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Abstract
The BRAINS (Brain Research: Analysis of Images, Networks, and Systems) image analysis
software has been in use, and in constant development, for over twenty years. The original
neuroimage analysis pipeline using BRAINS was designed as a semi-automated procedure to
measure volumes of the cerebral lobes and subcortical structures, requiring manual intervention at
several stages in the process. Through use of advanced image processing algorithms the need for
manual intervention at stages of image realignment, tissue sampling and mask editing have been
eliminated. In addition, inhomogeneity correction, intensity normalization, and mask cleaning
routines have been added to improve the accuracy and consistency of the results. The fully
automated method, AutoWorkup, is shown in this study to be more reliable (ICC ≥ 0.96, Jaccard
index ≥ 0.80 and Dice index ≥ 0.89 for all tissues in all regions) than the average of 18 manual
raters. On a set of 1130 good quality scans the failure rate for correct realignment was 1.1%, and
manual editing of the brain mask was required on 4% of the scans. In other tests, AutoWorkup is
shown to produce measures that are reliable for data acquired across scanners, scanner vendors,
and across sequences. Application of AutoWorkup for the analysis of data from the 32-site, multi-
vendor PREDICT-HD study yield estimates of reliability to be greater than or equal to 0.90 for all
tissues and regions.
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Introduction
The BRAINS (Brain Research: Analysis of Images, Networks, and Systems) image analysis
software (Andreasen et al., 1996; Magnotta et al., 2002) has a history of development at The
University of Iowa for over twenty years.
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From early on in the development of the BRAINS software suite, a semi-automated image
analysis pipeline was available to analyze anatomical brain scans in a reliable and valid
manner. These tools have been reported in detail previously (Andreasen et al., 1996; Harris
et al., 1999; Magnotta et al., 1999; Pierson et al., 2002; Powell et al., 2008; Spinks et al.,
2002). The analysis is composed of four major steps:

1. Realign and coregister all scans into the same orientation and resolution,

2. Perform tissue classification,

3. Define the borders of the brain and parcellate it into subregions and structures, and

4. Measure volumes of regions of the brain and various tissues within the defined
regions.

Each of the four cortical lobes is evaluated with volume measures for each hemisphere of
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) volumes (Andreasen
et al., 1996; Harris et al., 1999). Both total CSF and separate surface and internal CSF
measures are available. The methods used in these processes were validated against
manually traced cortical lobes and tissue types. In addition, several studies have been
undertaken to review the reliability and reproducibility of BRAINS (Agartz et al., 2001;
Okugawa et al., 2003b). Finally, through application of artificial neural networks trained on
manual exemplars (Magnotta et al., 1999; Powell et al., 2008) measures may also be
completed for the brain, caudate, putamen, nucleus accumbens, globus pallidus, thalamus,
and hippocampus.

The goals for the development of BRAINS have been to continuously refine the software
processes and user experience, and to take advantage of advances in algorithms, software
engineering, and computer hardware. Through this effort, the software that was initially
developed as a manual image-tracing tool has evolved to include methods for image
registration (linear and non-linear), tissue classification, automated labeling, brain
extraction, surface generation, and diffusion tensor analysis.

BRAINS has been used to investigate a multitude of populations and disorders, for example,
in normal development (Tiemeier et al., 2010), childhood neglect (Bauer et al., 2009), post-
traumatic stress disorder (Jatzko et al., 2006), attention deficit hyperactivity disorder
(Mackie et al., 2007), autism (Jou et al., 2009), dementia and Alzheimer’s disease (Krueger
et al., 2009), temporal lobe epilepsy (Dabbs et al., 2009), anorexia nervosa (McCormick et
al., 2008), cleft lip and palette (Weinberg et al., 2009), Huntington disease (Nopoulos et al.,
2007; Paulsen et al., 2010), fetal alcohol syndrome (Swayze et al., 1997), drug abuse (Block
et al., 2000; O'Leary et al., 2007), alcohol abuse (Hill et al., 2009), phenylketonuria
(Pfaendner et al., 2005), and schizophrenia (Crespo-Facorro et al., 2007; Ho et al., 2007; Ho,
2007; Ho and Magnotta, 2010; Okugawa et al., 2003a). The successful use of the BRAINS
software suite across many populations and diseases has been a primary motivation for
implementing robust tools that can be consistently and easily applied to a wide range of
disease states.

In this report we describe the development of a fully automated method for analysis of brain
MRI using tools available in BRAINS2. The semi-automated standard workup used until
now required the investment of 2 to 6 hours of human time due to the stages that required
manual intervention. Historically, manual intervention was necessary to ensure accuracy and
validity of all of the data. However, the methods developed in this paper have automated and
refined these stages so that the quality of results from the automated method now exceeds
those of the methods that depend on manual intervention.
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Methods
When developing the automated workup procedure for anatomical brain images
(AutoWorkup) a set of guiding principles was identified to govern the development.

1. Variance in brain tissue measures due to any source other than anatomical
differences is to be reduced as much as possible. These sources of variance include
scanner characteristics and image artifacts.

2. Accuracy and validity of the workup are the most important benchmarks. When
developing the modules very little compromise will be made in these as a tradeoff
with other factors, such as failure rates or speed of completion.

3. Within the limitations of 1) and 2) above, success rates of each step in the workup
should be maximized, ideally 100%. Whenever automated methods require human
intervention, time is wasted and unwanted variability is introduced.

4. When accuracy or success rates of a simple process suffer due to automation, use
iterative methods to work gradually towards highly accurate and reproducible
results. Using several successively more-accurate iterations of a robust basic
process is preferable to creating a complex process with numerous decision points.

5. Modularize the process so that stages of the workup are easily modified as needed
for customization of the analysis. Modifications may extend even to the complete
substitution of modules, such as tissue classification, cortical lobe or subcortical
structure definition, without major refactoring of the pipeline.

6. In the rare case of failure at some point in the process, design the flow control to be
able to restart at the point of manual intervention to complete the rest of the
automated workup methods.

A summary of the stages in AutoWorkup are listed in Table 1.

Template Images
To provide a basis for coregistration and preliminary segmentation, a template image was
created from synthesized average anatomies using inverse-consistent registration
(Christensen et al., 2006). The template image was created using scans from patients and
healthy controls from the Iowa studies of schizophrenia and were chosen to reflect a wide
range of brain and ventricle size and shape. The resulting template image reflects a true
average of the subjects used in its creation, with the shape and size being the actual mean for
the population. Therefore, the image space is not either MNI or Talairach, but specifically
chosen to represent a population average. The final atlas set contains average images of the
skull-stripped T1 images, complete T1 images, and brain probability images; masks of the
average brain and cerebrum; and parameters defining the Talairach atlas on this set of
template images.

The average T1 and its associated brain mask are shown in Figure 1.

Spatial alignment
The reorientation of the T1 weighted image is accomplished in a multi-step approach using
the BRAINSFit (Johnson et al., 2007) program to coregister the T1 to the 108-subject
template image space. First, 3dSkullStrip (Cox, 1996) creates an initial estimate of the brain.
Next, the T1 image is intensity normalized to linearly map the intensities of the T1 image
within the 3dSkullStrip brain region to extend from 0 to 255. At this point, a new
3dSkullStrip brain mask is created. The brain mask for the subject is co-registered to the
template brain mask with BRAINSFit using a six parameter registration to bring the images
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roughly into alignment, then a nine parameter registration to “fine-tune” the orientation. The
use of two stages of registration is employed to reduce the failure rate of the process. In the
first coregistration, rigid registration, BRAINSFit initializes using the center of the head to
correct the main translational differences. The rigid registration is then completed using a
high rotational change in the initial iterations. The second stage of registration, using
translation, rotation, and scale, is initialized using the transform from the rigid registration.
This allows the maximal fit of the individual brain mask to the template brain mask,
reducing minor variability in orientation of the brain. The scale differences between the
subject and atlas are used to generate a new atlas image of approximately the same size as
the subject. The rigid parameters are extracted from the transform of the nine-parameter
registration and utilized to resample the T1-weighted image into its final orientation. Skull
stripping is repeated, and the mask is processed to remove small connections to tissues
outside the brain. This procedure achieves this by first eroding a mask three-dimensionally
by 3 voxels, then finding the largest connected region. This largest connected region is then
dilated by 5 voxels three-dimensionally, and the result is intersected with the original mask.
This results in the erroneous regions of the brain mask (those that are not connected to the
main volume or are connected by a stalk of no more than 6 voxels thickness) being removed
from the main volume. Finally, the Talairach parameters (AC and PC points) are resampled
from the average template space into the subject’s realigned T1 image space.

Next the T2 image is coregistered to the resampled T1 image using a rigid body registration.
The raw PD is then coregistered to the T2 (in case the PD had not been acquired in a dual-
echo sequence with the T2). The PD-to-T2 transform is combined with the T2-to-T1
transform to bring it into coregistration with the atlas-aligned T1 weighted image.

The spatial alignment process results in the images being resampled into an orientation with
the midsagittal plane in the center of the image space, with AC and PC points on a
horizontal line in the midsagittal plane. This reflects a Talairach orientation, but the images
are not scaled in any fashion; they retain the actual size of the subject’s brain.

Inhomogeneity correction – including initial tissue sampling, classification, and brain
segmentation

The discriminant tissue classification method (Harris et al., 1999) is then used on the T1 and
T2 images to create a continuous classified image. Training classes are created from ‘plugs’
created around a number of points randomly chosen within the brain to sample the brain
tissue. The mask generated from the T1 weighted image, after alignment with the atlas
image, is eroded by 5 mm and serves as the region for picking tissue plugs. After passing
tests for minimal variance and coverage, these plugs are grouped by intensity into three
classes, or tissue types, using a multidimensional K-means clustering. Multiple samplings of
4000 plugs each are acquired iteratively, with the K-means clustering assigning the plugs to
the various classes. This continues until the tissues are represented by a minimum of 2000
white matter plugs, 4000 gray matter plugs, and 200 CSF plugs. The plugs in each class
must also represent tissues spanning at least 85% of the brain region in each dimension, and
plug picking will continue until this additional condition is met. After the initial plug
picking, a region within 5 mm of the brain mask border is isolated for picking exemplars of
blood. Choosing voxels within this region that satisfy the criteria of having intensities
ranging from 60% to 80% of the grey matter mean on the T1 image and less than 20% of the
grey matter mean on the T2 image provides a representation of blood. Using these training
classes, a set of discriminant functions is created and the image space is classified, voxel by
voxel, into the various tissue types. A continuous-classified image is created, where the
intensity of each voxel codes for the likelihood of its being the specific tissue type. An
intensity of 10 represents pure cerebrospinal fluid, 130 for pure gray matter, and 250 for
pure white matter. Intensities in ranges between these values represent the partial volume
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effects of that voxel having two different classifications. Blood is given an intensity of 1,
and voxels that were not classifiable by the discriminant functions (that is, are not
multispectrally similar to CSF, grey matter, white matter or blood) are assigned an intensity
of 0.

An automated segmentation algorithm based on an artificial neural network (ANN) is then
used to define the brain, including surface CSF, on the continuous tissue classified image
(Magnotta et al., 1999). A second brain mask is generated using the maximum uniformity
summation heuristic (MUSH) algorithm (Pierson et al., 2009). This algorithm generates a
synthetic image by summing the T1 and T2 weighted images in proportions that minimize
the variance of the signal intensity within an estimate of the brain compartment. This
synthetic image can be thresholded to generate a separate estimate of the brain mask,
including CSF. The ANN and MUSH brain masks are then combined using a procedure that
uses a reference mask to clean a newly generated mask. Regions that differ by less than 3
voxels thickness, three dimensionally, are left alone on the new mask. Regions that differ by
more than that are either filled in or removed to match the reference mask. This allows the
majority of a new ANN-generated brain mask to accurately reflect the anatomy of a scan,
while those areas that go awry due to “leaking” into the neck or skull can be clipped.

The initial tissue classification process provides tissue intensity profiles and an accurate
estimate of the brain to be used for inhomogeneity correction. Using the inverse of the final
spatial transforms for each raw image, the brain mask is resampled into the raw image space
for each modality. Inhomogeneity correction is then performed on the original raw images
(Styner et al., 2000) using a 3rd order Legendre polynomial to model and correct the
inhomogeneity. After inhomogeneity correction and intensity normalization, the images are
resampled back to their final, atlas based orientation.

Final tissue classification, parcellation, and measurements
Because the images are now corrected for inhomogeneity, a new tissue classification is
performed, identical to that described above, using the newly resampled, inhomogeneity
corrected, and intensity normalized images. The brain estimate used in this classification for
picking tissue exemplars is the brain mask created after the first tissue classification step,
since it is a more accurate representation of the intracranial space. After this tissue
classification, a new brain mask is again created using a combination of the ANN and
MUSH algorithms. The prior estimates of the Talairach landmarks, defining the bounds of
the cerebral cortex, are adjusted based on this final brain mask.

Using an atlas-based anatomical identification procedure (Andreasen et al., 1996), tissue
volumes for grey matter, white matter, and CSF (surface and internal) are measured for the
four cortical lobes (frontal, temporal, parietal, and occipital), ventricles, and subcortical
structures. Using an augmented ANN algorithm (Powell et al., 2008), subcortical and
cerebellar regions are parcellated. Volumetric measurements of these regions are also
obtained.

Application of AutoWorkup
AutoWorkup was applied to several different studies to assess its accuracy, reproducibility,
failure rates and reliability, as well as to assess the comparability of results obtained when
applying AutoWorkup to data acquired on different scanners and with different scanning
sequences.
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Reliability between AutoWorkup and Semi-Automated Workup
To evaluate the reliability of AutoWorkup compared to the semi-automated standard
workup, a set of 15 scans, of good quality and acquired within the time span of one year on
the same scanner, were processed using both the semi-automated method and the fully
automated AutoWorkup. Each participant’s data included T1, T2, and PD weighted images
collected on a 1.5T GE Signa scanner. The T1 weighted scan was acquired using a 3D
spoiled recalled gradient echo sequence with the following scan parameters: TE = 5 ms, TR
= 24 ms, flip angle = 40°, NEX = 2, FOV = 26 × 19.2 × 18.6 cm, matrix = 256 × 192 × 124.
The PD and T2 weighted scans were acquired using a fast spin-echo sequence with the
following parameters: TE = 28/96 ms for the PD and T2 respectively, TR = 3000 ms, slice
thickness/gap = 3.0 to 4.0 mm / 0.0 mm, NEX = 1, FOV = 26 cm, matrix = 256 × 192, ETL
= 8.

Intra-class correlation, Dice coefficient (Dice, 1945) and Jaccard index (Jaccard, 1912) were
calculated for each major region, separately for gray matter, white matter, and CSF (total,
internal, and surface). The ICC was calculated through use of restricted maximum likelihood
estimates of variance, and is equal to the estimated variance across subjects divided by the
sum of all variance estimates (Shrout and Fleiss, 1979). The Dice coefficient is defined as:

where the numerator is twice the number of voxels in the intersection between the tissue
masks of the semi-automated and AutoWorkup results for each region and the denominator
is the sum of the voxels in each tissue mask. The Jaccard index is calculated as:

where the numerator is the number of voxels in the intersection and the denominator is the
number of voxels in the union of the tissue masks in each region for the two methods. Since
the resulting images are in different spaces (the semiautomated method centers the image
midway between the anterior commissure and posterior commissure, and AutoWorkup
centers the images on the anterior commissure), it was necessary to transform the masks
from the semiautomated method into the AutoWorkup image space for each scan before
these could be calculated.

Evaluation of success rate on a large study
A sample of 1130 scans that had successfully been processed through semi-automated
standard workup was processed through AutoWorkup. The sample was composed of
participants from the Iowa studies of schizophrenia and included 213 controls and 392
patients. The scans had been acquired over a span of 18 years, with several major scanner
software and hardware upgrades occurring during this time. The artifacts present in this
sample were quite varied, including compressed dynamic range, wrapping, motion, and a
variety of inhomogeneity artifacts. Semi-automated workup on this group of scans had been
completed by 13 different raters.

Reliability across scanners
At the time of a scanner replacement in a longitudinal study, a group of 10 participants were
scanned on the GE Signa 1.5T scanner using the sequence described above, and also on a
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Siemens Avanto 1.5T scanner using the following sequence. A coronal T1 FLASH was
acquired with TE = 5 ms, TR = 24 ms, flip = 30, FOV = 260 × 260 × 216 mm, Matrix = 256
× 192 × 144, NEX = 2, BW = 160 Hz/pixel. A coronal PD/T2 was acquired with TE = 26/90
ms, TR = 9500 ms, FOV = 260 × 260, Matrix = 256 × 256, NEX = 1, Slice thickness = 3.0
mm, ETL = 5, BW = 100 Hz/pixel. The scans were processed through AutoWorkup
successfully. Reliability (ICC, R2), Dice coefficient and Jaccard index were calculated for
the cross-scanner comparison, as well as the average differences in volumes between the
various measures for the two scanners.

Reliability across scanners and acquisition parameters
The sequence from the GE Signa scanner, above, was acquired on 60 participants, and an
additional high-resolution sequence was acquired on a GE/CVi scanner with the following
parameters: The T1 weighted scan was acquired using a 3D spoiled recalled gradient echo
sequence with the following scan parameters: TE = 6 ms, TR = 20 ms, flip angle = 30°,
FOV = 160×160×192 mm, matrix = 256×256×124, NEX = 2. The T2 images were acquired
using a 2D fast spin-echo sequence in the coronal plane with the following parameters: TE =
85 ms, TR = 4800 ms, slice thickness/gap = 1.8/0.0 mm, FOV = 160×160 mm, matrix =
256×256, NEX = 3, number of echoes = 8, number of slices = 124. To assess the feasibility
of combining data from both the high-resolution and the standard-resolution studies into
one, larger study, only the modalities common to both (T1 and T2) were used in the
analysis. To further reduce the differences, a preprocessing step was included to down-
sample the raw images from the high-resolution sequence to the same resolution as the raw
images from the low-resolution sequence. All other stages of AutoWorkup were completed
normally.

Application to 3T scanners
A set of 50 scans acquired on an Siemens 3T TrioTim scanner were processed through
AutoWorkup. A coronal MPRAGE sequence was acquired with TE = 2.8 ms, TR = 2530
ms, flip = 10, FOV = 256 × 256 × 256 mm, Matrix = 256 × 256 × 256, NEX = 1, BW = 180
Hz/pixel. A 3D T2 was acquired with TE = 404 ms, TR = 4000 ms, FOV = 176 × 227.5 ×
260, Matrix = 176 × 256 × 224, NEX = 1, Slice thickness = 1.0 mm, BW = 592 Hz/pixel. To
properly handle the higher range of inhomogeneities, the inhomogeneity correction
algorithm (BIASCorrector) used a 5th order Legendre polynomial instead of 3rd order, and
the blood sampling algorithm was restricted to use only those voxels with intensities on the
T2 image that were below 6% of the mean gray matter intensities. No other modifications
were attempted.

Application to a large, multi-site study
To evaluate the applicability of the method to multi-site, multi-scanner, longitudinally
collected studies, the data from the PREDICT-HD study (Paulsen et al., 2006; Paulsen et al.,
2008) were processed using AutoWorkup. Scans of 657 participants from 32 sites, acquired
on 32 different scanners (30 GE scanners and 2 Siemens scanners) were included in this part
of the study. Participants only received scans at their home site, so data were not available
for a rigorous calculation of cross-site reliability.

For this comparison we calculated an “r-square-style” statistic for scanner effects that is
generally analogous to the ICC statistics. In this case, the statistic describes the proportion of
variance for each structure that is estimated to not be due to intra-scanner variability. It
cannot strictly be interpreted as an intraclass or reliability correlation, because different
subjects were used at each site. It can, however, be interpreted as an approximation to such
statistics, if we assume that the mixture of subjects is approximately similar among sites and
scanners. These variances were derived by fitting a random effect model with no fixed
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effects except an intercept. A random effect for unique scanners was included, and the
statistics are derived from variance estimates for the scanner effect and the residual, which
can be thought of as the variance due to all other influences. The ratio of variance without
scanner effects to total variance is reported as the “Estimated ICC.”

Software
BRAINS is written in C++ and builds upon ITK and VTK. The BRAINS software is
currently available for both Linux and Mac OSX platforms from the NITRC website
(www.nitrc.org), BRAINS supports a number of standard file formats including NIFTI,
allowing the resulting images and masks to be readily utilized by a wide variety of other
packages, including SPM, FreeSurfer, AFNI, and FSL. The automated pipeline is
instrumented using the TCL scripting language, allowing easy modification and
customization.

Results
AutoWorkup was applied to several different studies to assess its accuracy, reproducibility,
failure rates, and reliability. The simple end user interface for AutoWorkup allowed many
scans to be processed simultaneously on a cluster of computers. A single fully automated
process completed in an average of 72 minutes per scan. An example of a 3T scan from a
Siemens Trio scanner processed through AutoWorkup is shown in Figure 2.

Reliability
The results for the reliability study comparing the semi-automated methods of BRAINS
workup with AutoWorkup are listed in Tables 2 and 3. The vast majority of the regions have
very high intraclass correlation, R2 ≥ 0.99. The lowest was 0.96 for cranial surface CSF
(CSF on the entire surface of the brain). The Dice coefficients for gray and white matter
ranged from 0.89 to 0.95, and for CSF ranged from 0.72 to 0.89. Jaccard indices for gray
matter and white matter ranged from 0.79 to 0.92, and for CSF ranged from 0.72 to 0.85.
This set of scans had been used for approximately 10 years for rater validation on the semi-
automated workup, so data were available for 18 raters compared to the same gold-standard
rater (HK). Average ICC’s for those 18 raters are also shown in Table 2.

Success rate
All of the scans were visually inspected after AutoWorkup was performed. Only 13 of the
scans (1.1%) failed to be reoriented or coregistered correctly, and an additional 46 (4%) had
brain masks that required editing of more than 25 cc (approximately 2% of total brain
volume). Of those that passed visual inspection the root mean square difference between
manual and AutoWorkup definition of the anterior commissure was 0.93 mm and of the
posterior commissure was 1.2 mm.

Reliability across scanners
In the comparison of the reliability for using two different scanners to assess brain
morphometry, as measured using AutoWorkup, the intraclass correlations for the brain
measures were all greater than 0.9, except for occipital white matter. The Dice coefficients
for gray and white matter ranged from 0.75 to 0.97. Jaccard indices for gray matter and
white matter ranged from 0.72 to 0.97.

Results are shown in Table 3. In addition, the percent differences in tissue volumes in each
region are reported, with only the occipital gray and white matter exceeding 3% difference.
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Reliability across scanners and acquisition parameters
In this reliability comparison the sequences used for acquisition were quite different, and
though the scanners were both from the same vendor (General Electric), the scanners were
also different. All scans completed processing through AutoWorkup successfully, with
minor brain mask trimming needed on four scans. Reliability was calculated for the cross-
scanner/cross-sequence comparison, as well as differences in average volumes for each
tissue in the main regions of the atlas-based measures. Results are shown in Table 4. As in
the previous cross-scanner study, the intraclass correlations were all above 0.9 except for, in
this case, occipital gray and white matter. The Dice coefficients for gray and white matter
ranged from 0.82 to 0.99. Jaccard indices for gray matter and white matter ranged from 0.75
to 0.99. Percent differences in tissue volumes were generally less than 1%, with occipital
white matter and gray matter each near 2%.

Application to 3T scanners
Of the 50 scans processed through AutoWorkup, only 1 scan was considered a failure. This
was due to abnormally large inhomogeneities in the subcortical and occipital regions. These
inhomogeneities were not adequately corrected, leading to misclassification of the occipital
white matter as gray matter and venous blood.

Application to a large, multi-site study
As described above, a strict reliability estimate through use of an intraclass correlation was
unavailable due to the lack of data on different scanners for any one subject. The ICC
estimates shown in Table 5 describe the proportion of variance for each structure that is
estimated to not be due to intra-scanner variability. For all measures except occipital gray
matter the estimated ICC’s are in excess of 0.9. In addition, the standard deviation with and
without the estimated effect of scanner are included.

Discussion
The assessment of AutoWorkup

Through creative use of modern image analysis tools, AutoWorkup has been developed as a
valid and highly reliable tool for measurement of brain morphometry.

In the studies to evaluate AutoWorkup it was shown that the process was reliable when
compared with semi-automated standard workup as completed by our lab’s expert rater. In
fact, in comparison to this expert rater, it is more reliable than the average of 18 trained
human raters. AutoWorkup was also shown to have a very high rate of successful
completion, approximately 99% for good quality scans with few artifacts.

In these studies AutoWorkup was shown to be efficient, completing the process in an
average of 72 minutes per data set. With implementation in a cluster, a large number of
scans can be processed in a reasonable time—more than 100 scans per week, per cpu.

In the two studies to evaluate scanner and sequence comparability, AutoWorkup was shown
to allow combining of data sets across scanner vendors and acquisition sequences, with
relatively high reliability when comparing the measures from the scans acquired on two
different scanners and sequences, and relatively minor differences in tissue composition
across most regions of the brain. This is also borne out by the analysis of variance for the
multi-site PREDICT-HD study, where the estimates of intraclass correlations for each
region were very similar to those of the strict cross-scanner, cross sequence reliability
studies. It is interesting to note that the one region that consistently was least reliable across
all of the studies was the occipital lobe. It may be that this region experiences the most
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extreme inhomogeneity, which the current algorithm is unable to completely normalize. This
is also supported by the results of the 3T scans that were processed; the one scan that was
considered a failure had relatively large uncorrected inhomogeneity in the occipital region.

Insight into the developmental goals
In addition to automation of tasks that previously required manual intervention, additional
methods were implemented to enhance the face validity and reliability of the results. The
“gold standard” used for comparison in this study was the semi-automated, standard
workup. To ensure the technicians were able to produce consistent results, formal reliability
testing was necessary, such as that described in (Agartz et al., 2001; Okugawa et al., 2003b).
These studies show that with trained raters, very little difference would be found in the
measures produced by two different raters using the semi-automated method. In the
development of AutoWorkup there are additional processes that may have improved the
consistency, accuracy, and reliability of AutoWorkup to be at least as good and possibly
better than that of the semiautomated methods.

First, reorienting to an atlas orientation may provide a more consistent alignment for the
brain, rather than using the anterior and posterior commissures. The alignment with the
Talairach brain segmentation atlas may also remain more consistent due to this. This may
create better alignment with brain probability maps for the basic ANN, resulting in better
brain masks.

In AutoWorkup the use of the maximum uniformity summation heuristic to generate a
second estimate of the brain to “clean” the ANN-generated brain mask results in very little
need to manually edit the resulting brain masks. For the semi-automated standard workup,
every brain mask was cleaned up with manual trimming, whereas only 46 out of 1130
required manual edited for AutoWorkup.

Finally, tissue classification and other procedures may be more stable across scans when the
images are inhomogeneity corrected and intensity normalized to optimize the dynamic range
within the brain region. In addition, the new ANN for subcortical segmentations requires
very little manual trimming (Powell et al., 2008). As a result the entire process for a large
group of scans requires a fraction of the manual labor of semi-automated workup, with
increased reliability.

Implications for medical imaging research
The use of medical imaging to study the brain for morphometric changes due to neurological
and psychiatric disorders has expanded rapidly over the past twenty years. However,
imaging results from studies of brain illness obtained from multiple groups often differ due
the difficulties in analyzing MR imaging data in a rapid and reliable manner. As summarized
in the review article on MRI findings in schizophrenia by Shenton et al. there are a number
of brain areas that have positive findings in approximately 60% of the studies and negative
findings in the other 40% (Shenton et al., 2001). Regions that have had contradictory
findings include the frontal lobe, parietal lobe, temporal lobe, and basal ganglia. Clearly,
with this growth in imaging to study the brain there is also an increasing need for reliable
tools that automate data analysis.

Several multi-center neuroimaging studies are currently being undertaken, including the
Morphology Biomedical Informatics Research Network (MBIRN, structural imaging in
Alzheimer's disease), Functional Biomedical Informatics Research Network (fBIRN,
functional imaging in schizophrenia), MIND Clinical Imaging Consortium (MCIC,
structural and functional imaging in schizophrenia), PREDICT (structural imaging in
Huntington disease), and Human Brain Informatics: A Database Project On Schizophrenia
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(HUBIN, structural imaging in schizophrenia). With the challenges inherent in multisite
studies, these will all benefit from rapid, reliable and valid tools for the analysis of the MR
data.

There are a number of benefits to using AutoWorkup as compared to the semi-automated
standard workup or manual ROI-based analysis of anatomical brain scans.

First, fully automated procedures can produce more consistent results by eliminating rater
drift and bias from the analysis. This is especially important for longitudinal studies that take
place over a number of years, where personnel turnover is inevitable. As the results from the
reliability study show, compared to an average of 18 different human raters, AutoWorkup is
more reliable.

Second, there is less startup overhead for an automated process, making it possible for
research groups to begin structural imaging research with substantially less investment of
start-up time or training.

Third, an automated analysis is fast enough that it allows one to refine or update the methods
and repeat the analysis of entire studies in a very short time. For a study that has collected
data and measurements for a number of years, AutoWorkup can be run very easily during
the data acquisition, even to simply ensure the scan quality is adequate for accurate
processing. Then, should there be major updates to AutoWorkup during that time period the
data can be reprocessed in a very short period of time. This allows long-term studies to use
the most up-to-date methods for eventual publication.

Fourth, for some studies it could be useful to combine several datasets into a single dataset
for larger sample sizes, or increased diversity of demographics and disease states. For
studies of rare diseases or abnormalities it may be necessary to utilize a multisite design to
be able to acquire adequate numbers of participants. For these situations, inhomogeneity
correction and intensity normalization, and possibly other stages in AutoWorkup, remove a
large amount of the variability in scan features that can affect tissue classification and
parcellation. This is clearly supported by the PREDICT-HD imaging data, where the use of
32 different sites and 2 different MRI vendors allowed the measurement of brain volumes
with a very low estimated effect due to scanner, and estimates of the standard deviation with
and without scanner effects to be very similar.

We did not directly compare the results of the BRAINS automated image analysis pipeline
to other software packages (e.g., FreeSurfer, FSL, 3D Slicer). This would be a beneficial
area of future work in neuroscience. However, such an effort should be lead by an unbiased
investigator providing training and testing data from a variety of scanners. Second, it is
likely that the developers of the software packages being compared would obtain the best
results.

Future improvements in AutoWorkup will certainly continue as new technologies in image
processing become available. BRAINS continues to be developed, with a complete
refactoring currently underway that will improve a wide range of new functionality and user
options. AutoWorkup is also being implemented in this new version of BRAINS. For the
near future improvements will include a new method to more accurately estimate the
locations of the AC and PC points, a more robust initial estimate of the brain than
3dSkullStrip, an inhomogeneity correction algorithm that is able to correct more severe
inhomogeneities, and continued optimization and validation of the AutoWorkup processing
methods for use on high-field and T1-only datasets.
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Fig. 1.
The template created from 108 T1 scans. The axial view shows in yellow the outline of the
brain mask created by thresholding the brain probability at 0.5.
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Fig. 2.
Final Review of AutoWorkup results and masks created by use of artificial neural networks.
The upper right view shows the discrete-classified image; the other views are displaying the
continuous-classified image. The scan was acquired on a 3T Siemens Trio scanner.
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Table 1

Major Steps in Iowa AutoWorkup

Reorient T1 to template

Coregister other modalities to T1

Create initial estimate of brain

Initial Tissue Classification

Create ANN/MUSH brain mask

BiasCorrector inhomogeneity correction

Intensity Normalization

Save out final modal images

Final Tissue Classification

Create final ANN/MUSH brain mask

Measure General Brain/Cortex volumes

Subcortical Parcellation

Measure Subcortical Volumes.
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Table 2

Comparison of the reliability of AutoWorkup versus the gold-standard rater, with the average reliabilities of
18 other raters.

AutoWorkup ICC Average ICC – 18

Raters

Region Left Right Left Right

Total Internal CSF 0.98 0.98 0.96 0.97

Total Surface CSF 0.96 0.96 0.91 0.93

Total CSF 0.98 0.99 0.94 0.95

Total GM 0.99 0.99 0.97 0.97

Total WM 0.99 0.97 0.94 0.94

Frontal Internal CSF 0.99 0.98 0.93 0.93

Frontal Surface CSF 0.99 0.98 0.93 0.94

Frontal CSF 0.99 0.98 0.94 0.95

Frontal GM 0.99 0.99 0.93 0.95

Frontal WM 0.98 0.99 0.92 0.93

Occipital Internal CSF 0.99 0.99 0.93 0.93

Occipital Surface CSF 0.97 0.97 0.74 0.59

Occipital CSF 0.99 0.99 0.91 0.91

Occipital GM 0.99 0.98 0.89 0.89

Occipital WM 0.99 0.99 0.87 0.85

Parietal Internal CSF 0.99 0.99 0.95 0.95

Parietal Surface CSF 0.99 0.99 0.88 0.91

Parietal CSF 0.99 0.99 0.93 0.94

Parietal GM 0.99 0.99 0.91 0.91

Parietal WM 0.99 0.99 0.94 0.92

Temporal Internal CSF 0.99 0.97 0.88 0.92

Temporal Surface CSF 0.99 0.98 0.83 0.78

Temporal CSF 0.99 0.98 0.90 0.91

Temporal GM 0.99 0.99 0.85 0.89

Temporal WM 0.98 0.99 0.88 0.87

Ventricular CSF 0.99 0.99 0.99 0.99
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Table 3

Comparison of the Dice coefficient and the Jaccard index versus the gold-standard rater. Scans from the
semiautomated workup were transformed into the AutoWorkup image space to allow voxel-wise comparisons.

Dice Coefficent Jaccard Index

Region Left Right Left Right

Total Internal CSF 0.87 0.87 0.81 0.82

Total Surface CSF 0.86 0.89 0.76 0.78

Total CSF 0.87 0.88 0.79 0.81

Total GM 0.95 0.95 0.92 0.91

Total WM 0.92 0.93 0.89 0.90

Frontal Internal CSF 0.88 0.89 0.85 0.86

Frontal Surface CSF 0.87 0.89 0.83 0.85

Frontal CSF 0.88 0.89 0.84 0.85

Frontal GM 0.93 0.93 0.86 0.86

Frontal WM 0.94 0.95 0.87 0.88

Occipital Internal CSF 0.75 0.72 0.72 0.70

Occipital Surface CSF 0.76 0.78 0.71 0.75

Occipital CSF 0.76 0.75 0.71 0.72

Occipital GM 0.92 0.91 0.83 0.82

Occipital WM 0.89 0.90 0.79 0.82

Parietal Internal CSF 0.86 0.89 0.79 0.82

Parietal Surface CSF 0.85 0.79 0.80 0.79

Parietal CSF 0.86 0.85 0.80 0.81

Parietal GM 0.93 0.94 0.87 0.86

Parietal WM 0.94 0.94 0.88 0.89

Temporal Internal CSF 0.82 0.81 0.72 0.72

Temporal Surface CSF 0.79 0.82 0.73 0.79

Temporal CSF 0.81 0.81 0.72 0.75

Temporal GM 0.95 0.94 0.89 0.88

Temporal WM 0.91 0.90 0.82 0.85

Ventricular CSF 0.94 0.93 0.90 0.91
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Table 4

A reliability comparison of measures produced by AutoWorkup using standard, trimodal acquisitions from a
GE Signa 1.5T scanner, and a Siemens Avanto 1.5T scanner on 10 subjects.

Region/Tissue ICC (R2) Dice
Coefficent

Jaccard Index % difference
(GE – Siemens)

Cerebral Tissue 0.98 0.97 0.97 1.2

Cerebral GM 0.94 0.92 0.90 1.4

Cerebral WM 0.99 0.97 0.94 0.02

Frontal GM 0.96 0.92 0.86 −0.82

Frontal WM 0.99 0.93 0.88 −0.92

Temporal GM 0.90 0.88 0.84 2.7

Temporal WM 0.94 0.90 0.86 −0.21

Parietal GM 0.96 0.92 0.86 −1.2

Parietal WM 0.94 0.90 0.88 1.7

Occipital GM 0.91 0.87 0.82 −3.24

Occipital WM 0.79 0.75 0.72 9.0

Surface CSF 0.97 0.93 0.83 0.4
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Table 5

A reliability comparison of measures produced by AutoWorkup using scans acquired on different GE scanners
at different resolutions and using different scanning sequences on 60 subjects.

Region/Tissue ICC
(R2)

Dice
Coefficent

Jaccard
Index

% difference
(High resolution) –
(Low resolution)

Cerebral Tissue 0.99 0.99 0.99 0.25%

Cortical GM 0.97 0.96 0.95 −0.21%

Cerebral WM 0.98 0.98 0.96 0.92%

Frontal GM 0.97 0.91 0.84 0.44%

Frontal WM 0.98 0.93 0.85 0.12%

Temporal GM 0.96 0.92 0.87 0.98%

Temporal WM 0.96 0.90 0.80 −1.2%

Parietal GM 0.92 0.88 0.85 −0.45

Parietal WM 0.96 0.92 0.88 0.11%

Occipital GM 0.88 0.83 0.77 −2.2%

Occipital WM 0.88 0.82 0.75 1.8%

Surface CSF 0.97 0.95 0.92 1.2%
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Table 6

For data acquired in a 32 site study using 32 scanners from 2 vendors, an estimate of the ICC using a ratio of
variance not due to scanner effects, compared to the variance due to all effects.

Region/Tissue Estimate of
ICC (R2)

Std. Dev. (cc) Std. Dev. w/o
Scanner effect (cc)

Cerebral Tissue 0.95 132.3 128.7

Cortical GM 0.92 61.1 58.4

Cerebral WM 0.97 63.0 62.1

Frontal GM 0.92 27.9 26.8

Frontal WM 0.96 25.9 25.3

Temporal GM 0.90 16.9 16.0

Temporal WM 0.97 11.1 10.9

Parietal GM 0.92 14.1 13.5

Parietal WM 0.97 16.4 16.1

Occipital GM 0.85 9.5 8.8

Occipital WM 0.92 9.0 8.7

Surface CSF 1.00 10.7 10.7

Neuroimage. Author manuscript; available in PMC 2013 November 14.


