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Abstract
Although there are many imaging studies on traditional ROI-based amygdala volumetry, there are
very few studies on modeling amygdala shape variations. This paper present a unified
computational and statistical framework for modeling amygdala shape variations in a clinical
population. The weighted spherical harmonic representation is used as to parameterize, to smooth
out, and to normalize amygdala surfaces. The representation is subsequently used as an input for
multivariate linear models accounting for nuisance covariates such as age and brain size difference
using SurfStat package that completely avoids the complexity of specifying design matrices.
The methodology has been applied for quantifying abnormal local amygdala shape variations in
22 high functioning autistic subjects.
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1. Introduction
Amygdala is an important brain substructure that has been implicated in abnormal functional
impairment in autism (Dalton et al., 2005; Nacewicz et al., 2006; Rojas et al., 2000). Since
structural abnormality might be the cause of the functional impairment, there have been
many studies on amygdala volumetry. However, previous amygdala volumetry results have
been inconsistent. Aylward et al. (1999) and Pierce et al. (2001) reported that amygdala
volume was significantly smaller in the autistic subjects while Howard et al. (2000) and
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Sparks et al. (2002) reported larger volume. Haznedar et al. (2000) and Nacewicz et al.
(2006) found no volume difference. Schumann et al. (2004) reported that age dependent
amygdala volume difference in autistic children and indicated that the age dependency to be
the cause of discrepancy. All these previous studies traced the amygdalae manually and by
counting the number of voxels within the region of interest (ROI), the total volume of the
amygdala was estimated. The limitation of the traditional ROI-based volumetry is that it can
not determine if the volume difference is diffuse over the whole ROI or localized within
specific regions of the ROI (Chung et al., 2001). We present a novel computational and
statistical framework that enables localized amygdala shape characterization and able to
overcome the limitation of the ROI-based volumetry.

1.1 Previous Shape Models
Although there are extensive literature on local cortical shape analysis (Chung et al., 2005;
Fischl and Dale, 2000; Joshi et al., 1997; Taylor and Worsley, 2008; Thompson and Toga,
1996; Lerch and Evans, 2005; Luders et al., 2006; Miller et al., 2000), there are not many
literature on amygdala shape analysis other than Cates et al. (2008), Qiu et al. (2008) and
Khan et al. (1999) mainly due to the difficulty of segmenting amgydala. On the other hand,
there are extensive literature on shape modeling other subcortical structures using various
techniques.

The medial representation (Pizer et al., 1999) has been successfully applied to various
subcortical structures including the cross sectional images of the corpus callosum (Joshi et
al., 2002) and hippocampus/amygdala complex (Styner et al., 2003), and ventricle and brain
stem (Pizer et al., 1999). In the medial representation, the binary object is represented using
the finite number of atoms and links that connect the atoms together to form a skeletal
representation of the object. The medial representation is mainly used with the principal
component analysis type of approaches for shape classification and group comparison.

Unlike the medial representation, which is in a discrete representation, there is a continuous
parametric approach called the spherical harmonic representation (Gerig et al., 2001; Gu et
al., 2004; Kelemen et al., 1999; Shen et al., 2004). The spherical harmonic representation
has been mainly used as a data reduction technique for compressing global shape features
into a small number of coefficients. The main global geometric features are encoded in low
degree coefficients while the noise will be in high degree spherical harmonics (Gu et al.,
2004). The method has been used to model various subcortical structures such as ventricles
(Gerig et al., 2001), hippocampi (Shen et al., 2004) and cortical surfaces (Chung et al.,
2007). The spherical harmonics have global support. So the spherical harmonic coefficients
contain only the global shape features and it is not possible to directly obtain local shape
information from the coefficients only. However, it is still possible to obtain local shape
information by evaluating the representation at each fixed point, which gives the smoothed
version of the coordinates of surfaces. In this fashion, the spherical harmonic representation
can be viewed as mesh smoothing (Chung et al., 2007). Instead of using the global basis of
spherical harmonics, there have been attempts of using the local wavelet basis for
parameterizing cortical surfaces (Nain et al., 2007; Yu et al., 2007).

Other shape modeling approaches include distance transforms (Leventon et al., 2000),
deformation fields obtained by warping individual substructures to a template (Miller et al.,
1997) and the particle-based method (Cates et al., 2008). A distance transform is a function
that for each point in the image is equal to the distance from that point to the boundary of the
object (Golland et al., 2001). The distance map approach has been applied in classifying a
collection of hippocampi (Golland et al., 2001). The deformation fields based approach has
been somewhat popular and has been applied to modeling whole 3D brain volume
(Ashburner et al., 1998; Chung et al., 2001; Gaser et al., 1999), cortical surfaces (Chung et
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al., 2003; Thompson et al., 2000), hippocampus (Joshi et al., 1997), and cingulate gyrus
(Csernansky et al., 2004). The particle-based method uses a nonparametric, dynamic particle
system to simultaneously sample object surfaces and optimize correspondence point
positions (Cates et al., 2008).

1.2 Available Computer Packages
Over the years, various neuroimage processing and analysis packages have been developed.
The SPM (www.fil.ion.ucl.ac.uk/spm) and AFNI (afni.nimh.nih.gov) software packages
have been mainly designed for the whole brain volume based processing and massive
univariate linear model type of analyses. The traditional statistical inference is then used to
test hypotheses about the parameters of the model parameters. The subsequent multiple
comparisons problem is addressed using the random field theory or random simulations.
Although SPM and AFNI are probably two most widely used analysis tools, their analysis
pipelines are based on univariate general linear models and they do not have a routine for a
multivariate analysis. Therefore, they do not have the subsequent routine for correcting
multiple comparison corrections for the multivariate linear models as well.

There are also few surface based tools such as the surface mapper (SUMA) (Saad et al.,
2004) and FreeSurfer (surfer.nmr.mgh.harvard.edu). SUMA is a collection of mainly
cortical surface processing tools and does not have the support for multivariate linear
models. The spherical harmonic modeling tool SPHARM-PDM
(www.nitrc.org/projects/spharm-pdm) is also available (Styner et al., 2006). SPHARM-
PDM supports for multivariate analysis of covariance (MANCOVA), which is a subset of
the more general multivariate linear modeling framework.

For general multivariate linear modeling, one has to actually use statistical packages such as
Splus (www.insightful.com), R (www.r-project.org) and SAS (www.sas.com). These
statistical packages do not interface with imaging data easily so the additional processing
step is needed to read and write imaging data within the software. Further these tools do not
have the random field based multiple comparison correction procedures so the users are
likely export analyzed statistics map to SPM or fMRISTAT
(www.math.mcgill.ca/keith/fmristat) increasing the burden of additional processing steps.

1.3 Our Contributions
In this paper, we use the weighted spherical harmonic representation for parameterization,
surface smoothing and surface registration in a unified Hilbert space framework. Chung et
al. (2007) presented the underlying mathematical theory and a new iterative algorithm for
estimating the coefficients of the representation for extremely large meshes such as cortical
surfaces. Here we apply the method to real autism surface data in a truly multivariate
fashion for the first time.

Our approach differs from the traditional spherical harmonic representation in many ways.
Although the truncation of the series expansion in the spherical harmonic representation can
be viewed as a form of smoothing, there is no direct equivalence to the full width at half
maximum (FWHM) usually associated with kernel smoothing. So it is difficult to relate the
unit of FWHM widely used in brain imaging to the degree of spherical harmonic
representation. On the other hand, our new representation can easily relate to FWHM of
smoothing kernel so we have a clear sense of how much smoothing we are performing
before hand.

The traditional representation suffers from the Gibbs phenomenon (ringing artifacts) (Gelb,
1997) that usually happens in representing rapidly changing or discontinuous data with
smooth periodic basis. Our new representation can substantially reduce the amount of Gibbs
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phenomenon by weighting the coefficients of the spherical harmonic expansion. The
weighting has the effect of actually performing heat kernel smoothing, and thus reducing the
ringing artifacts. We quantify the improved performance of our new representation in the
both real and simulated data using for the first time.

Since the proposed new representation requires a smooth map from amygdala surfaces to a
sphere, we have developed a new and very fast surface flattening technique based on the
propagation of heat diffusion. By tracing the integral curve of heat gradient from a heat
source (amygdala) to a heat sink (sphere), we can obtain the flattening map. Since solving an
isotropic heat equation in a 3D image volume is fairly straightforward, our proposed method
offers a much simpler numerical implementation than available surface flattening techniques
such as conformal mappings (Angenent et al., 1999; Gu et al., 2004; Hurdal and Stephenson,
2004) quasi-isometric mappings (Timsari and Leahy, 2000) and area preserving mappings
(Brechbuhler et al., 1995). The established spherical mapping is used to parameterize an
amygdala surface using two angles associated with the unit sphere. The angles serve as
coordinates for representing amygdala surfaces using the weighted linear combination of
spherical harmonics. The tools containing the weighted spherical harmonic representation
and the surface flattening algorithm can be found in
www.stat.wisc.edu/∼mchung/research/amygdala. It should be pointed out that our
representation and parameterization techniques are general enough to be applied to various
brain structures such as hippocampus and caudate that are topologically equivalent to a
sphere.

Based on the weighted spherical harmonic representation of amygdalae, various multivariate
tests were performed to detect the group difference between autistic and control subjects.
Most of multivariate shape models on coordinates and deformation vector fields have
mainly used the Hotelling's T-sqaure as a test statistic (Cao and Worsley, 1999; Chung et al.,
2001; Collins et al., 1998; Gaser et al., 1999; Joshi et al., 1997; Thompson et al., 1997). The
Hotelling's T-sqaure statistic tests for the equality of vector means without accounting the
additional covariates such as gender, brain size and age. Since the size of amygdala is
dependent on brain size and possibly on age as well, there is a definite need for a model that
is able to include these covariates explicitly. The proposed multivariate linear model does
exactly this by generalizing the Hotelling's T-square framework to incorporate additional
covariates.

In order to simplify the computational burden of setting up the proposed multivariate linear
models, we have developed the SurfStat package (www.math.mcgill.ca/keith/surfstat).
that offers a unified statistical analysis platform for various 2D surface mesh and 3D image
volume data. The novelty of SurfStat is that there is no need to specify design matrices
that tend to baffle researchers not familiar with contrasts and design matrices. SurfStat
supersedes fMRISTAT, and contains all the statistical and multiple comparison correction
routines.

2. Methods
2.1 Surface Parameterization

Once the binary segmentation ℳa of an object is obtained either manually or automatically,
the marching cubes algorithm (Lorensen and Cline, 1987) was applied to obtain a triangle
surface mesh ∂ℳa. The weighted spherical harmonic representation requires a smooth
mapping from the surface mesh to a unit sphere S2 to establish a coordinate system. We have
developed a new surface flattening algorithm based on heat diffusion.
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We start with putting a larger sphere ℳs that encloses the binary object ℳa. Figure 2 shows
an illustration with the binary segmentation of amygdala. The center of the sphere ℳs is
taken as the average of the mesh coordinates of ∂ℳa, which forms the surface mass center.
The radius of the sphere ℳs is taken in such a way that the shortest distance between the
sphere to the binary object ℳa is fixed (5mm for amygdale). The final flattening map is
definitely affected by the perturbation of the position of the sphere but since we are fixing it
to be the mass center of surface for all amygdale, we do not need to worry about the
perturbation effect.

The binary object ℳa is assigned the value 1 while the enclosing sphere is assigned the value
-1, i.e.

(1)

for all σ ∈ [0, ∞). The parameter σ is the diffusion time. ℳa and ℳs serve as a heat source
and a heat sink respectively. Then we solve isotropic diffusion

(2)

with the given boundary condition (1). Δ is the 3D Laplacian. When σ → ∞, the solution
reaches the heat equilibrium state where the additional diffusion does not make any change

in heat distribution. The heat equilibrium state is also obtained by letting  and solving
for the Laplace equation

(3)

with the same boundary condition. This will results in the equilibrium state denoted by f(x, σ
= ∞). Once we obtained the equilibrium state, we trace the path from the heat source to the
heat sink for every mesh vertices on the isosurface of ℳa using the gradient of the heat
equilibrium ∇f(x,∞). Similar formulation called the Laplace equation method has been used
in estimating cortical thickness bounded by outer and inner cortical surfaces by establishing
correspondence between two surfaces by tracing the gradient of the equilibrium state (Yezzi
and Prince, 2001; Jones et al., 2006; Lerch and Evans, 2005).

The heat gradients form vector fields originating at the heat source and ending at the heat
sink (Figure 2). The integral curve of the gradient field at a mesh vertex p ∈ ∂ℳa establishes
a smooth mapping from the mesh vertex to the sphere. The integral curve τ is obtained by
solving a system of differential equations

with τ(t = 0) = p. The integral curve approach is a widely used formulation in tracking white
matter fibers using diffusion tensors (Basser et al., 2000; Lazar et al., 2003). These methods
rely on discretizing the differential equations using the Runge-Kutta method, which is
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computation intensive. However, we avoided the Runge-Kutta method and solved using the
idea of the propagation of level sets. Instead of directly computing the gradient field
∇f(x,∞), we computed the level sets f(x,∞) = c of the equilibrium state corresponding to for
varying c between -1 and 1. The integral curve is then obtained by finding the shortest path
from one level set to the next level set and connecting them together in a piecewise fashion.
This is done in an iterative fashion as shown in Figure 2, where five level sets corresponding
to the values c = 0.6,0.2, −0.2, −0.6, −1.0 are used to flatten the amygdala surface. Once we
obtained the spherical mapping, we can then project the angles (θ, φ) onto ∂ℳa and the two
angles serve as the underlying parameterization for the weighted spherical harmonic
representation.

For the proposed flattening method to work, the binary object has to be close to either star-
shape or convex. For shapes with a more complex structure, the gradient lines that
correspond to neighboring nodes on the surface will fall within one voxel in the volume,
creating numerical singularities in mapping to the sphere. Other more complex mapping
methods such as conformal mapping (Angenent et al., 1999; Gu et al., 2004; Hurdal and
Stephenson, 2004) can avoid this problem but more numerically demanding. On the other
hands, our approach is simpler and more computationally efficient because it works for a
limited class of shapes.

2.2 Weighted Spherical Harmonic Representation
The parameterized amygdala surfaces, in terms of spherical angles θ, φ, are further
expressed using the weighted spherical harmonic representation (Chung et al., 2007), which
expresses surface coordinate functions as a weighted linear combination of spherical
harmonics. The automatic degree selection procedure was also introduced in the previous
work but for the completeness of our paper, the method is briefly explained in section 2.3.

The mesh coordinates for the object surface ∂ℳa are parameterized by the spherical angles
Ω = (θ, φ) ∈ [0, π] ⊗ [0, 2π) as

The weighted spherical harmonic representation is given by

where

are the spherical harmonic coefficient vectors and Ylm are spherical harmonics of degree l
and order m defined as
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where  and  is the associated Legendre polynomial of order m
(Deflection,). The associated Legendre polynomial is given by

The first few terms of the spherical harmonics are

The coefficients flm are estimated in a least squares fashion (Chung et al., 2007; Gerig et al.,
2001; Shen et al., 2004).

Many previous imaging and shape modeling literature have used the complex-valued
spherical harmonics (Bulow, 2004; Gerig et al., 2001; Gu et al., 2004; Shen et al., 2004), but
we have only used real-valued spherical harmonics (Deflection,; Homeier and Steinborn,
1996) throughout the paper for the convenience in setting up a real-valued stochastic model.
The relationship between the real- and complex-valued spherical harmonics is given in
Blanco et al. (1997), and Homeier and Steinborn (1996). The complex-valued spherical
harmonics can be transformed into real-valued spherical harmonics using an unitary
transform.

In the subsequent multivariate linear modeling, some sort of surface smoothing is necessary
before the random field theory based multiple comparison correction is performed. One
important property of the weighted spherical harmonic representation is that the
representation can be considered as kernel smoothing. On a unit sphere, the heat kernel is
defined as

(4)

The heat kernel is symmetric and positive definite, and
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The bandwidth σ controls the dispersion of the kernel weights. As σ → 0,

the Dirac-delta function. On the other hand, as σ → ∞,

Heat kernel smoothing of the coordinate function p is defined as

(5)

By substituting (4) into (5) and interchanging the integral with the summation, we have

(6)

which is the infinite dimensional weighted Spherical harmonic representation. Hence, the
weighted Fourier representation can be considered as kernel smoothing and it inherits all the
necessary properties of kernel smoothing.

2.3 Optimal Degree Selection
Since it is impractical to sum the representation to infinity, we need a rule for truncating the
series expansion. Given the bandwidth σ of heat kernel, we automatically determine if
increasing degree k has any effect on the goodness of the fit of the representation. In all
spherical harmolnic literature (Gerig et al., 2004; Gerig et al., 2001; Gu et al., 2004; Shen
and Chung, 2006; Shen et al., 2004), the truncation degree is simply selected based on a pre-
specified error bound. On the other hand, our proposed statistical framework is based on a
type-I error.

Although increasing the degree increases the goodness-of-fit of the representation, it also
increases the number of coefficients to be estimated quadratically. It is necessary to find the
optimal degree where the goodness-of-fit and the number of parameters balance out.
Consider the k-th degree error model:

(7)

where ε is a zero mean Gaussian random field. We test if adding the k-th degree terms to the
k − 1-th degree model is statistically significant by formally testing
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This can be easily done using the F statistic 2k + 1 and n − (k + 1)2 degrees of freedom. At
each degree, we compute the corresponding p-value and stop increasing the degree if it is
smaller than pre-specified significance α = 0.01. For bandwidths σ = 0.01, 0.001, 0.0001, the
approximate optimal degrees are 18, 42 and 78 respectively. In our study, we have used k =
42 degree representation corresponding to bandwidth σ = 0.001. The bandwidth 0.01
smoothes out too much local details while the bandwidth 0.0001 introduces too much voxel
discretization error into the representation.

2.4 Reduction of Gibbs Phenomenon
The weighted spherical harmonic representation fixes the Gibbs phenomenon (ringing
effects) associated with the traditional Fourier descriptors and spherical harmonic
representation by weighting the series expansion with exponential weights (Chung et al.,
2007). The exponential weights make the representation converge faster and reduces the
amount of ringing artifacts. The Gibbs phenomenon often arises in Fourier series expansion
of discrete data.

To numerically quantify the amount of overshoot, we define the overshoot as the maximum
of L2 norm of the residual difference between the original and the reconstructed surface as

If surface coordinates are abruptly changing or their derivatives are discontinuous, the Gibbs
phenomenon will severely distort the surface shape and the overshoot will never converge to
zero.

We have reconstructed a cube and a left amygdala with various degree presentation and the
bandwidth showing more ringing artifacts and overshoot in the traditional representation
compared to the proposed weighted version. The exponentially decaying weights make the
representation converge faster and reduce the Gibbs phenomenon significantly. Figure 3
shows the comparison of overshoots between the two representations. The plots display the
amount of overshoot for the traditional representation (black) and the weighted version
(red). The weighted spherical harmonic representation shows less amount of overshoot
compared to the traditional technique.

2.5 Surface Normalization
MRIs were first reoriented manually to the pathological plane for the manual binary
segmentation of amygdale (Convit et al., 1999). The images then further underwent a 6-
parameter rigid-body alignment with manual landmarking (Nacewicz et al., 2006). The
aligned left amygdale are displayed in Figure 4 showing an approximate initial alignment.
The the proposed weighted spherical harmonic representations were then obtained. The
additional alignment beyond the rigid-body alignment was done by matching the weighted
spherical harmonic representations. Note we are not trying to match the original noisy
surfaces but rather their smooth analytic representations. The correspondence is established
by matching the coefficient of spherical harmonics at the same degree and order. This
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guarantees the sum of squares errors to be minimum in the following sense. Consider two
surface coordinates p and q given by the representations

and

where flm and glm are Fourier vectors. Suppose the surface p is deformed to p + d under the
influence of the displacement vector field d. We wish to find d = (d1, d2, d3) that minimizes
the discrepancy between p + d and q in the finite subspace ℋk, which is spanned by up to
degree k spherical harmonics. The restriction of the search space to the finite subspace
simplifies the computation as follows:

(8)

The proof is given in Chung et al. (2007). The optimal displacement in the least squares
sense is obtained by simply taking the difference between two weighted spherical harmonic
representation and matching coefficients of the same degree and order. (8) can be used to
establish the correspondence across different meshes with different mesh topology, i.e. mesh
connectivity. For instance, the first surface in Figure 4-(a) has 1270 vertices and 2536 faces
while the second surface has 1302 vertices and 2600 faces. We establish correspondence
between topologically different meshes by matching a specific point p(Ω0) in one surface to
q(Ω0) in the other surface and it is optimal in the least squares fashion. Since the
representation is continuously defined in any Ω ∈ [0, π] ⊗ [0, 2π), it is possible to resample
surface meshes using a topologically different spherical mesh. We have uniformly sampled
the unit sphere and constructed a spherical mesh with 2563 vertices and 5120 faces. This
spherical mesh serves as a common mesh topology for all surfaces. After the resampling, all
surfaces will have the identical mesh topology as the spherical mesh, and the identical vertex
indices will correspond across different surfaces (Figure 4-(c)). This is also illustrated in
Figure 4-(d), where the pattern of basis Y22 corresponds across different amygdale. A similar
idea of uniform mesh topology has been previously used for establishing MNI cortical
correspondence(Chung et al., 2003; Chung et al., 2005; MacDonald et al., 2000; Lerch and
Evans, 2005; Taylor and Worsley, 2008; Worsley et al., 2004).

Denote the surface coordinates corresponding to the i-th surface as pi. Then we have the
representation

(9)
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There are total (k + 1)2 × 3 coefficients to be estimated. Assume there are total n surfaces,
the average surface p̄ is given as

(10)

In our study, the average left and right amygdala templates are constructed by averaging the
spherical harmonic coefficients of all 24 control subjects. The template surfaces serve as the
reference coordinates for projecting the subsequent statistical parametric maps (Figure 7 and
8).

Validation—The methodology is validated in simulated surfaces where the ground truth is
exactly known. In order not to bias the result, we have used an intrinsic geometric method
using the Laplace-Beltrami eigenfunctions as a way to simulate surfaces with the known
ground truth (Lévy and Inria-Alice, 2006). For the surface coordinates p, we have the
Laplace-Beltrami operator Δ and its eigenfunctions ψj satisfying

where

Then each surface can be represented as a linear combination of the Laplace-Beltrami
eigenfunctions:

where fj = 〈p, ψj〉. Note that low degree coefficients represent global shape features and high
degree coefficients represent high frequency local shape features. So by changing the high
degree coefficients a bit, we can simulate new surfaces with similar global features but with
the exact surface correspondence.

For the first simulated surface, we simply used the left amygdala surface of a randomly
selected subject with 1000 basis ψj (Figure 5-(a)). Now if we reuse the first five coefficients
fj while changing the remaining coefficients to gj, we can obtain the second simulated
surface given by
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This is shown in Figure 5-(b) where the global shape is similar to (a) but local shape features
differ substantially. The high degree coefficients gj were obtained from the remaining 45
amygdala surfaces to generate 45 simulated surfaces. This process generates one fixed
surface which serves as a template and 45 matched surfaces with the known displacement
fields. The simulated surface went through the proposed processing pipeline and the
weighted spherical harmonic representations were computed. The displacement between the
representations is given by the minimum distance (8). Figure 5-(f) shows the estimated
displacement which shows smoother pattern than the ground truth. This is expected since the
ground truth is the distance between noisy surfaces while the estimated displacement is the
distance between smooth functional representations. However, the pattern of estimation does
follow the pattern of the ground truth sufficiently well. In fact the mean relative error over
each surface is 0.116 ± 0.011.

2.6 Multivariate Linear Models
Multivariate linear models (Anderson, 1984; Taylor and Worsley, 2008; Worsley et al.,
2004) generalize widely used univariate general linear models (Worsley et al., 1996) by
incorporating vector valued response and explanatory variables. The weighted spherical
harmonic representation of surface coordinates will be taken as the response variable P.
Consider the following multivariate linear model at each fixed (θ, φ)

(11)

where P = (p1′,p2′, ⋯, pn′)′ is the matrix of weighted spherical harmonic representation, X is
the matrix of contrasted explanatory variables, and B is the matrix of unknown coefficients.
Nuisance covariates are in the matrix Z and the corresponding coefficients are in the matrix
G. The subscripts denote the dimension of matrices. The components of Gaussian random
matrix U are zero mean and unit variance. Σ accounts for the covariance structure of
coordinates. Then we are interested in testing the null hypothesis

For the reduced model corresponding to B = 0, the least squares estimator of G is given by

The residual sum of squares of the reduced model is

while that of the full model is
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Note that Ĝ is different from Ĝ0 and estimated directly from the full model. By comparing
how large the residual E is against the residual E0, we can determine the significance of
coefficients B. However, since E and E0 are matrices, we take a function of eigenvalues of

 as a statistic. For instance, Lawley-Hotelling trace is given by the sum of eigenvalues
while Roy's maximum root R is the largest eigenvalue. In the case there is only one
eigenvalue, all these multivariate test statistics simplify to Hotelling's T-sqaure statistic. The
Hotelling's T-square statistic has been widely used in modeling 3D coordinates and
deformations in brain imaging (Cao and Worsley, 1999; Chung et al., 2001; Gaser et al.,
1999; Joshi, 1998; Thompson et al., 1997). The random field theory for Hotelling's T-square
statistic has been available for a while (Cao and Worsley, 1999). However, the random field
theory for the Roy's maximum root has not been developed until recently (Taylor and
Worsley, 2008; Worsley et al., 2004).

The inference for Roy's maximum root is based on the Roy's union-intersection principle
(Roy, 1953), which simplifies the multivariate problem to a univariate linear model. Let us
multiply an arbitrary constant vector ν3×1 on both sides of (11):

(12)

Obviously (12) is a usual univariate linear model with a Gaussian noise. For the univariate
testing on Bν = 0, the inference is based on the F statistic with p and n − p − r degrees of
freedom, denoted as Fν. Then Roy's maximum root statistic can be defined as R = maxν Fν.
Now it is obvious that the usual random field theory can be applied in correcting for
multiple comparisons. The only trick is to increase the search space, in which we take the
supreme of the F random field, from the template surface to much higher dimension to
account for maximizing over ν as well.

2.7 SurfStat
SurfStat package was developed to utilize a model formula and avoids the explicit use of
design matrices and contrasts, which tend to be a hinderance to most end users not familiar
with such concepts. SurtStat can import MNI (MacDonald et al., 2000), FreeSurfer
(surfer.nmr.mgh.harvard.edu) based cortical mesh formats as well as other volumetric image
data. The model formula approach is implemented in many statistics packages such as Splus
(www.insightful.com) R (www.r-project.org) and SAS (www.sas.com). These statistics
packages accept a linear model like

as the direct input for linear modeling avoiding the need to explicitly state the design matrix.
P is a n × 3 matrix of coordinates of weighted spherical harmonic representation, Age is the
age of subjects, Brain is the total brain volume of subject and Group is the categorical
group variable (0=control, 1 = autism). This type of model formula has yet to be
implemented in widely used SPM or AFNI packages.

2.8 Simulation Study
We have performed two simulation studies to determine if the proposed pipeline can detect a
small artificial bump. A similar bump test was done in Yu et al. (2007) for testing the
effectiveness of a spherical wavelet representation. In the first simulation, we have
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generated the binary mask of a sphere with radius 10mm. Then we obtained the weighted
spherical harmonic representation (6) of the sphere with σ = 0.001 and degree k = 42. Taking
the estimated coefficients flm as the ground truth, we simulated 20 spheres (group A) by
putting noise N(flm, (flm/20)2) in the spherical harmonic coefficients. The standard deviation
is taken as the 20th of the estimated coefficient. We have also given a bump of height
1.5mm to the sphere and simulated 20 bumped sphere (Figure 6 -(a)). Two groups of
surfaces are fed into the multivariate linear model testing for the group effect. The T-statistic
map is projected on the average of 40 simulated surfaces (Figure 6-(b)). Since the bump is
so small with respect to the noise level, we did not detect any the bump (p = 0.35).

In the second simulation, we increased the height of the bump to 3mm (Figure 6-(c)) and
repeated the first simulation. The resulting T-statistic map is projected on the average of 40
simulated surfaces (Figure 6-(d)). Unlike the first simulation study, we have detected the
bump in yellow and red regions (p < 0.0003). These experiments demonstrate that the
proposed framework works for detecting sufficiently large shape difference, and further
demonstrate that what we detected in the real data is of sufficiently large shape difference.
Otherwise, we simply wouldn't detect the signal in the first place.

3. Application: Amygdala Shape Modeling in Autism
3.1 Image and Data Acquisition

High resolution T1-weighted magnetic resonance images (MRI) were acquired with a GE
SIGNA 3-Tesla scanner with a quadrature head coil with 240 × 240 mm field of view and
124 axial sections. Details on image acquisition parameters are given in Dalton et al. (2005)
and Nacewicz et al. (2006). T2-weighted images were used to smooth out inhomogeneities
in the inversion recovery-prepared images using FSL (www.fmrib.ox.ac.uk/fsl). Total 22
high functioning autistic and 24 normal control MRI were acquired. Subjects were all males
aged between 8 and 25 years. The Autism Diagnostic Interview-Revised (Lord et al., 1994)
was used for diagnoses by trained researchers K.M. Dalton and B.M. Nacewicz (Dalton et
al., 2005).

MRIs were first reoriented to the pathological plane for optimal comparison with anatomical
atlases (Convit et al., 1999). Image contrast was matched by alignment of white and gray
matter peaks on intensity histograms. Manual segmentation was done by a trained expert
B.M. Nacewicz who has been blind to the diagnoses (Nacewicz et al., 2006). The manual
segmentation also involves refinement through plane-by-palne comparison with ex vivo
atlas sections (Mai et al., 1997). The reliability of the manual segmentation protocol was
validated by two raters on 10 amygdale resulting in interclass correlation of 0.95 and the
spatial reliability (intersection over union) average of 0.84. Figure 1 shows the manual
segmentation of an amygdala in three different cross sections. The amygdala (AMY) was
traced in detail using various adjacent structures such as anterior commissure (AC),
hippocampus (HIPP), inferior horn of lateral ventricle (IH), optic radiations (OR), optic tract
(OT), temporal lobe white matter (TLWM) and tentorial notch (TN).

The total brain volume was also computed using an automated threshold-based connected
voxel search method, and manually edited afterwards to ensure proper removal of CSF,
skull, eye regions, brainstem and cerebellum using in-house software Spamalize (Oakes et
al., 1999; Rusch et al., 2001; Nacewicz et al., 2006). The brain volumes are 1224±128 and
1230±161 cm3 for autistic and control subjects. The volume difference is not significant (p =
0.89).

A subset of subjects (10 controls and 12 autistic) went through a face emotion recognition
task consisting of showing 40 standardized pictures of posed facial expressions (8 each of
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happy, angry and sad, and 16 neutral) (Dalton et al., 2005). Subjects were required to press a
button distinguishing neutral from emotional faces. The faces were black and white pictures
taken from the Karolinska Directed Emotional Faces set (Lundqvist et al., 1998). The faces
were presented using E-Prime software (www.pstnet.com) allowing for the measurement of
response time for each trial. iView system with a remote eye-tracking device (SensoMotoric
Instruments, www.smivision.com) was used at the same time to measure gaze fixation
duration on eyes and faces during the task. The system records eye movements as the gaze
position of the pupil over a certain length of time along with the amount of time spent on
any given fixation point. It has been hypothesized that subjects with autism should exhibit
diminished eye fixation duration relative to face fixation duration. If there is no confusion,
we will simply refer gaze fixation as the ratio of durations fixed on eyes over faces. Note
that this is a unitless measure. Our study enables us to show that abnormal gaze fixation
duration is correlated with amygdala shape in spatially localized regions.

3.2 Amygdala Volumetry
We have counted the number of voxels in amygdala segmentation and computed the volume
of both left and right amygdale. The volumes for control subjects (n = 22) are left 1892 ±
173mm3, right 1883 ± 171mm3. The volumes for autistic subjects (n = 24) are left 1858 ±
182mm3, right 1862 ± 181mm3. The volume difference between the groups is not
statistically significant based on the two sample t-test (p = 0.52 for left and 0.69 for right).
The testing was done using SurfStat. Previous amygdala volumetry studies in autism have
been inconsistent (Aylward et al., 1999; Haznedar et al., 2000; Nacewicz et al., 2006; Pierce
et al., 2001; Schumann et al., 2004; Sparks et al., 2002). Aylward et al. (1999) and Pierce et
al. (2001) reported that significantly smaller amygdala volume in the autistic subjects while
Howard et al. (2000) and Sparks et al. (2002) reported larger volume. Haznedar et al. (2000)
and Nacewicz et al. (2006) found no volume difference. These inconsistency might be due
to the lack of control for brain size and age in statistical analysis (Schumann et al., 2004).

3.3 Local Shape Difference
From the amygdala volumetry result, it is still not clear if shape difference might be still
present within amygdala. It is possible to have no volume difference while having
significant shape difference. So we have performed multivariate linear modeling on the
weighted spherical harmonic representation. We have tested the effect of group variable in
the model

which resulted in the threshold of 26.99 at α = 0.1. On the other hand the maximum F
statistic value is 13.55 (Figure 7 (a)). So we could not detect any shape difference in the left
amygdala. For the right amygdala, the threshold is 26.64 which is far larger than the
maximum F statistic value of 12.11. So again there is no statistically significant shape
difference in the right amygdala.

We have also tested the effect of Group variable while accounting for age and the total brain
volume in the SurfStat model form

(13)
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The maximum F statistics are 14.77 (left) and 12.91 (right) while the threshold
corresponding to the α = 0.1 is 14.58 (left) and 14.61 (right). Hence, we still did not detect
group difference in the right amygdala (Figure 7-(d)) while there seems to be a bit weak
group difference in the left amygdala (Figure 7-(c)). However, they did not pass the α = 0.01
test so our result is inconclusive. The enlarged area in Figure shows the average surface
coordinate difference (autism - control) in the region of the maximum F value.

Head circumference and brain enlargement are linked to autism (Dementieva et al., 2005;
Tager-Flusberg and Joseph, 2003) and thus the covariate Brain in the model (13) may
introduce a scaling related effect that was originally not present in the data. However, we did
not find significant brain volume difference between the groups (p = 0.89). The brain size
difference does not significantly compound our result. From figure 8, we can see that the
results between with and without covariating Brain are not much different (they are all
statistically insignificant). Therefore, Brain in the model mostly accounts for subject-
specific brain size difference rather than the group-specific brain size difference.

3.4 Brain and Behavior Association
Among total 46 subjects, 10 control and 12 autistic subjects went through face emotion
recognition task and gaze fixation ( Fixation) was observed. The gaze fixation are
0.30±0.17 (control) and 0.18 ± 0.16 (autism). Note that these are unitless measures.
Nacewicz et al. (2006) showed the gaze fixation duration correlate differently with
amygdala volume between the two groups; however, it was not clear if the association
difference is local or diffuse over all amygdala. So we have tested the significance of the
interaction between Group and Fixation using multivariate linear models. The reduced
model is

while the full model is

(14)

and we tested for the significance of the interaction Group*Fixation.

We have obtained regions of significant interaction in the both left (p < 0.05) and right (p <
0.02) lateral nuclei in amygdale (Figure 8). The largest cluster in the right amygdala shows
highly significant interaction (max F = 65.68, p = 0.003). The color bar in Figure 8-(b) has
been thresholded at 40 for better visualization. The scatter plots of the z-coordinate of the
displacement vector field vs. Fixation are shown at the two most significant clusters in
each amygdala. The red lines are linear regression lines. The significance of interaction
implies difference in regression slopes between groups in a multivariate fashion. Note that
there are three different slopes corresponding to x, y and z coordinates but due to the space
limitation, we did not show other coordinates.

The total number of unknown parameters in our most complicated model (14) is 6×3 = 18
including the constant terms. This is a large number of parameters to estimate if (14) was a
univariate linear model. However, in our multivariate setting, it is reasonable number of
parameters since we are also tripling the number of measurements as well. Note that Roy's
maximum root statistic is based on maximizing an F-statistic with 1 and n − 1 − 5 degrees
of freedom. Since the number of subjects is n = 22 + 24, we have the sufficient degrees of
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freedom not to worry about the over-fitting problem. Unfortunately, practical power
approximation for Roy's maximum root statistic does not exists although that of Lawley-
Hotelling trace is available (Barton and Cramer, 1989;O'Brien and Muller, 1993) so the
discussion of the parameter over-fitting is still an open statistical problem.

4. Discussion
Summary

The paper propose a unified multivariate linear modeling approach for a collection of binary
neuroanatomical objects. The unified framework is applied to amygdala shape analysis in
autism. The surfaces of the binary objects are flattened using a new technique based on heat
diffusion. The coordinates of amygdala surfaces are smoothed and normalized using the
weighted spherical harmonic representation. The multivariate linear models accounting for
nuisance covariates are used using a newly developed SurfStat package.

Since surface data is inherently multivariate, traditionally Hotelling's T-square approach has
been used on surface coordinates in a group comparison that can not account for nuisance
covariates. On the other hand, the proposed multivariate linear model generalizes the
Hotelling's T-square approach so that we can construct more complicated statistical models
while accounting for additional covariates. The model formula based multivariate linear
modeling tool SurfStat has been developed for this purpose and publicly available. We
have applied the proposed methods to 22 autistic subjects to test if there is localized shape
difference within an amygdala. We were able to localize regions, mainly in the right
amygdala, that shows differential association of gaze fixation with anatomy between the
groups.

Anatomical Findings
Many MRI-based volumetric studies have shown inconsistent results in determining if there
are any abnormal amygdala volume difference (Aylward et al., 1999; Howard et al., 2000;
Haznedar et al., 2000; Pierce et al., 2001; Schumann et al., 2004; Sparks et al., 2002;
Nacewicz et al., 2006). These studies focus on the total volume difference of amygdala
obtained from MRI and was unable to determine if the volume difference is locally focused
within the subregions of amygdala or diffuse over all regions.

Although we did not detect statistically significant shape difference within amygdala at 0.01
level, we detected significant group difference of shape in relation to the gaze fixation
duration mostly in the both lateral nuclei (largest clusters in Figure 8). The lateral nucleus
receives information from the thalamus and cortex, and relay it to other subregions within
the amygdala. Our finding is consistent with literature that reports that autistic subjects fail
to activate the amygdala normally when processing emotional facial and eye expressions
(Baron-Cohen et al., 1999;Critchley et al., 2000;Barnea-Goraly et al., 2004). There are two
anatomical studies that additionally support our findings. A post-mortem study shows there
are increased neuron-packing density of the medial, cortical and central nuclei, and medial
and basal lateral nuclei of the amygdala in five autopsy cases (Courchesne, 1997). Further,
reduced fractional anisotropy is found in the temporal lobes approaching the amygdala
bilaterally in a diffusion tensor imaging study (Barnea-Goraly et al., 2004).

The inconsistent amygdala volumetry results seem to be caused by the local volume and
shape difference of the lateral nuclei that may or may not contribute to the total volume of
amygdala. Further diffusion tensor imaging studies on the white matter fiber tracts
connecting the lateral nuclei would shed a light on the abnormal nature of lateral nucleus of
the amygdala and its structural connection to other parts of the brain.
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Methodological Limitations
There are few methodological limitations in our proposed study. Surface flattening is based
on tracing the streamline of the gradient of heat equilibrium. The proposed flattening
technique is simple enough to be applied to various binary objects. However, for the
proposed flattening method to work, the binary object has to be close to star-shape or
convex. Theoretically, the solution to the Laplacian equation is uniquely given and the heat
gradient will never cross within the space between the inner and outer boundaries. However,
for more complex structures like cortical surfaces, the gradient lines that correspond to
neighboring nodes on the surface may fall within one voxel in the volume, creating
overlapping nonsmooth mapping to the sphere. The overlapping problem can be avoided by
subsampling the voxel grid in a much finer resolution but extending the method to cortical
surfaces is left as a future study.

Although the proposed framework of diffusion-based flattening and the weighted spherical
harmonic representation provide surface registration beyond the initial affine
transformations, the accuracy is not high compared to other optimization based registration
(Heimann et al., 2005; Meier and Fisher, 2002; Styner et al., 2003). It is likely that the
optimization based methods will outperform our method. Although the comparative analysis
against these methods is the beyond the scope of the current paper, the simulation study in
section 2.5 demonstrates the proposed method provides sufficiently good accuracy (relative
error of 0.116 ± 0.011).

Although the proposed weighted spherical harmonic approach streamlines various image
processing tasks such as smoothing, representation and registration within a unified
mathematical representation, we did not compare the performance with other available
shape representation techniques such as the medial representation (Pizer et al., 1999) and
wavelets (Yu et al., 2007). This is the beyond the scope of the current paper and requires an
additional comparative study.
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Appendix
We illustrate SurfStat package by showing the step-by-step command lines for
multivariate linear models used in the study. The detailed description of the SurfStat
package can be found in www.stat.uchicago.edu/∼worsley/surfstat. The SurfStat is a general
purpose surface analysis package and it requires additional codes and for amygdala specific
analysis. The additional codes can be found in
www.stat.wisc.edu/∼mchung/research/amygdala.

Given an amygdala mesh surf, which is, for instance, given as a structured array of the
form

surf =

vertices: [1270×3 double]

faces: [2536×3 double]
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the amygdala flattening algorithm will generate the corresponding unit sphere mesh sphere
that has identical topology as surf. The weighted spherical harmonic representation P with
degree k = 42 and the bandwidth σ = 0.001 is computed from

> [P,coeff]=SPHARMsmooth(surf,sphere,42,0.001);

The coordinates of the weighted spherical harmonic representation have been read into an
array of size 46 (subjects) × 2562 (vertices) × 3 (coordinates) P. Brain size ( brain), age
( age), group variable ( group) are read into 46 (subjects) × 1 vectors. The group
categorical variable consists of strings ’ control’ and ’ autism’. We now convert these to
terms that can be combined into a multivariate linear model as follows:

>Brain = term(brain);

>Age = term(age);

>Group = term (group);

>Group

autism control

0 1

0 1

1 0

1 0

. .

. .

. .

To test the effect of group, the linear model of the from P = 1 + Group is fitted by

>E = SurfStatLinMod(P,1 + Group, Avg);

where Avg is the average surface obtained from the weighted spherical harmonic
representation.

We specify a group contrast and calculate the T-statistic:

>contrast = Group.autism - Group.control

contrast =

−1

−1

1

1

.

.

.

LM = SurfStatT(E, contrast);

LM.t gives the vector of 2562 T-statistic values for all mesh vertices. Instead of using the
contrast and T-statistic, we can test the effect of group variable using the F-statistic as well:

Chung et al. Page 19

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



>E0 = SurfStatLinMod(P,1);

>LM = SurfStatF(E,E0);

E0 contains the information about the sum of squared residual of the reduced model P = 1
in E0.SSE while E contains that of the full model P = 1 + Group. Based on the ratio of
the sum of squared residuals, SurfStatF computes the F-statistics. To display the F-
statistic value on top of the average surface, we use FigureOrigami(Avg, LM.t) which
produces Figure 7.

We can determine the random field based thresholding corresponding to α = 0.01 level:

>resels = SurfStatResels(LM);

>stat_threshold(resels, length(LM.t),1,LM.df,0.01,[],[],[],LM.k)

peak_threshold =

26.9918

resels computes the resels of the random field and peak_threshold is the threshold
corresponding to 0.1 level.

We can construct a more complicated model that includes the brain size and age as
covariates:

>E0 = SurfStatLinMod(P,Age+Brain);

>E = SurfStatLinMod(P,Age+Brain+Group,Avg);

>LM = SurfStatF(E,E0);

LM.t contains the F-statistic of the significance of group variable while accounting for age
and brain size. We can also test for interaction between gaze fixation Fixation and group
variable:

>E0=SurfStatLinMod(P,Age+Brai +Group+Fixation);

>E=SurfStatLinMod(P,Age+Brain+Group+Fixation+Group*Fixation,Avg);

>LM=SurfStatF(E,E0);

References
Anderson, T. An Introduction to Multivariate Statistical Analysis. 2nd. Wiley; 1984.
Angenent S, Hacker S, Tannenbaum A, Kikinis R. On the laplace-beltrami operator and brain surface

flattening. IEEE Transactions on Medical Imaging 1999;18:700–711. [PubMed: 10534052]
Ashburner J, Hutton C, Frackowiak RSJ, Johnsrude I, Price C, Friston KJ. Identifying global

anatomical differences: deformation-based morphometry. Human Brain Mapping 1998;6:348–357.
[PubMed: 9788071]

Aylward E, Minshew N, Goldstein G, Honeycutt N, Augustine A, Yates K, Bartra P, Pearlson G. Mri
volumes of amygdala and hippocampus in nonmentally retarded autistic adolescents and adults.
Neurology 1999;53:2145–2150. [PubMed: 10599796]

Barnea-Goraly N, Kwon H, Menon V, Eliez S, Lotspeich L, Reiss A. White matter structure in autism:
preliminary evidence from diffusion tensor imaging. Biological Psychiatry 2004;55:323–326.
[PubMed: 14744477]

Baron-Cohen S, Ring H, Wheelwright S, Bullmore E, Brammer M, Sim-mons A, Williams S. Social
intelligence in the normal and autistic brain: An fMRI study. Eur J Neurosci 1999;11:1891–1898.
[PubMed: 10336657]

Chung et al. Page 20

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Barton C, Cramer E. Hypothesis testing in multivariate linear models with randomly missing data.
Communications in Statistics-Simulation and Computation 1989;18:875–895.

Basser P, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo tractography using dt-mri data. Magnetic
Resonance in Medicine 2000;44:625–632. [PubMed: 11025519]

Blanco M, Florez M, Bermejo M. Evaluation of the rotation matrices in the basis of real spherical
harmonics. Journal of Molecular Structure: THEOCHEM 1997;419:19–27.

Brechbuhler C, Gerig G, Kubler O. Parametrization of closed surfaces for 3d shape description.
Computer Vision and Image Understanding 1995;61:154–170.

Bulow T. Spherical diffusion for 3D surface smoothing. IEEE Transactions on Pattern Analysis and
Machine Intelligence 2004;26:1650–1654. [PubMed: 15573826]

Cao J, Worsley KJ. The detection of local shape changes via the geometry of hotellings t2 fields.
Annals of Statistics 1999;27:925–942.

Cates, J.; Fletcher, P.; Styner, M.; Hazlett, H.; Whitaker, R. Particle-Based Shape Analysis of Multi-
Object Complexes. Medical image computing and computer-assisted intervention: MICCAI…
International Conference on Medical Image Computing and Computer-Assisted Intervention;
2008. p. 477-485.

Chung M, Dalton KM, L S, Evans A, Davidson R. Weighted Fourier representation and its application
to quantifying the amount of gray matter. IEEE Transactions on Medical Imaging 2007;26:566–
581. [PubMed: 17427743]

Chung M, Robbins S, Dalton KM, D R, A A, Evans A. Cortical thickness analysis in autism with heat
kernel smoothing. NeuroImage 2005;25:1256–1265. [PubMed: 15850743]

Chung M, Worsley K, Paus T, Cherif D, Collins C, Giedd J, Rapoport J, Evans A. A unified statistical
approach to deformation-based morphometry. NeuroImage 2001;14:595–606. [PubMed:
11506533]

Chung M, Worsley K, Robbins S, Paus T, Taylor J, Giedd J, Rapoport J, Evans A. Deformation-based
surface morphometry applied to gray matter deformation. NeuroImage 2003;18:198–213.
[PubMed: 12595176]

Collins DL, Paus T, Zijdenbos A, Worsley KJ, Blumenthal J, Giedd JN, Rapoport JL, Evans AC. Age
related changes in the shape of temporal and frontal lobes: An mri study of children and
adolescents. Soc Neurosci Abstr 1998;24:304.

Convit A, McHugh P, Wolf O, de Leon M, Bobinkski M, De Santi S, Roche A, Tsui W. Mri volume of
the amygdala: a reliable method allowing separation from the hippocampal formation. Psychiatry
Res 1999;90:113–123. [PubMed: 10482383]

Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Current
Opinion in Neurobiology 1997;7:269–278. [PubMed: 9142760]

Critchley H, Daly E, Bullmore E, Williams S, T VA, Robert-son D, et al. The functional
neuroanatomy of social behaviour: Changes in cerebral blood ow when people with autistic
disorder pro- cess facial expressions. Brain 2000;123:2203–2212. [PubMed: 11050021]

Csernansky J, Wang L, Joshi S, Tilak Ratnanather J, Miller M. Computational anatomy and
neuropsychiatric disease: probabilistic assessment of variation and statistical inference of group
difference, hemispheric asymmetry, and time-dependent change. NeuroImage 2004;23:56–68.

Dalton K, Nacewicz B, Johnstone T, Schaefer H, Gernsbacher M, Goldsmith H, Alexander A,
Davidson R. Gaze fixation and the neural circuitry of face processing in autism. Nature
Neuroscience 2005;8:519–526.

Dementieva Y, Vance D, Donnelly S, Elston L, Wolpert C, Ravan S, DeLong G, Abramson R, Wright
H, Cuccaro M. Accelerated head growth in early development of individuals with autism. Pediatric
neurology 2005;32:102–108. [PubMed: 15664769]

Fischl B, Dale A. Measuring the thickness of the human cerebral cortex from magnetic resonance
images. PNAS 2000;97:11050–11055. [PubMed: 10984517]

Gaser C, Volz HP, Kiebel S, Riehemann S, Sauer H. Detecting structural changes in whole brain based
on nonlinear deformationsapplication to schizophrenia research. NeuroImage 1999;10:107–113.
[PubMed: 10417245]

Gelb A. The resolution of the gibbs phenomenon for spherical harmonics. Mathematics of
Computation 1997;66:699–717.

Chung et al. Page 21

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Gerig G, Styner M, Jones D, Weinberger D, Lieberman J. Shape analysis of brain ventricles using
spharm. MMBIA 2001:171–178.

Gerig, G.; Styner, M.; Szekely, G. Statistical shape models for segmentation and structural analysis.
Proceedings of IEEE International Symposium on Biomedical Imaging (ISBI); 2004. p. 467-473.

Golland P, Grimson W, Shenton M, Kikinis R. Deformation analysis for shape based classification.
Lecture Notes in Computer Science 2001:517–530.

Gu X, Wang Y, Chan T, Thompson T, Yau S. Genus zero surface conformal mapping and its
application to brain surface mapping. IEEE Transactions on Medical Imaging 2004;23:1–10.
[PubMed: 14719682]

Haznedar M, Buchsbaum M, Wei T, Hof P, Cartwright C, Bienstock CA, Hollander E. Limbic
circuitry in patients with autism spectrum disorders studied with positron emission tomography
and magnetic resonance imaging. American Journal of Psychiatry 2000;157:1994–2001. [PubMed:
11097966]

Heimann T, Wolf I, Williams T, Meinzer H. 3D active shape models using gradient descent
optimization of description length. Information Processing in Medical Imaging, Lecture Notes in
Computer Science 2005:566–577.

Homeier H, Steinborn E. Some properties of the coupling coefficients of real spherical harmonics and
their relation to Gaunt coefficients. Journal of Molecular Structure: THEOCHEM 1996;368:31–
37.

Howard M, Cowell P, Boucher J, Broks P, Mayes A, Farrant A, Roberts N. Convergent
neuroanatomical and behavioral evidence of an amygdala hypothesis of autism. NeuroReport
2000;11:2931–2935. [PubMed: 11006968]

Hurdal MK, Stephenson K. Cortical cartography using the discrete conformal approach of circle
packings. NeuroImage 2004;23:S119–S128. [PubMed: 15501081]

Jones D, Catani M, Pierpaoli C, Reeves S, Shergill S, O'Sullivan M, Golesworthy P, McGuire P,
Horsfield M, Simmons A, Williams S, Howard R. Age effects on diffusion tensor magnetic
resonance imaging tractography measures of frontal cortex connections in schizophrenia. Human
Brain Mapping 2006;27:230–238. [PubMed: 16082656]

Joshi S. Large Deformation Diffeomorphisms and Gaussian Random Fields for Statistical
Characterization of Brain Sub-Manifolds. 1998

Joshi S, Grenander U, Miller M. The geometry and shape of brain sub-manifolds. International Journal
of Pattern Recognition and Artificial Intelligence: Special Issue on Processing of MR Images of
the Human 1997;11:1317–1343.

Joshi S, Pizer S, Fletcher P, Yushkevich P, Thall A, Marron J. Multiscale deformable model
segmentation and statistical shape analysis using medial descriptions. IEEE Transactions on
Medical Imaging 2002;21:538–550. [PubMed: 12071624]

Kelemen A, Szekely G, Gerig G. Elastic model-based segmentation of 3-d neuroradiological data sets.
IEEE Transactions on Medical Imaging 1999;18:828–839. [PubMed: 10628943]

Khan A, Chung M, Beg M. Robust atlas-based brain segmentation using multi-structure confidence-
weighted registration. Lecture Notes on Computer Science 1999;5762:549–557.

Lazar M, Weinstein D, Tsuruda J, Hasan K, Arfanakis K, Meyerand M, Badie B, Rowley H, Haughton
V, Field A, Witwer B, Alexander A. White matter tractography using tensor deflection. Human
Brain Mapping 2003;18:306–321. [PubMed: 12632468]

Lerch JP, Evans A. Cortical thickness analysis examined through power analysis and a population
simulation. NeuroImage 2005;24:163–173. [PubMed: 15588607]

Leventon, M.; Grimson, W.; Faugeras, O. Statistical shape influence in geodesic active contours. IEEE
Conference on Computer Vision and Pattern Recognition; 2000.

Lévy, B.; Inria-Alice, F. Laplace-beltrami eigenfunctions towards an algorithm that” understands”
geometry. IEEE International Conference on Shape Modeling and Applications 2006. SMI 2006;
2006. p. 13-13.

Lord C, Rutter M, Couteur A. Autism diagnostic interviewrevised: a revised version of a diagnostic
interview for caregivers of individuals with possible pervasive developmental disorders. J Autism
Dev Disord 1994:659–685. [PubMed: 7814313]

Chung et al. Page 22

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lorensen, W.; Cline, H. Marching cubes: A high resolution 3D surface construction algorithm.
Proceedings of the 14th annual conference on Computer graphics and interactive techniques; 1987.
p. 163-169.

Luders E, Thompson PM, Narr K, Toga A, Jancke L, Gaser C. A curvature-based approach to estimate
local gyrification on the cortical surface. NeuroImage 2006;29:1224–1230. [PubMed: 16223589]

Lundqvist, D.; Flykt, A.; Ohman, A. Karolinska Directed Emotional Faces. Department of
Neurosciences, Karolinska Hospital; Stockholm, Sweden: 1998.

MacDonald J, Kabani N, Avis D, Evans A. Automated 3-D extraction of inner and outer surfaces of
cerebral cortex from mri. NeuroImage 2000;12:340–356. [PubMed: 10944416]

Mai, J.; Assheuer, J.; Paxinos, G. Atlas of the Human Brain. Academic Press; San Diego: 1997.
Meier D, Fisher E. Parameter space warping: shape-based correspondence between morphologically

different objects. IEEE Transactions on Medical Imaging 2002;21:31–47. [PubMed: 11838662]
Miller M, Banerjee A, Christensen G, Joshi S, Khaneja N, Grenander U, Matejic L. Statistical methods

in computational anatomy. Statistical Methods in Medical Research 1997;6:267–299. [PubMed:
9339500]

Miller M, Massie A, Ratnanather J, Botteron K, Csernansky J. Bayesian construction of geometrically
based cortical thickness metrics. NeuroImage 2000;12:676–687. [PubMed: 11112399]

Nacewicz B, Dalton K, Johnstone T, Long M, McAuliff E, Oakes T, Alexander A, Davidson R.
Amygdala volume and nonverbal social impairment in adolescent and adult males with autism.
Arch Gen Psychiatry 2006;63:1417–1428. [PubMed: 17146016]

Nain, D.; Styner, M.; Niethammer, M.; Levitt, J.; Shenton, M.; Gerig, G.; Bobick, A.; Tannenbaum, A.
Statistical shape analysis of brain structures using spherical wavelets. IEEE Symposium on
Biomedical Imaging ISBI; 2007.

Oakes T, Koger J, Davidson R. Automated whole-brain segmentation. NeuroImage 1999;9:237.
O'Brien R, Muller K. Unified power analysis for t-tests through multivariate hypotheses. Applied

analysis of variance in behavioral science 1993:297–344.
Pierce K, Muller RA, A J, Allen G, Courchesne E. Face processing occurs outside the fusiform ”face

area” in autism: evidence from functional mri. Brain 2001;124:2059–2073. [PubMed: 11571222]
Pizer S, Fritsch D, Yushkevich P, Johnson V, Chaney E. Segmentation, registration, and measurement

of shape variation via image object shape. IEEE Transactions on Medical Imaging 1999;18:851–
865. [PubMed: 10628945]

Qiu A, Miller M. Multi-structure network shape analysis via normal surface momentum maps.
NeuroImage 2008;42:1430–1438. [PubMed: 18675553]

Rojas D, Smith J, Benkers T, Camou S, Reite M, Rogers S. Hippocampus and amygdala volumes in
paretns of children with autistic disorder. The Canadian Journal of Statistics 2000;28:225–240.

Roy S. On a heuristic method of test construction and its use in multivariate analysis. Ann Math Statist
1953;24:220–238.

Rusch B, Abercrombie H, Oakes T, Schaefer S, Davidson R. Hippocampal morphometry in depressed
patients and control subjects: relations to anxiety symptoms. Biological Psychiatry 2001;50:960–
964. [PubMed: 11750892]

Saad, Z.; Reynolds, R.; Argall, B.; Japee, S.; Cox, R. Suma: an interface for surface-based intra-and
inter-subject analysis with afni. IEEE International Symposium on Biomedical Imaging (ISBI);
2004. p. 1510-1513.

Schumann C, Hamstra J, Goodlin-Jones B, Lotspeich L, Kwon H, Buonocore M, Lammers C, Reiss A,
Amaral D. The amygdala is enlarged in children but not adolescents with autism; the hippocampus
is enlarged at all ages. Journal of Neuroscience 2004;24:6392–6401. [PubMed: 15254095]

Shen, L.; Chung, M. Large-scale modeling of parametric surfaces using spherical harmonics. Third
International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT); 2006.

Shen L, Ford J, Makedon F, Saykin A. surface-based approach for classification of 3d neuroanatomical
structures. Intelligent Data Analysis 2004;8:519–542.

Sparks B, Friedman S, Shaw D, Aylward E, Echelard D, Artru A, Maravilla K, Giedd J, Munson J,
Dawson G, Dager S. Brain structural abnormalities in young children with autism spectrum
disorder. Neurology 2002;59:184–192. [PubMed: 12136055]

Chung et al. Page 23

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Styner M, Gerig G, Joshi S, Pizer S. Automatic and robust computation of 3d medial models
incorporating object variability. International Journal of Computer Vision 2003;55:107–122.

Styner M, Oguz I, Xu S, Brechbuhler C, Pantazis D, Levitt J, Shenton M, Gerig G. Framework for the
statistical shape analysis of brain structures using spharm-pdm. Insight Journal, Special Edition on
the Open Science Workshop at MICCAI. 2006

Tager-Flusberg H, Joseph R. Identifying neurocognitive phenotypes in autism. Philosophical
Transactions: Biological Sciences 2003;358:303–314. [PubMed: 12639328]

Taylor J, Worsley K. Random fields of multivariate test statistics, with applications to shape analysis.
Annals of Statistics. 2008 page in press.

Thompson P, Giedd J, Woods R, MacDonald D, Evans A, Toga A. Growth patterns in the developing
human brain detected using continuum-mechanical tensor mapping. Nature 2000;404:190–193.
[PubMed: 10724172]

Thompson P, Toga A. A surface-based technique for warping 3-dimensional images of the brain. IEEE
Transactions on Medical Imaging 1996;15

Thompson PM, MacDonald D, Mega MS, Holmes CJ, Evans AC, Toga AW. Detection and mapping
of abnormal brain structure with a probabilistic atlas of cortical surfaces. J Comput Assist Tomogr
1997;21:567–581. [PubMed: 9216760]

Timsari B, Leahy R. An optimization method for creating semi-isometric flat maps of the cerebral
cortex. The Proceedings of SPIE, Medical Imaging. 2000

Worsley K, Marrett S, Neelin P, Vandal A, Friston K, Evans A. A unified statistical approach for
determining significant signals in images of cerebral activation. Human Brain Mapping
1996;4:58–73. [PubMed: 20408186]

Worsley K, Taylor J, Tomaiuolo F, Lerch J. Unified univariate and multivariate random field theory.
NeuroImage 2004;23:S189–195. [PubMed: 15501088]

Yezzi, A.; Prince, J. A PDE approach for measuring tissue thickness. IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR); 2001.

Yu P, Grant P, Qi Y, Han X, Segonne F, Pienaar R, Busa E, Pacheco J, Makris N, Buckner R, et al.
Cortical Surface Shape Analysis Based on Spherical Wavelets. IEEE Transactions on Medical
Imaging 2007;26:582. [PubMed: 17427744]

Chung et al. Page 24

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
Amygdala manual segmentation at (a) axial (b) coronal and (c) midsagittal sections. The
amygdala (AMY) was segmented using adjacent structures such as anterior commissure
(AC), hippocampus (HIPP), inferior horn of lateral ventricle (IH), optic radiations (OR),
optic tract (OT), temporal lobe white matter (TLWM) and tentorial notch (TN).
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Figure 2.
(a) The heat source (amygdala) is assigned value 1 while the heat sink is assigned the value
-1. The diffusion equation is solved with these boundary condition. (b) After a sufficient
number of iterations, the equilibrium state f(x,∞) is reached. (c) The gradient field ∇f(x,∞)
shows the direction of heat propagation from the source to the sink. The integral curve of the
gradient field is computed by connecting one level set to the next level sets of f(x,∞). (d)
Amygala surface flattening is done by tracing the integral curve at each mesh vertex. The
numbers c = 1.0, 0.6, ⋯ , −1.0 correspond to the level sets f(x,∞) = c. (e) Amygdala surface
parameterization using the angles (θ, φ). The point θ = 0 corresponds to the north pole of a
unit sphere.
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Figure 3.
The first (third) row shows the significant Gibbs phenomenon in the spherical harmonic
representation of a cube (left amygdala) for degrees k = 18, 42, 78. The second (fourth) row
is the weighted spherical harmonic representation at the same degrees but with bandwidth σ
= 0.01, 0.001, 0.0001 respectively. The color scale for amygdala is the absolute error
between the original and reconstructed amygdale. In almost all degrees, the traditional
spherical harmonic representation shows more prominent Gibbs phenomenon compared to
the weighted version. The plots display the amount of overshoot for the traditional
representation (black) vs. the weighted version (red).
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Figure 4.
(a) Five representative left amygdala surfaces. (b) 42 degree weighted spherical harmonic
representation. Surfaces have different mesh topology. (c) However, meshes can be
resampled in such a way that all meshes have identical topology with exactly 2562 vertices
and 5120 faces. Identically indexed mesh vertices correspond across different surfaces in the
least squares fashion. (d) Spherical harmonic basis Y22 is projected on each amygdala to
show surface correspondence. Note that the red colored left most corners more or less align
properly.
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Figure 5.
(a) (b) Simulated surfaces with the known displacement field between them. (c) The
displacement in mm. (d) (e) Corresponding weighted spherical harmonic representation (f)
The estimated displacement from the weighted spherical harmonic representations.
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Figure 6.
Simulation results. (a) small bump of height 1.5mm was added to a sphere of radius 10 mm.
(b) T-statistic of comparing randomly simulated 20 spheres and 20 bumped spheres showing
no group difference (p = 0.35). (c) small bump of height 3mm was added to a sphere of
radius 10mm. (d) T-statistic of comparing randomly simulated 20 spheres and 20 bumped
spheres showing significant group difference (p < 0.0003).
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Figure 7.
F statistic map of shape difference displayed on the average left amygdala (a) and right
amygdala (b). We did not detect any significant difference at α = 0.01. The left amygdala (a)
is displayed in such a way that, if we fold along the dotted lines and connect the identically
numbered lines, we obtain the 3D view of the amygdala. The top middle rectangle
corresponds to the axial view obtained by observing the amygdala from the top of the brain.
(c) and (d) show the F statistic map of shape difference accounting for age and the total
brain volume. The arrows in the enlarged area show the direction of shape difference
(autism - control).
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Figure 8.
F statistic map of interaction between group and gaze fixation. Red regions show significant
interaction for (a) left and (b) right amygdale. For better visualization, the color bar for the
right amygdala (b) has been thresholded at 40 since the maximum F statistics at the largest
cluster is 65.68 (p = 0.003). The scatter plots show the particular coordinate of the
displacement vector from the average surface vs. gaze fixation. The red lines are regression
lines.

Chung et al. Page 32

Neuroimage. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


