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In the current study we use electroencephalography (EEG) to detect heard music from the brain signal,
hypothesizing that the time structure in music makes it especially suitable for decoding perception from EEG
signals. While excluding music with vocals, we classified the perception of seven different musical fragments
of about three seconds, both individually and cross-participants, using only time domain information (the
event-related potential, ERP). The best individual results are 70% correct in a seven-class problem while
using single trials, and when using multiple trials we achieve 100% correct after six presentations of the
stimulus. When classifying across participants, a maximum rate of 53% was reached, supporting a general
representation of each musical fragment over participants. While for some music stimuli the amplitude
envelope correlated well with the ERP, this was not true for all stimuli. Aspects of the stimulus that may

contribute to the differences between the EEG responses to the pieces of music are discussed.

© 2010 Elsevier Inc. All rights reserved.

Introduction

Recent neuroimaging studies show an increasing ability to decode
from brain activity what is being perceived, in both visual (Kay et al.,
2008; Haynes, 2009) and auditory (Formisano et al., 2008; Ethofer et al.,
2009) modalities. This has however primarily been done using the
hemodynamic brain response. We present a new development in this
so-called brainreading approach, in that we decode perceived music
from the electrophysiological signal from the brain. Using linear
discriminant classification we are able to detect up to 100% correctly
which musical fragment was presented, out of seven possible choices,
with 3s of EEG data per musical fragment, using the time course
sampled at 30 Hz. Taking basic aspects of the stimulus such as the
amplitude envelope, as well as ratings of musical content, we find class-
dependent differences to in the response to relate to different aspects of
the stimuli, using low-level perceptual features but likely cognitive
events as well.

Although most of the recent brainreading studies report multivariate
decoding of fMRI signals, of course similar research can be done with
electroencephalography (EEG), where the number of channels is much
lower than the number of voxels, but the number of time samples and
trials is usually much larger. Using multivariate decoding methods on
EEG signals is quite common in the domain of brain-computer
interfacing (BCI) research, where covert mental actions are decoded in
real-time with the goal of driving a device with one’s brain signals, or
thoughts (for a review, see Van Gerven et al., 2009). Although the
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detection of heard stimuli is not directly useful for BCI research as it does
not relate any intention, classifying heard sounds teaches us more about
the neural representations of complex auditory events, such as music
and speech perception.

The EEG response to music perception has been studied in the
context of specific musical aspects, albeit mostly in the context of more
generally occurring components of the event-related potential (ERP).
These components, such as the N1/P2 complex (Dekio-Hotta et al.,
2009), the P300 oddball response (Halpern et al., 2007; Krohn et al.,
2007) and the mismatch negativity (MMN, Brattico et al., 2006; Trainor
et al., 2002) have all been shown to be influenced by musical
characteristics. ERP responses to musical rhythms have also been
investigated, for different metric levels such as the note, beat and bar
level (Jongsma et al., 2004), as well as subjective accents (Brochard et al.,
2003). Combining a number of these types of musical accents, Palmer
et al. (2009) found that different types of accent in a melodic sequence
(such as timbre changes, melodic and temporal accents) induce
different types of ERP response, showing that listeners' neural responses
to musical structure changed systematically as sequential predictability
of the melodies and listeners' expectations changed across the melodic
context. Similarly to sentences in language, musical phrase endings also
often induce a so-called closure-positive shift (Neuhaus et al., 2006).
These studies generally use artificially created, usually monophone,
isochrone melodies, to isolate the musical aspect under investigation
(Schaefer et al., 2009). The response to fully ecological, valid music
stimuli has not been studied much. One example is a study by
Bhattacharya et al. (2001), who found different patterns of dependen-
cies between EEG channels while listening to different pieces of music,
which are higher for listeners with musical training than for non-
musicians. Early studies on classifying auditorily presented language
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(words or sentences) produced good results (Suppes et al., 1997, 1998),
indicating feasibility of classification using EEG signals, but to our
knowledge no such effort has been made for musical material.

For the current study, we selected seven musical fragments, aiming
to detect the stimulus from the EEG signal. Considering the high
temporal resolution of EEG, we hypothesized that the inherent temporal
structure of music would make this feasible. We chose natural music
stimuli under the assumption that this would produce a more distinct
brain response than artificial music. The stimuli were chosen based on
their length and perceptual naturalness when played as a loop, as well as
maximizing musical differences (such as subjective loudness, western
or non-western tonal systems, different time signature, salient melody
or background texture). We predicted there to be a relation between
sound level and the ERP as the sound intensity dependence of the N1/P2
complex is well-documented and shown to be attributed to auditory
cortex activity (Mulert et al., 2005). We are interested to see if there are
other musical dimensions that can also help in predicting the class. Thus
our main question is whether classification of perceived music is
possible, and we explore some aspects of the stimulus to see which
relate the most to the brain response.

Method
Participants

Ten subjects volunteered to participate in the study, of which five
males, aged 22-53. All had normal hearing, and none had known
neurological abnormalities. All participants were right-handed. Musical
experience was not a controlled factor; one participant had formal
music training (conservatory level) and four others play an instrument
regularly (more than once a week). All participants were mainly
exposed to Western tonal music as a cultural background, and their
musical preferences differed widely.

Stimuli

Stimuli were created out of fragments of recorded music, on the basis
of comparable length and musical differences. The original music that
the fragments were taken from, and their durations are shown in
Table 1, they can also be listened to at http://www.nici.ru.nl/mmm. S1,
S4 and S6 are relatively quiet musical fragments, whereas S2, S3 and S7
are relatively intense and energetic, S5 is neutral in this sense. S1, S3, S4,
and S5 use Western tonal scales and harmonies, whereas S2 and S7 do
not, containing respectively a non-western scale with micro-tuning
deviations and non-western harmonies. S1, S2, S3, S4 and S7 have
prominent melodies, whereas S5 does not, and mainly provides a
musical texture or background. S6 does not include any clear pitch
information (only rhythm). All fragments were in 4/4 measures, except
for S2. None of the fragments included vocals. The musical fragments
were presented back-to-back in randomized sequences, that each
consisted of two instances of each fragment, shown schematically in
Fig. 1. The randomization ensures a pre-stimulus context that is not
class-specific, and averages out any carry-over response from the
previous trial. The starting fragment of the sequence was counter-

balanced but not used in analysis. Seventy sequences were created, each
containing 15 fragments. Additionally, of each stimulus, five sequences
were also made in which a single fragment was repeated ten times, to
investigate multi-trial classification. All together this resulted in 145
sequences, which were equally divided over five blocks, with the
opportunity for the participant to start every sequence with a button
press. The total number of trials (before artifact rejection) was 140 for
each fragment in the random context, and five repeated sequences of
each to use for multi-trial sequence classification. The total duration of
the experiment amounted to about 1h and 45 min (excluding cap
fitting time).

Equipment and procedure

The data were recorded using a Biosemi Active-Two system with 64
EEG channels (placed according to the 10-20 system, Jasper, 1958), and
eight EMG/reference channels (double mastoids, horizontal and vertical
EOG, EMG of the long neck muscle (longus capitis) to control for head
nodding and the laryngeal muscle (cricothyroid) to control for
subvocalization. The offsets of the active electrodes were kept below
30 mV at the start of the measurement, EEG was sampled at 2048 Hz.
The experiment was programmed in StimCat and run on the Brain-
Stream platform (www.brainstream.nu), which are both MATLAB code
packages soon to be open source. Audio files were edited using Audacity
1.2.5 (http://audacity.sourceforge.net). The instructions and fixation
cross were displayed on a 17” TFT screen with a 600x 800 pixel
resolution, and stimuli were played through passive speakers (Monacor,
type MKS-28/WS) at a comfortable listening level adjusted to the
preference of the participant (peaking between 86 and 84 dB SPL). The
analyses were performed in MATLAB (Mathworks, Nantick USA).

In order to test if the audio speakers in the EEG cabin somehow
affecting the measured signal, we performed the same experiment with
a watermelon instead of a brain, using an identical set-up with
conductive gel and positioning towards the speakers, see Fig. 2. A
similar approach was used in Akhoun et al. (2008) when investigating
artifacts in auditory brainstem responses.

Analyses

The data were initially down-sampled to 256 Hz. To remove slow
drift, linear de-trending was used and electrodes were re-referenced
using a common average. After removal of bad epochs and bad channels
(determined by an amplitude of >3.5 times the standard deviation), a
spectral filter was applied with high-pass at 1 Hz and low-pass at 14 Hz
and further down-sampled to 30 Hz, as initial investigation of the
frequency domain revealed that no useful information was found in
higher frequencies. As the shortest musical fragment was 3.26 s, this
was the epoch duration used for all stimuli. The first fragment of every
sequence was not used in the data analysis to avoid state-change effects.
For classification, the multi-class problem was split into one-vs.-rest
style binary subproblems, for each of which a quadratically regularized
linear logistic-regression classifier (Bishop, 1995) was trained. Each
binary subproblem classifier, c;, estimates the posterior probability of its
class, Pr(ci|X), given the data, X, so the class with maximum a-posteriori

Table 1

The musical phrases that were used as stimuli were fragments taken from the recordings listed here.
Stim Title Performer Record label Year Length
S1 Tchaikovsky's Nutcracker Suite: March Kazuchi Ono & Bratislava Radio Symph. Orchestra Compose Records 1997 3.26s
S2 Galvanize The Chemical Brothers Freestyle Dust 2005 345s
S3 Daft Punk is Playing at my House LCD Soundsystem DFA 2005 3.52s
S4 Agua de Beber Antonio Carlos Jobim Verve 1963 3.59s
S5 Release the Pressure Leftfield Columbia 1995 4.36s
S6 How Insensitive Richard ‘Groove’ Holmes P-Vine Japan 2004 3.87s
S7 Erkilet Glizeli Antwerp Gipsy-Ska Orkestra Evil Penguin Records 2007 394s
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Fig. 1. A schematic representation of the stimulus sequences is shown: randomized sequences were used to collect data to train the classifier with, and multitrial-sequence

classification was done on continuous data of single repeating stimuli (in this case, S2).

(MAP) probability was used for prediction. Classification performance
was assessed in two ways: individually (using training and test data
from a single participant with performance estimated by 10-fold cross-
validation) and cross-participant (training the classifier on nine
participants and testing it on the one remaining participant). To ensure
that the classification results are based upon brain signals and not
artifactual sources, the classification was also carried out for the
processed signal from the EMG channels (referenced to the linked
mastoids). The signals were processed according to standard treatment
of EMG signals (Reaz et al., 2006), applying a high-pass filter at 8 Hz, and
taking the envelope of the remaining signal. This envelope shows actual
muscle activity, and its classification reveals class-specific muscle
movement.

We also investigate the result of combining multiple consecutive
epochs to improve performance. To do this, the MAP approach used to
generate multi-class predictions was extended to include multiple per-
epoch classifier predictions,! which were tested on continuous data of a
single repeating musical fragment. To prevent any effect of a block
design in the stimuli, the multi-trial sequences were used for testing
only, training of the classifier was done using trials from the randomized
sequences.

To visualize the location and time-course of the class-relevant
features we first computed grand-average per-class ERPs across all
subjects and electrodes by temporally concatenating the stimuli into
one long ERP. We then used singular-value-decomposition to decom-
pose these grand-average ERPs into pairs of spatial-patterns and per-
class time-courses. In this way we can clearly see both where a
particular component is localized and when it responds to different
stimulus inputs. The time-courses produced in this way are particularly
interesting, as by correlating them with features of the audio stimulus,
such as its acoustic envelope or musical content, we can determine
which stimulus features generate a strong brain response.

To ascertain the relation between sound volume dependence and
the ERP, the correlation between the time course of this main
component and the audio envelope was calculated. As an exploratory
test, some basic measures of music content were also investigated. This
musical content was rated behaviorally by two raters to see if certain
events in the music may be related to some aspect of the EEG response.
This was done by locating event onsets based on the audio waveform in
Praat (http://www.fon.hum.uva.nl/praat/) and scoring each event on 11
dimensions: subjective loudness, beat (the presence of a downbeat) or
syncopation (as defined by Longuet-Higgins and Lee, 1982), complexity
of harmonic structure, melodic events (as opposed to rhythmic), large
interval jumps, novelty (the presence of a new, non-repeating sound
event), and the level of expectations answered or violated in the
harmony, rhythm (syncopation), timbre, melody or pitch (denoting
surprising events in the music). These profiles were then correlated
with the same time-course as the envelopes before, only with the mean
subtracted to remove general perceptual responses and leave only the
stimulus-specific response.

Results

The single trial classification results for both the individual and cross-
participant classification are shown in Fig. 3, showing classification rates

! Assuming epoch independence, the MAP probability of class ¢; given the sequence
of data, [X;,Xa,...], is given by the product of epoch predictions, Pr(ciX;,Xa,...)=
l'lj: 1,2,...Pr(5i|xj)-

far above chance for all participants, both for individual and cross-
participant classification. The best individual participant (P4) shows 70%
correct classification for the seven-class problem (chance level is 14.3%),
the best result for the cross-participant classification is 53% correct (P1
and P6). When comparing the participants' results to each other, T-tests
between all the within-participant results show that due to the large
number of measuring points, almost all comparisons are significant at
p<0.01 and all are significant at p<0.05. The results of the classification
on the EMG channels are also shown in Fig. 3, and are all around chance,
showing that sub-vocalization or small head movements are not the
source of the classification results. The results for the watermelon
phantom are also at chance level.

The sequence classification results are shown in Fig. 4, with
increasing classification rates for all participants, and up to 100% correct
classification achieved after six trials for the best participant (thus using
19.6 s of data). The average multi-trial rate over all participants starts at
50% and goes up to 88% after nine consecutive trials of continuous data.

When decomposing the grand average ERP response over all
participants, a fronto-central component emerges that explains 23% of
the total variance. The time-course of this component for the different
musical stimuli shows the most distinction between the classes,
indicating it may be a cleaner response to the stimuli. The second
component explains 9% of the variance, but the time-courses do not
show big differences between the stimuli. Considering the distribution
and the time-course, with a small peak around 300 ms, a possible
interpretation of this response may be that it represents the processing
of novelty for each new fragment in the randomized sequences
changing every 3 to 4.3 s. However other processes such as working
memory, prediction formation, memory retrieval and such may also be
implicated. The third component appears to add extra detail to the
separate stimuli, explaining only 5% of the variance. The components are
shown in Fig. 5 and the first 20 components explaining the first 75% of
the total variance, and their distributions, are shown in the supplemen-
tary online material.

The differences in average classification rate per stimulus, see Fig. 6,
show that all stimuli are detectable at the p<0.01 significance level,
although some musical fragments elicited a somewhat stronger
classifiable response than others. For the within-subjects classification,

Fig. 2. To check for artifacts in the set-up, the experiment was also carried out with a
watermelon phantom.
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Fig. 3. The classification results are shown for both the individual and the cross-participant classification. The results of the EMG envelope and the melon phantom are also shown
(cross-participant classification not performed). Chance level is 14.3% for a seven-class problem (broken line), the p<0.01 significance level is 20% (dotted line) showing all rates to

be significantly higher than chance.

the results are significantly better for S6 and S1 than for the others
(p<0.01). The clear advantage of the cross-participant classification is
very likely due to the increased amount of training data used in this case
by merging all the data. Here, S1 has the strongest classifiable response
and S7 is notably weaker than the others.

The comparison of the ERP of Component 1 from Fig. 5 to the envelope
of the sound in the stimulus is shown in the left panel of Fig. 7, showing
that the correlation differs considerably per stimulus (from —.07 to .48).
Although the correlations vary over stimuli, closer examination of the
stimuli for which the correlations are above .10 shows that for the music
with fewer events and more space in between, the envelope predicts the
ERP response quite well, whereas this is not true for stimuli that have a
high melodic event density (S2 and S7, which are two of the less easily
detected stimuli). By finding the time lag at which the correlation between
the envelope and the ERP is maximal, we get an impression of the
response time of the ERP to the sound intensity. When summing the
correlation at different time-lags for every stimulus (shown in the bottom
of Fig. 7.1) the highest correlation over all stimuli is lagged at about 70-
100 ms, which is an indication of the processing time and may likely relate
to the N1 response.

The results of the music comparison are less clear, and of an
exploratory nature. The correlations for four of the rated dimensions are
shown in the right panel of Fig. 7. The ‘Beat’-profile (Fig. 7.2A) shows a

common positive correlation around 100 ms, which may indicate an
influence on the N1/P2 complex. The differences per stimulus show this
to be context-dependent: for instance S2 and S7, which have a weaker
metric accent than the other stimuli, do not show a strong response to
the meter. Another profile identified syncopation (‘Exp beat’, Fig. 7.2B),
which shows a relatively early correlation (=100 ms) for some stimuli
(not all stimuli contain syncopations), and again S2 and S7 emerge,
together with S3 and S6 which also contain strong syncopated accents.
An early correlation with melodic events (Fig. 7.2C) shows the pitch to
have influence as well, and Melody Jumps, or large (>4 semitones)
intervals, Fig. 7.2D) indicates that the processing of the size of the
interval may be a slower process, shown for those stimuli with a clear
melody (thus excluding S5 and S6). As S5 was chosen to investigate a
fragment with only a musical texture or background, it is interesting to
see that this was also a stimulus that was relatively less easy to detect.

Discussion

The current study shows that it is possible to detect perceived music
from the single trial EEG signal. The results do not stem from a
mechanical or muscle artifact, as tested with a watermelon phantom and
glottal and neck EMG respectively. Also, the maximum correlation of the
EEG signal with the auditory envelope at 100 ms is evidence that some
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Fig. 4. Here, the multi-trial classification results are shown per participant and the melon phantom, as well as the average over participants (thick black line). Chance level is 14.3% for

a seven-class problem (mark on y-axis).
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Fig. 5. The first three components contributing to the variance of the grand average ERP (all participants, all stimuli). The time-courses for the seven stimuli are plotted below,
showing the first component to distinguish most between the musical fragments. The bar on the bottom right shows the scale of the y-axis, with the bar on each time-course running

from —4 to 4 uv.

processing is involved. The range of results is quite broad for the different
participants, with individual single trial seven-class rates varying from
25% to 70%. This seems to involve a response that is general enough to be
able to achieve 35% to 53% while classifying across participants, showing
detection to be possible based on a general template and without
training the classifier on subject-specific data. This shows that, contrary
to most tasks investigated in BCI research, there are no subjects with
unclassifiable responses (what is referred to as illiteracy for a certain
task). This is likely due to early perceptual processing, which may be
more common and less individualized then a BCI task, such as imagined
movement. Although S1 was the stimulus that was most easily
detectable in the cross-participant classification, all stimuli were
detectable based on a single trial. For the within-participant classifica-
tion, the range of binary classification rates was 58% to 64%, and the
cross-participants rates varied from 65% to 79%. The stimuli that were on
average least detectable also showed the smallest correlation with the
audio envelope or had the least musical information.

To better describe the information that is used by the classifier, we
decomposed the averaged ERP response for all the stimuli concate-
nated, over all participants. In this way we can isolate the class-
specific responses better by discarding components that do not add
any information based on their time-courses, and see which channels
are most important based on the component weight distribution. The
decomposed ERP shows a main component with a fronto-central
distribution that explains 23% of the data and shows the most
distinction between the classes. Comparison of the time-course of this
component with the audio envelope shows that the correlation
between them is quite high for some stimuli, but quite low for some
others. The most obvious difference between these stimuli appears to
be the event density in the music, however other factors could also be
of influence, such as the bandwidth of the signal, as was reported by
Atcherson et al. (2009). Exploring a possible relation with music
structure we found the strongest correlation lags between the EEG
and different musical events differed over stimuli as well, supporting
the notion that different processes are contributing to the brain signal

that is useful for the detection of the representation. Considering that
all stimuli were detectable, including stimuli of which the amplitude
envelope and the ERP hardly correlate, the unique response to a piece
of music suggests a combination of both bottom-up and top-down
processes. This is supported by the finding by Brechmann et al. (2002)
that while responses in the primary auditory areas show a clear
dependence on stimulus intensity, the auditory association areas do
not show this close relation. Recent results from concurrent EEG and
fMRI reported by Mayhew et al. (2010), namely that auditory
stimulation induces activity in bilateral secondary auditory cortices
as well as the right pre- and post-central gyri, anterior cingulate

85 v v v r s .
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= = =Chance
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Fig. 6. The single trial classification rates per stimulus in percentages (binary, 1 versus
all others) are shown here averaged over participants, both for individual and cross-
participant classification. Chance level is 50%, the p<0.01 significance level is 57.5%
(dotted line).
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Fig. 7. In panel 1 (left), the audio envelopes are shown together with the ERP of component 1 for every stimulus, showing the correlation between the two on the right. The y-axes are
scaled individually, all between 2 and 4 pV. The plot on the left below shows the total correlation per stimulus at different time-lags, with the sum as the first line. The summed
correlation is maximal at a latency of 100 ms, and the plots on the top of panel 1 have been lagged at this interval to visualize the correlation. In panel 2 (right), the correlations are
shown for every stimulus (S1-S7 and the mean) for four of the scored musical dimensions, at different time-lags (0-600 ms). The first two (A and B) relate to the time-structure:
‘beat’ describes the rhythmic structure (the rhythmic pulse), ‘E-beat’ a rhythmic surprise (syncopation). The other two plots (C and D) concern the melody: ‘Melody’ is identifies

melodic events and ‘Mel jumps’ denotes large pitch jumps.

cortex (AAC) and supplementary motor cortex, points at other
processing taking place, over and above registering loudness.

With the music perception literature in mind, in which many
interpersonal differences in the EEG response have been identified
that appear to be related to personal music preference (Caldwell and
Riby, 2007), cultural background (e.g. Nan et al., 2006) as well as
musical training (Koelsch et al., 1999; Van Zuijen et al., 2005; Vuust et
al., 2005; Fujioka et al., 2004), the finding of a common ERP
representation in the grand average, strong enough to allow cross-
participant classification, was not necessarily expected, and we
assume that low-level perceptual mechanisms are the main source
of this common representation. However, as many brain responses to
musical dimensions have also been shown to be independent of
musical training, we believe this common representation to be
augmented by implicit musical expectations (for a review on
predictive processing of auditory information, see Winkler et al.,
2009). This may explain certain aspects of the ERP that are not directly
related to the audio envelope, such as the peak seen in the ERP of S4 at
about 1800 ms (coinciding with a downbeat in the absence of a
percussive event) or the ERP response to the latter half of S2, where a
non-western tuning system was used (see Fig. 7.1, fourth and second
row). Of course more standardized experiments need to be carried out
to confirm these findings.

To summarize, we found it was possible to detect perceived music
from the single-trial ERP, with 70% correct classification for our best
participant, out of seven stimuli and using 3 s of data. It was also possible
to detect the music stimuli across participants, supporting the notion of a
universal representation for each stimulus. This shows the promise of EEG,
next to MR, for brainreading paradigms, and the possibilities offered by
music as an inherently time-based domain. Interesting steps for the future
would be to investigate perception of spoken language, and the
interaction between linguistic concepts and audio information.
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