounds. The task consisted of two runs of auditory stimuli. The standard 

(nontarget) stimulus was a 500 Hz tone, the target stimulus was a 1,000 Hz tone, and the 

novel stimuli consisted of nonrepeating random digital noises (e.g., tone sweeps, whistles). 

The target and novel stimuli each occurred with a probability of 0.10; the standard stimuli 

occurred with a probability of 0.80. The stimulus duration was 200 ms with a 1,000, 1,500, 

or 2,000 ms interstimulus interval (ISI). All stimuli were presented at ~80 dB above the 

standard threshold of hearing. The participants were instructed to respond as quickly and 

accurately as possible with their right index finger every time they heard the target stimulus 

and not to respond to the nontarget stimuli or the novel stimuli. The AOD task consisted of 

two 8 min runs.

Data acquisition

SM functional data were acquired with gradient-echo echo-planar imaging (EPI) sequences 

on Siemens 3 T scanners, except at the NM site where a 1.5 T Siemens scanner was used. 

The parameters for functional scans are as follows: repeat time (TR) = 2.0 s; echo time (TE) 

= 30 ms (TE = 39 ms for NM); flip angle (FA) = 90 °; field of view (FOV) = 22 cm; 

acquisition matrix = 64 × 64; voxel size 3.4 × 3.4× 4 mm3; slice thickness = 4 mm; gap 

between slices = 1 mm; number of slices 27; ascending sequential acquisition; total number 

of scans = 120 in each run.

AOD functional data were acquired with gradient-echo EPI sequences on Siemens 3 T 

Allegra scanner with the following parameters: TR = 1.50 s; TE = 27 ms; FA = 70 °; FOV = 

24 cm; acquisition matrix = 64 × 64; voxel size 3.75 × 3.75 × 4 mm3; slice thickness = 4 

mm; gap between slices = 1 mm; number of slices 29; ascending acquisition; total number of 

scans = 249 in each run.

Data preprocessing

Data were preprocessed using the SPM5 software package. Data were motion corrected and 

slice-timing corrected, spatially normalized into the standard Montreal Neurological 

Institute (MNI) space, and spatially smoothed with a 10 × 10 × 10 mm3 full width at half-

maximum Gaussian kernel (9 × 9 × 9 mm3 in the case of SM). Following spatial 

normalization, the data (originally collected at 3.4 × 3.4 × 4 mm3) were slightly subsampled 

to 3 × 3 × 3 mm3, resulting in 53 × 63 × 46 voxels.
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Group spatial ICA (Calhoun et al., 2001a) was used to decompose all the data into 

components using the GIFT software (http://icatb.sourceforge.net/) as follows. Dimension 

estimation, to determine the number of components, was performed using the minimum 

description length (MDL) criteria, modified to account for spatial correlation (Li et al., 

2007). Using this approach, the SM and AOD data were estimated to have 20 and 19 

components, respectively. It is worth to mention that the selection of decomposition order 

(equal to number of components) can have an impact on the number of identified brain 

activation networks. In this article, we chose the number of components to match the 

number estimated using an information theoretic approach (Li et al., 2007). Once the 

estimate of the number of components was determined we applied ICA to the data using 

group ICA as follows. Data from all subjects were concatenated and this aggregate data set 

reduced to 20 temporal dimensions using PCA (19 temporal dimensions in the case of 

AOD), followed by a independent component estimation using the infomax algorithm (Bell 

and Sejnowski, 1995).

From each set of group ICA special maps we selected four independent components (ICs) 

corresponding to (SM task/AOD task): (IC2/IC19) = left inferior parietal lobule (sIPL) with 

slight contribution of left middle frontal gyrus; (IC4/IC1) = anterior cingulate/motor cortex 

(AC/MC); (IC11/IC12) = bilateral inferior frontal gyrus (IFG); and (IC18/IC16) = bilateral 

primary auditory cortex (A1). For each of the four ICs, we extracted the subject specific 

component time courses, obtained during subject level back reconstruction step of the group 

ICA. Inclusive description of the group ICA and back reconstruction procedure can be found 

in (Calhoun et al., 2001a).

Consequently, zero mean corrected time series with unit variance were processed by our 

dynamic MAR model based on Kalman filter followed by the smoother. In order to make a 

comparison, all data were also processed by the standard MAR model. The model order and 

the update coefficient were selected based on AIC and the relative error variance (p = 8, λ = 

10−5 for SM and p = 8, λ = 10−3 for AOD), respectively. We applied the same model order 

for the dynamic and the standard MAR. Finally, the GPDC measure was calculated for each 

time point of the time series forming spectrograms (dynamic MAR), and processed over 

group of subjects in the same way as the simulations.

Results

In order to distinguish between significant causal relations identified by dynamic MAR 

model and relations given by chance, a bootstrap procedure was performed. An empirical 

null distribution of no causality was created using a 2000 point bootstrapping. The 

connections whose GPDC values lay above upper bound of 95 % confidence interval are 

considered as significant (Fig. 4,5 dashed line).

The results from the SM task indicate that the component consisting of primary auditory 

cortex (A1) serves as a source, from which the information propagates to all other 

participating components (sIPL, AC/MC, and IFG) in our considered network. Due to 

spectral representation of Granger causality, there is clear evidence that indentified causal 
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relation among components at frequency 0.031 Hz is related to the stimulation paradigm of 

the task (that also repeats with the frequency 0.031 Hz).

Results from the AOD task confirmed the A1 component also as main common source 

affecting other components. Additionally, unidirectional connections from sIPL to AC/PMC 

and also from sIPL to IFG were identified. Moreover, linkage between A1 and sIPL was 

detected in both causal directions. In the case of AOD data, the functional network 

connectivity was found at frequency around 0.033 Hz. As a consequence of random (not 

fixed) appearance of events in the experimental paradigm of AOD, it is not possible to find 

exact match of identified driving frequency with the frequency of stimulation function (e.g. 

of targets), because there is no main frequency. However, the histogram of gap occurrence 

between single target stimuli indicates that targets appeared during the task most frequently 

approximately at frequencies 0.035 Hz and 0.065 Hz, when the first frequency is very close 

to our driving frequency.

Based on connectivity results provided by the standard MAR we can conclude the 

following. In the case of SM data we could only identify a causal connection between 

regions A1 and IFG, where in both directions the upper bound of 95 % confidence interval 

generated by bootstrap procedure significantly crossed. The prevalent direction from IFG to 

A1 was detected at a frequency of 0.049 Hz, which is not related to the frequency of the SM 

experimental task. In contrast, the opposite less prominent direction from A1 to IFG is at the 

task related frequency of 0.031 Hz. This results indicate a failure of the standard MAR 

model when applied with the model order estimated by AIC (p = 8). However, there is a 

chance to slightly improve the results obtained by the standard MAR and get closer to the 

identified connection structure based on dynamic MAR if a slightly higher model order is 

used. Even a smaller model order can mean an improvement (based e.g. on BIC) but without 

a possibility to detect task related frequency component in the estimated spectra.

In the case of AOD data we were able to obtain three same connections as determined by 

dynamic approach, i.e. from A1 to IFG and to sIPL; and from sIPL to AC/MC, and 

connection from AC/MC to A1 (see Fig. 5), i.e. in the opposite direction than was 

determined by dynamic MAR. All these connections passed the significance threshold and 

were identified around the frequency 0.033 Hz. However, the magnitude of GPDC spectral 

profiles is much lower than in dynamic estimates. Also reliability of causal identification of 

information flow from AC/MC to A1 could be questioned if we consider the fact that we 

work with auditory oddball data and A1 represents the primary auditory cortex.

Discussion

fMRI results

From the neurophysiological point of view the two fMRI data sets derived from SM and 

AOD tasks definitely share several common functional features; however, at the same time 

they significantly differ in the involvement of functional networks employing in directed 

attention, stimulus recognition, executive functions and many others. Nevertheless, in the 

framework of demonstrating our dynamic approach to evaluate Granger causality, these data 
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provide interesting background for discussion, including the fact that both tasks result in 

similar brain activation patterns detected by ICA (those we have selected).

First of all, the block design SM task was purposely chosen in order to demonstrate the 

ability of the dynamic MAR method based on Kalman filter to accurately detect connectivity 

at frequencies that exactly correspond to fixed repetition of stimulation paradigm. Second, 

there are obvious theoretical expectations regarding these two different experimental tasks 

(Kiehl et al., 2005; Liu et al., 2009): the block-design SM task represents a relatively simple 

task in which we do not expect strong integration of cognitive networks, but rather more 

automated integration of executive functions based on auditory perception and focused 

attention. In contrast, the eventrelated AOD task includes more cognitive elements including 

reorienting of attention to new, unexpected stimuli, updating of working memory, response 

preparation, and complex executive functions are employed (Clark et al., 2000). One can 

thus argue that the SM task has a lower cognitive load than the AOD task. In this context, 

cognitive load refers to the total amount of mental activity imposed on working memory at a 

particular instance in time (McKiernan et al., 2003; Pyka et al., 2009).

Considering the results from our functional network connectivity structures (Fig. 6), we can 

clearly see that in the case of SM task, the resulting networks integration is simpler, while in 

the AOD case, the considered brain networks are unequivocally more integrated. More 

specifically, in the SM task data significant single causal directions were identified only 

from the primary auditory cortex (A1) to all other considered brain networks, i.e. to sIPL, 

AC/PMC, and IFG, whereas in AOD task data additional connections from sIPL to IFG, 

from sIPL to AC/PMC, and from sIPL to A1 are present. Results found by our dynamic GC 

approach thus look to be in accordance with theoretical expectations on these types of 

experimental tasks.

Effect of model order selection

The successful estimation of Granger causality (GPDC in our case) depends primarily on the 

reliability of the fitted MAR model, since all the necessary information is derived from the 

estimated model parameters. In practice, this boils down to the choice of an optimal model 

order. If the model order is too low, the model will not capture the essential dynamics of the 

data set, whereas if it is too high, it will also capture unwanted components (i.e. noise), 

leading to overfitting and instability. There are useful criteria for optimal model order 

selection (e.g. AIC and BIC) which we applied in our analysis of fMRI data. However, it is 

also interesting to investigate the impact of a range of model orders on the estimated GPDC 

spectra and identified causal direction, to compare the standard MAR and our dynamic 

MAR model applied to real fMRI data. We have evaluated the GPDC through bivariate 

standard and dynamic MAR by using the range from small to high model orders (3; 5; 7; 8; 

10; 12; 14; 16). The ICA component time courses from SM data related to A1 and IFG brain 

regions were used. The obtained results are depicted on Fig 7. It is evident that the dynamic 

MAR provides stable estimates over all chosen model orders. The spectral peak 

corresponding to the task related frequency can be captured from the model of order 8, 

preserving its position with higher orders (no shifting with higher orders is present). In 

contrast, the estimates provided by standard MAR are rather unstable, not providing 
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significant estimates of causality across all the model orders, and furthermore, a wrong 

identification of causal direction is obtained by model orders 7 and 8. This demonstrates that 

application of a standard MAR to fMRI time-series, which are known to be nonstationary, 

can complicate the correct identification and interpretation of causal dependencies among 

brain regions.

In our application of the frequency domain dynamic GC to fMRI data, we found AIC to be 

more suitable because it suggested a higher model order than BIC (see Fig. 8a); such a 

model allowed us to better resolve the spectral information. However, it does not mean that 

following BIC criterion would lead to different estimates of the final connectivity structure. 

In this sense, both AIC and BIC criteria, particularly when followed by our dynamic MAR 

approach, provide reasonable estimates of the optimal model order.

We have shown as a demonstration that our dynamic model is less sensitive to different 

model order and thus provides more consistent results. This is an obvious advantage 

compared to the standard model, because one does not have to be so strictly tied to model 

order suggested by the information criterion.

Original data vs. component time courses

Because the ICA decomposition was applied in order to identify functional brain networks 

represented by spatially independent components, and their corresponding component time 

courses were then used to infer causal directions among selected networks, one might be 

concerned if ICA can have any (positive or negative) influence on the final estimated results. 

On this account, we performed an additional analysis based on fMRI time series from the 

original data (before the processing by ICA). Spatial clusters of brain activation obtained by 

ICA were used to define ROI’s. The mean and the 1st principal component of ROI time 

courses were computed from each subject’s preprocessed fMRI time series and employed to 

evaluate connectivity by utilizing dynamic MAR and GPDC. The outcome is satisfactory - 

we did not find any significant differences in results by including extensive testing on SM 

and AOD data, for both bivariate and multivariate model estimation. An example of 

comparison of spectral estimation of GPDC between A1 and IFG regions, when the ICA, the 

mean, and the 1st principal component time courses were used, can be seen on Fig. 8b. 

Results were essentially unchanged when using either the mean or the 1st principal 

component time course. A small but insignificant difference was observed when ICA 

component time courses were included.

Even though this differentiation can slightly change with the model order, it cannot affect 

the estimated direction of information flow in the connectivity network.

On Granger causality in fMRI

Application of GC to fMRI data is especially attractive due to the high spatial resolution of 

fMRI signal. However, several limitations then arise from the temporal characteristics of 

fMRI signal. First, the lower temporal resolution on the order of seconds may not provide 

enough information for inferring connectivity (Roebroeck et al., 2005). The sensitivity of 

GC decreases with slower sampling rate and lower signal to noise ratio (SNR) (Deshpande 

et al., 2010). Second, the BOLD signal is an indirect measure of neural dynamics, and 
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therefore the connectivity relationship does not have to be always correctly identified due to 

hemodynamic blurring, including also variability in region specific latency and shape of 

BOLD response (Aguirre et al., 1998; Handwerker et al., 2004).

In order to partially avoid the effect of region specific HRF, the Granger causality can focus 

on the modulation of causal connectivity under different experimental conditions, as 

opposed to attempting identification of the causal structure independently (Roebroeck et al., 

2005; Seth, 2009). This is possible, since HRFs are not expected to vary between 

experimental conditions. This strategy also brings GC closer to the concept of effective 

connectivity (Friston, 1994). A more direct solution to avoid the effect of HRF variability is 

via HRF deconvolution. Although some promising approaches were recently suggested 

(Chang et al., 2008; Vakarin et al., 2007), there is still work needed to make such 

approaches more reliable and accurate. In this sense, the nonlinear Kalman filter could be 

also very useful, since it enables signal specific nonlinear hemodynamic modeling (Riera et 

al., 2004), including the ability to estimate the neural signal.

Additionally, because there is evidence that the relationship between fMRI time series is 

rather nonlinear (Berns et al., 1999), further extension of GC model that would allow 

nonlinear interactions either at BOLD level or (even better) at the already estimated neural 

level should be taken into consideration. There are several approaches for nonlinear GC that 

were already proposed and applied to neurophysiologic data. These include e.g. locally 

nonlinear autoregressive models (Freiwald et al., 1999); nonlinear kernels such as radial 

basis functions (Ancona et al., 2004); or nonlinear kernels based on theory of reproducing 

Hilbert spaces (Marinazzo et al., 2008).

Recently, the issue of filtering time series as a part of preprocessing steps before application 

to MAR model has been well addressed (Florin et al., 2010; Seth, 2009). Especially low-

pass filtering can introduce spurious correlation structure into data which can result in 

artifactual causal connectivity (on the other hand, high-pass filtering used to remove very 

low frequencies associated with signal drift is usually safe).

In this context, our proposed method for evaluating GC based on dynamic MAR modeling, 

besides the fact that it is able to handle nonstationarities present in fMRI time series better, 

also proved to be more robust against small region specific diversity of HRF. Additionally, 

in contrast to the standard AR modeling, the Kalman filter is also known to be more 

powerful in increasing SNR (Oikonomou et al., 2007). This feature very positively 

contributes to more stable estimate of MAR parameters and to more accurate estimation of 

power spectra of the GPDC. Especially nuisance frequency components that are mostly 

present at higher frequencies in fMRI data are effectively suppressed.

We introduced an approach for dynamic evaluation of Granger causality in order to avoid 

the stationarity assumption in standard MAR modeling. Our method is based on time 

varying estimation of MAR coefficients by combining forward and backward estimates of a 

Kalman filter. Even though we demonstrate dynamic GC assessed in the frequency domain, 

one can expect the same improvement of estimation performance when applied in the time 

domain GC as well. However, here presented dynamic GC method is not the only one that 
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was designed for application to nonstationary data with the neurophysiologic origin. In an 

fMRI application, Sato et al. (2006) used the interesting concept of wavelet basis functions 

aimed at fitting time-varying coefficients of MAR model, which is theoretically able to 

provide different connectivity structure for each time point of time series (time domain GC). 

In an EEG application, Hesse et al. (2003) proposed a method based on adaptive recursive 

least squares (RLS) modeling (time domain GC), which can be seen as a special case of 

Kalman filtering, and is thus the closest to our approach; Dhamala et al. (2008) introduced a 

nonparametric approach based on spectral factorization of wavelet transformations 

(frequency domain GC).

Finally, the fact that MAR models and especially our proposed dynamic model are based on 

stochastic signal modeling should be considered as an advantage in the concept of causality 

analysis. It is a very strong and limiting assumption that all state variables of the model will 

follow deterministic trajectories from the initial condition for a whole epoch, with only the 

local neural activity influencing their course, as it is assumed e.g. in DCM. It can be easily 

imagined that disturbances of various kinds are able to perturb the state variables from this 

deterministic course (Roebroeck et al., 2009). Further, if the true neural activity is not 

exactly as assumed, namely equal to the known stimulus (or a deterministic function), then 

the state variables cannot be accurately estimated in this manner.

Conclusion

In this paper we proposed a dynamic approach for MAR modeling based on Kalman filter in 

order to evaluate Granger causality. The method is introduced in the context of functional 

network connectivity when the functional networks are first detected by ICA. The 

effectiveness and robustness of the dynamic method compared to the time-invariant MAR 

modeling when applied to nonstationary fMRI data is achieved by combining forward and 

backward filter that provide the optimal smoother estimate. The Granger causality is then 

evaluated through a well recognized measure of generalized partial directed coherence that 

is suitable for bivariate as well as multivariate data. The GPDC provides identification of 

causal relation in frequency domain, which allows one to distinguish the frequency 

components related to experimental paradigm. Subsequently, the procedure of evaluating 

Granger causality via dynamic MAR was demonstrated on simulated time series as well as 

on two sets of group fMRI data of SM and AOD task. Additionally, a comparison with the 

results obtained from a standard time-invariant MAR model was provided. In accordance 

with our theoretical expectations based on current neurophysiological knowledge the 

proposed method obviously revealed higher degree of networks integration in the 

experimental task with significantly higher cognitive load.
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Figure 1. Simulated data and comparison of dynamic and standard MAR approach
Illustration of non-stationary fMRI time series simulation process, where time series A 

causes time series B (a); spectrograms of GPDC (both directions) obtained by performing 

dynamic MAR model based on Kalman filtering before and after smoothing procedure (b); 

median frequency profiles of GPDC for dynamic MAR and time-invariant MAR estimates 

(c). The dashed line shows upper bound of 95 % confidence interval under the hypothesis of 

no connectivity between the components.
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Figure 2. Experimental paradigms
Experimental paradigms for SM task (left) and AOD task (right).
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Figure 3. ICA spatial maps and associated time courses
Axial slices of selected group spatial maps of independent components, including brain 

activation of interest, and their associated averaged time courses (over all subjects) for SM 

(left) and AOD task (right).
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Figure 4. Group results of SM task
Set of group results of the dynamic GPDC estimates for SM task. The spectrograms of 

GPDC, associated with particular causal direction between components, represent the 

median over all subjects and the single frequency profile is the median over time axis of the 

associate spectrogram. The dashed line shows upper bound of 95 % confidence interval 

under the hypothesis of no connectivity between the components. The thin line represents 

GPDC spectra estimates based on standard MAR model.
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Figure 5. Group results of AOD task
Set of group results of the dynamic GPDC estimates for AOD task. The spectrograms of 

GPDC, associated with particular causal direction between components, represent the 

median over all subjects and the single frequency profile is the median over time axis of the 

associate spectrogram. The dashed line shows upper bound of 95 % confidence interval 

under the hypothesis of no connectivity between the components. The thin line represents 

GPDC spectra estimates based on standard MAR model.
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Figure 6. Connectivity results of functional networks integrations
Directional integrations of functional networks for SM (left) and AOD (right) task, which 

were revealed as a significant after dynamic MAR estimation, at task-related frequencies 

0.031 Hz and 0.033 Hz, respectively. The values above arrows represent magnitudes of 

GPDC measure at particular driving frequencies. The thin dashed line represents 

connectivity structure identified by the standard MAR model (without pertinence constrain 

to single frequency).
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Figure 7. Comparison of GPDC based on dynamic and standard MAR as an effect of different 
model order
The example of GPDC spectra estimates for different model orders (3; 5; 7; 8; 10; 12; 14; 

16) obtained by using dynamic MAR (top) and standard time-invariant MAR (bottom), 

applied to ICA time course of A1 and IFG activations from SM data. Displayed spectra were 

calculated as a median over all subjects and runs. Black triangle marks correctly estimated 

spectral peaks that are related to task frequency of fMRI data. White triangle marks wrong 

identification of causal direction at particular frequency.
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Figure 8. Model order selection based on AIC and BIC, and the effect of using ICA time courses 
compared to original fMRI time courses on estimated GPDC spectra
Estimated BIC and AIC criteria functions of model order for bivariate (2 time courses) and 

multivariate (4 time courses) standard MAR model applied to SM and AOD data (a). 

Displayed criteria functions represent the median over all subjects and runs, and their 

minima, which were used as a suggested model order, are marked. The comparison of 

resulting GPDC spectra, when the ICA time courses and the time courses from original data 

(the mean and the 1st principle component) were used (b).
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