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Abstract

There is growing interest in performing genome-wide searches for associations between genetic 

variants and brain imaging phenotypes. While much work has focused on single scalar valued 

summaries of brain phenotype, accounting for the richness of imaging data requires a brain-wide, 

genome-wide search. In particular, the standard approach based on mass-univariate linear 

modelling (MULM) does not account for the structured patterns of correlations present in each 

domain. In this work, we propose sparse Reduced Rank Regression (sRRR), a strategy for 

multivariate modelling of high-dimensional imaging responses (measurements taken over regions 

of interest or individual voxels) and genetic covariates (single nucleotide polymorphisms or copy 

number variations) that enforces sparsity in the regression coefficients. Such sparsity constraints 

ensure that the model performs simultaneous genotype and phenotype selection. Using simulation 

procedures that accurately reflect realistic human genetic variation and imaging correlations, we 

present detailed evaluations of the sRRR method in comparison with the more traditional MULM 

approach. In all settings considered, sRRR has better power to detect deleterious genetic variants 

compared to MULM. Important issues concerning model selection and connections to existing 

latent variable models are also discussed. This work shows that sRRR offers a promising 

alternative for detecting brain-wide, genome-wide associations.

1 Introduction

Recent attention in imaging neuroscience has been focused on the genome-wide search for 

genetic variants that explain the variability observed in both brain structure and function. In 

this sense, the field of imaging genetics is catching up with the dramatic increase in the 
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number of genome-wide association (GWA) studies that have been reported across many 

different disease areas, and that have been fuelled by recent technological improvements in 

genotyping and reductions in cost.

The fundamental assumption that underlies the GWA approach is that extensive common 

variation in the human genome, as measured by single nucleotide polymorphisms (SNPs) or 

copy number variations (CNVs) for example, contribute to the risk of most common 

disorders. Over the last few years, substantial international resources have been directed in 

an effort to better characterise human genetic variation, for instance through the HapMap1 

and the Genome 1000 projects2. Non-random association or linkage disequilibrium (LD) 

between alleles at nearby loci, means that not all loci in a chromosomal region need be 

genotyped for the majority of common variation to be captured, so that the spacing between 

markers should only be dense enough to capture the variation at those loci that have not been 

genotyped.

The latest genotyping platforms enable the measurement of around 1.8 million genetic 

markers, including SNPs and CNVs, enabling a search for statistically significant 

associations between one or more markers and the phenotype. Depending on the study 

design, the phenotype is usually encoded as a dichotomous variable (e.g. as a case or 

control) or as a quantitative trait, either univariate or multivariate. The belief is that variants 

yielding an increase in disease risk will be more easily found by means of such population-

based association studies, as compared with alternative approaches such as family-based 

linkage analysis studies. For binary phenotypes, recent studies have identified significantly 

associated SNPs that are in LD with predisposing variants that increase the disease risks by 

between 10% and 30% over non-carriers Donnelly (2008). A concern is that many more 

common variants may not have been detected in GWA studies because they contribute to 

raising the risk by much smaller proportions.

A number of population-based association studies with neuroimaging phenotypes have 

appeared in the literature over the last few years. Depending on both the dimensionality of 

the phenotype being investigated and the size of genomic regions being searched for 

association, we can attempt a broad classification of the existing imaging genetic studies into 

four main categories. Some studies can be classified as belonging to the candidate 
phenotype-candidate gene association (CP-CGA) category, meaning that a specific gene or 

chromosomal region is tested for association with a typically low-dimensional phenotype. 

The assumption is that the particular quantitative phenotypes being measured is able to 

capture changes in the brain induced by the disease or other biological condition being 

studied. An example of this approach is described by Joyner et al. (2009), who examined the 

potential association between four summary brain structure measures used as surrogate of 

brain size and eleven SNPs located in and around the MECP2 gene. They studied two 

different populations – a homogeneous population consisting of healthy controls and 

patients with psychotic disorders, and a heterogenous population of healthy controls and 

patients with mild cognitive impairment. Other studies belong to the candidate phenotype-

1http://snp.cshl.org
2http://www.1000genomes.org
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genome-wide association (CP-GWA) category where, again, the phenotype has been 

appropriately identified but the search for genetic variants has a much wider scope. An 

example is given by Potkin et al. (2008), who use a brain imaging activation signal in the 

dorsolateral prefrontal cortex as the quantitative trait reflecting schizophrenia dysfunction, 

and present a genome-wide study based on subjects with chronic schizophrenia and controls 

matched for gender and sex. Other studies have taken the opposite approach, and fall into the 

the brain-wide, candidate-gene association (BW-CGA) class. In this case, the search for 

genetic variants is confined to specific chromosomes or regions of interest but is extended to 

the entire brain by means of very high-dimensional phenotypes, typically based on voxel-

based morphometry techniques. Filippini et al. (2009) describes one such study, in which a 

whole-brain search for associations between the ApoE ε4 allele load and grey matter volume 

in the entire brain is carried out by testing for both additive and genotypic models in a large 

mild AD population.

We predict that soon GWA studies in neuroimaging genetics will embrace the brain-wide, 

genome-wide association (BW-GWA) paradigm, where both the entire genome and entire 

brain are searched for non-random associations and other interesting dependence patterns. 

BW-GWA studies necessarily rely on very high-dimensional phenotypes. The assumption is 

that only a handful of quantitative traits (e.g. voxels or voxel clusters) may be found in a 

statistically meaningful association with a handful of genetic markers. The approach 

requires a statistical framework for the simultaneous identification of localised genomic 

regions and localised brain regions that are found to be in non-random association. A very 

recent example is the study carried out by Stein et al. (2010). Here a voxel-wise search for 

variants that influence brain structure was performed, using approximately 448000 single 

nucleotide polymorphisms and around 31000 voxels across the entire brain. In this paper we 

focus on both computational and statistical issues arising in a BW-GWA study. Consider the 

case with p genetic markers and q quantitative phenotypes, with both p and q being much 

smaller than the available sample size n. A simple modelling approach consists of fitting all 

possible (p × q) univariate linear regression models, all independently of each other, and 

ranking genotype-phenotype pairs by p-value. This approach, often referred to as mass-
univariate linear modelling (MULM), is appealing because of its simplicity and because 

univariate regression models can be easily fitted even when only small sample sizes are 

available. However, despite its advantages, it presents at least three major shortcomings.

The first limitation is related to the need, typical of a mass-univariate GWA study, to 

determine an experiment-wide significance level that accounts for the multiple testing 

problem. Whether a family-wise error or false discovery rate approach is used, the complex 

dependence structure among both genetic markers and among phenotypes must be 

accounted for. For example, Stein et al. (2010) collapse inferences over the p SNPs at each 

voxel by taking the minimum P-value, and then corrects for the effective dimensionality 

accounting for LD. Other approaches rely on computationally-intensive permutation 

procedures.

A second important limitation of MULM is that it does not exploit the possible spatial 

structure of phenotype-genotype associations. If a genetic marker explains phenotype 

variance at one brain location, we expect it will likely affect other neighbouring locations as 
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well. Hence we would expect that an association mapping approach that is able to ‘borrow 

strength’ from correlated phenotypes can potentially yield higher statistical power (Ferreira 

and Purcell, 2009).

Lastly, MULM does not account for the possibility that multiple markers, possibly located 

on different genes, may jointly contribute to a particular phenotypic effect. In this instance, a 

multivariate approach that combines genetic information from multiple markers 

simultaneously into the analysis is also expected to provide greater power (Kwee et al., 

2008).

In an attempt to address these shortcomings, we derive a new statistical methodology for 

multi-locus mapping in BW-GWA studies. Our novel approach is based on regularised (or 

penalised) regression techniques, a class of regression models offering a natural way of 

searching simultaneously for multiple markers that are highly predictive of phenotype. 

Penalised regression has recently been described as promising alternative to more traditional 

SNP-ranking and hypothesis testing procedures (Cantor et al., 2010). Penalised regression 

methods are particularly suitable where p >> n since they perform ’model selection’, 

highlighting subsets of predictors that demonstrate greatest effect on the response. Penalised 

regression works by estimating the regression coefficients in the linear model, subject to 

constraints. Examples include ridge regression and Lasso regression (Tibshirani, 1996). 

Specifically, the Lasso estimator solves the ordinary least squares problem when a 

penalisation on the L1 norm of the coefficients is added to the mean square error objective 

function. Depending on the degree of penalisation, Lasso regression drives some coefficients 

exactly to zero, excluding them from the model, and thus performing variable selection. In 

the context of GWA studies, sparse generalised linear models, and specifically logistic 

regression, have been used to select genetic markers that are highly predictive of the disease 

status (Hoggart et al., 2008; Cantor et al., 2010; Wu et al., 2009; Croiseau and Cordell, 

2009).

In this article, we extend this approach to accommodate high-dimensional quantitative 

responses, such that both covariate selection and response selection can be performed 

simultaneously. The proposed approach, sparse reduced-rank regression, performs both 

genotype and phenotype selection required by BW-GWA studies, and is computationally less 

expensive than the mass-univariate approach.

To compare the power of our method to that of conventional MULM, we introduce a 

detailed simulation framework that associates a small number of markers with gray matter 

volume. We use a realistic simulation of both genomic and phenotypic variation. Further 

realism is introduced by subsequently removing true causative markers from the study, so 

that genotype-phenotype associations can be detected only through markers that are in LD 

with these excluded markers. To the best of our knowledge, our extensive simulation results 

provide a first characterisation of the statistical power of BW-GWA imaging genetics 
studies, for both univariate and multivariate approaches.
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2 Materials and methods

Data simulation procedure

We have developed a realistic simulation framework for assessing the performance of any 

statistical approach for population-based association mapping with neuroimaging 

phenotypes. Our simulation procedure initially generates genomes that make up a large 

human population. We used the FREGENE genome simulator to generate a large population 

of human genomes. The simulation process evolves the population forwards in time, over 

several non-overlapping generations, by keeping track of complete ancestral information. 

The simulations are set up so as to reproduce the effects of salient evolutionary forces, such 

as mutation, recombination and selection, with parameters chosen to mimic the evolutionary 

processes inferred from real human populations. At the end of the simulation, each genome 

in the population is represented by a high dimensional vector of biallelic genetic markers, 

that is then paired up with multivariate neuroimaging vector derived from real MRI data 

using VBM. Finally, a precise statistical association linking a handful of genotypes and a 

handful of phenotypes is induced in the population by carefully modifying the quantitative 

phenotypes according to a genetic model.

From this large target population, repeated random samples of any size can be extracted. For 

each sample, the true underlying genotype-phenotype dependence is known, and the 

performance of any statistical method for detecting genetic associations can be easily 

assessed. The use of data simulated under a predetermined genetic model enables us to study 

the performance of competing statistical models in an unbiased fashion by means of 

performance measures such as ROC (Receiver Operating Characteristic) curves, which 

would otherwise be impossible to evaluate in real studies. Our approach also provides a 

framework for characterising the statistical power required to detect true, non-random 

associations. A detailed description of our simulation and calibration procedures is provided 

below.

Genotype simulation

The simulation of a large human population was carried out using the simulation software 

FREGENE (FoRward Evolution of GENomic rEgions) (Hoggart et al., 2007). The software 

implements a forward-in-time simulation procedure in which each individual’s genome 

consists of a single linear chromosome having minor allele counts. The population evolves 

over non-overlapping generations according to a Wright-Fisher model, with specific control 

over the population genetic parameters including selection coefficients, recombination, 

migration rates, population size and structure. Using FREGENE, we initially generated a 

panmictic human population that mimics the evolution of N = 10000 diploid individuals 

along 200000 generations. We used a per site mutation rate of 2.3 × 10−8, a per site cross 

over rate of 1.1 × 10−8, and a per site gene conversion rate of 4.5 × 10−9, with 80% of 

recombination events occurring in hotspots, with a 2kb hotspot length. Selection was also 

introduced, with the proportion of sites under selection set to 5 × 10−4. Each simulated 

sequence was 20 Mb long. Since each marker is biallelic, we will denote the two alleles as A 
and a, with genotypes AA, Aa or aa. For each SNP, the minor allele frequency (MAF) is 

then faa + fAa/2 where faa and fAa are the population frequencies of genotypes aa and Aa. 
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The genotype for individual i at locus s is denoted by xis (i = 1, …, N, s = 1, …, p) and 

represents the count of minor allele recorded at that locus (homozygote of minor allele is 2, 

heterozygote is 1, and homozygote of major allele is 0). SNPs having a MAF smaller than 

0.05 were initially removed, leaving a total of p = 37748 markers. Of these, k = 10 markers 

having MAF=0.2 were pre-selected to act as causative SNPs – these were randomly chosen 

only once and held fixed in all subsequent simulations and analyses. The causative SNPs are 

only used to introduce genetic effects on the phenotypes (see below for details), and are 

removed from each data set prior to any statistical analysis.

Data, MRI analysis and phenotype simulation

Brain phenotype simulations were generated using MRI data obtained from the publicly 

available Alzheimer Disease Neuroimaging Initiative (ADNI) database3. The primary goal 

of ADNI is to test whether serial imaging and non-imaging measures can be combined to 

measure the progression of mild cognitive impairment (MCI) and early Alzheimer disease 

(AD). Data is collected at a range of academic institutions and private corporations, and 

subjects have been recruited from over 50 sites across the U.S. and Canada. Complete 

background and methodological detail of the ADNI data can be found on the project 

website4. For our study we only used baseline T1 MRI scans from 189 subjects with MCI. 

The ADNI T1 MRI scans have initial resolution of 0.9375 × 0.9375 × 1.2 mm3 (3D MP-

RAGE sequence, TR = 2400 ms, TE = 1000 ms, FA = 8deg) and were preprocessed with the 

SPM5 ‘optimised’ VBM procedure (Good et al., 2001), using an unified segmentation and 

warping method, followed by modulation of gray matter (GM) segmented images by the 

Jacobian of the warping. This produces GM images in standard space that still retain units of 

GM volume of the individual. The resulting images, 2.0 × 2.0 × 2.0 mm3 resolution in MNI 

space were used with no applied smoothing.

From each image we extracted the mean modulated GM value from q = 111 anatomical 

ROIs defined by the GSK CIC Atlas (Tziortzi et al., 2010). The GSK CIC Atlas is based on 

the Harvard-Oxford atlas5 but offers a 6-level hierarchy, from a coarse 3-region (gray matter, 

cerebral white matter and CSF) version to a fine 111-region version (illustrated in in Figure 

1). After regressing out the effect of gender and age, we estimated the ROI means, all 

collected in a vector μ = (μ1, μ2, …, μq), and their covariance matrix Σ. For each individual i 
in the simulated population, we generated imaging phenotypes by simulating a vector yi = 

(yi1, yi2, …, yiq) drawn from the multivariate normal distribution with parameters (μ, Σ). The 

values in yi can be interpreted as baseline GM measurements, unlinked to genotypes, prior to 

the introduction of genetic effects.

Genetic effects

We induced genetic effects in l = 6 ROIs using an additive genetic model involving the k = 

10 causative SNPs. To simplify notation, we let the first k genotypes correspond to the 

causal SNPs, and the first l phenotypes correspond to the affected ROIs. Recalling that yj is 

3http://www.loni.ucla.edu/ADNI
4http://www.adni-info.org
5http://www.fmrib.ox.ac.uk/fsl/fslview/atlas-descriptions.html
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the simulated baseline GM value for ROI j, the target phenotypes have their GM intensity 

reduced as per

where

for j = 1, …, l. Each wj term represents the reduction due to the additive genetic model on 

ROI j. The parameter δj controls the overall effect size on phenotype j, whereas ζj1, …, ζjk 

are parameters controlling the contribution of each one of the k causative markers.

Compared to the average baseline GM value (calibrated on real data), we require the mean 

intensity value of the jth affected ROI to be reduced by exactly γj × 100%, where γj ∈ [0, 1] 

represents the overall genetic effect size. Therefore we impose that 

and solve for γj. The resulting expression,

shows that the percentage reduction in GM at the jth ROI depends on the the mean baseline 

value, the observed MAF ms for each causative SNP s (s = 1, …, k) and the δj parameter (j = 

1, …, l). In our simulation settings, we control the effect size γj – since all other parameters 

are observed in the population, δj is then uniquely determined. We also report on the the 

percentage of variance explained by the genetic effect for each phenotype j,

Assuming that all SNPs contribute equally, it can be noted that the effect on the mean GM of 

ROI j caused by a single causative SNP with MAF m is exactly 2δjm/kE(yj). When a 

randomly selected individual has maximal allele dosage at all k causative SNPs, γj takes its 

maximal value 2δj/E(yj).

Simulation parameter settings

In our simulations we set ζjs = 1/k to have each causal SNP affect each ROI equally. Effect 

sizes represented by the γj parameters were selected to introduce a 6%, 8% and 10% 

reduction in mean GM in each affected ROI. The corresponding average proportions of 

variance explained by the genetic effects are 5%, 8% and 12%, respectively. The maximally 

attainable per-SNP effects, observed when an individual is homozygous for the disease 

allele, are 3%, 4% and 5%, respectively. These effect sizes were selected with reference to 
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previous imaging genetics findings. For instance, Filippini et al. (2009) reported a 10% 

reduction in GM in homozygote ApoE ε4 subjects relative to subjects with no ε4 alleles 

(corresponding to our baseline GM values), and Joyner et al. (2009) reported a maximum 

genetic effect of 9.8%. Therefore the genetic effect sizes chosen in our simulation studies are 

meant to characterise the statistical power when the per-SNP effects are relatively small and 

when multiple disease alleles contribute additively. Each simulation scenario consists of a 

unique parameter combination (γ, n) indicating the overall genetic effect size and sample 

size, respectively. In order to avoid biases introduced by random sampling, for each 

simulation scenario we always report on average performance measures, where the average 

is taken over a total of B = 200 independent samples extracted from the population.

Sparse reduced-rank regression (sRRR)

Based on a random sample of size n, we denote by X the n × p design matrix of genetic 

markers, and by Y the associated n × q matrix of phenotypes, and assume n ≪ p. We do not 

consider here additional non-genetic confounding variables though these could be easily 

accommodated. The standard multivariate multiple linear regression (MMLR) model is

(1)

where C is the (p × q) matrix of regression coefficients and E is the (n × q) matrix of errors. 

If n were greater than p, C could be estimated by least squares as

(2)

and Ĉ(R) would be full rank, R = min (p, q).

Even under such an unrealistic assumption concerning the sample size, there would still be 

significant limitations. First, it is well known that little is gained by formulating the 

multivariate multiple regression in these terms, in the sense that the same solution can be 

obtained by performing q independent regressions, one for each univariate response 

(Izenman, 2008; Hastie et al., 2001). Thus, the unconstrained regression model (1) 

essentially makes no use of any structure that may exist in the multivariate response. Second, 

with high-dimensional genetic variables, which are often characterised by patterns of non-

random associations, the model would also suffer from multicollinearity – the lack of 

orthogonality among the covariates – which will inflate the variance of the regression 

coefficients. Lastly, and perhaps most importantly, the identification of the most important 

covariates would need to rely exclusively on the statistical significance of the unconstrained 

regression coefficients, thus requiring to deal with the massive multiple testing problem. In 

realistic settings, when n never exceeds p, another major complication is created by the fact 

that (X′X) is non-invertible and therefore some form of regularisation is always needed.

A solution to the first two issues above consists in imposing a rank condition on the 

regression coefficient matrix, namely that rank(C) is R* ≤ min(p, q), as in the reduced-rank 

regression (RRR) model (Reinsel and Velu, 1998). Reducing the rank leads to an effective 
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decrease in the number of parameters that need to be estimated and enables to exploit the 

multivariate nature of the response. Our aim is to derive an estimation procedure such that 

the resulting coefficient matrix C has two important properties: (a) is it of reduced rank R*, 

(b) it has zero-entries in both row and columns corresponding to all covariates (genotypes) 

and responses (phenotypes) that should be excluded from the model.

If C has rank r, with r = 1, …, R, it can be written as a product of a (p × r) matrix B and (r × 

q) matrix A, both of full rank, i.e. rank(A)=rank(B)=r. The RRR model is thus written

(3)

For a fixed rank r, the matrices A and B are obtained by minimising the weighted least 

squares criterion

(4)

for a given (q × q) positive definite matrix Γ. Most commonly the weight matrix Γ is set to 

be either the inverse of the estimated covariance matrix of the responses or the identity 

matrix. As detailed in the Appendix, these choices of Γ reveal connections to other 

multivariate models. The estimates Â and B̂ that minimise (4) are obtained as

(5)

where H is the (q×r) matrix whose columns are the first r normalized eigenvectors 

associated with the r largest eigenvalues of the (q × q) matrix

(6)

Moreover, B̂ can be rewritten in terms of the least squares solution of Eq. (2),

(7)

Thus, the rank r estimate of the RRR coefficient matrix C is

(8)

As the solutions Â and B̂ depend on normalised eigenvectors, they must satisfy
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(9)

where Λ2 is the (r × r) diagonal matrix with diagonal entries the eigenvalues corresponding 

to the r eigenvectors in H.

This factorisation of the regression coefficient C = BA, enables us to apply separate sparsity 

constraints on each of A and B related to phenotype and genotype variable selection 

respectively. For instance, in CP-GWA studies only sparsity in B will be required, whereas 

in BW-GWA studies both A and B are required to be sparse.

In high dimensional problems, when the number of variables in both domains greatly 

exceeds the number of observations, it is common to assume that the covariance matrices of 

X and Y are diagonal. In fact this has been successfully done in studies involving genomic 

and gene expression data, also posing complex correlational structures (Witten et al., 2009; 

Parkhomenko et al., 2009). Taking this strategy, i.e. estimating X′X by Ip and also setting Γ 
equal to Iq, equation (4) can be rewritten as

(10)

Noting that the the first term does not depend on A or B, a sparse rank-one model is 

obtained by solving the corresponding penalised least squares problem,

(11)

where an L1 penalty has been added to penalise both coefficients, a and b. Constraining the 

norms of the coefficients results in estimates that are shrunk towards zero. In ridge and 

Lasso regression (Hoerl and Kennard, 1970; Tibshirani, 1996), constraints are imposed on 

the the L2 and L1 norms of the coefficients, respectively. While an L2 penalty results in 

shrunken estimates that achieve stability over least squares estimates, it does not guarantee 

sparsity in the estimates. In contrast, penalising the L1 norm of the coefficients results in 

sparse estimates. The penalisation parameters λa and λb control the sparsity, and hence the 

number of explanatory variables and responses that are included in the model. When both λa 

and λb are zero, no variable selection is performed.

Penalised regression with convex penalties can be efficiently solved using coordinflate 

descent algorithms that iteratively update the coefficient estimates using soft-thresholding 

(Friedman et al., 2007). Similarly, our optimisation problem is biconvex in a and b and can 

be solved iteratively. For fixed a and fixed penalisation parameter λb,
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(12)

where  is the soft thresholding operator and (·)+ = max(·, 0). For 

fixed b and λa,

(13)

Starting with initial arbitrary coefficient vectors â and b̂, the solutions are found by using the 

updates (12) and (13) iteratively until convergence, with normalization conditions (9) 

enforced after each iteration. A schematic illustration of both MMLR and sRRR models is 

given in Figure 2.

After the rank-one sparse solution has been found, further ranks can be obtained from the 

residuals of the data matrices, X and Y. Precisely, once the dth pair of regression 

coefficients, bd̂ and âd, has been obtained, the vectors ẑd = Xb̂
d and  are computed 

and the residual matrices are formed as X* = X − γ̂ẑd and Y* = Y − δ̂ŵd, where γ̂ and δ̂ are 

obtained from regressing X on ẑd and Y on ŵd.

The rank trace plot

The search for an ‘optimal’ reduced-rank R* can be aided by the rank trace plot (Izenman, 

2008). The principle behind this graphical procedure is that, when an adequate rank r has 

been selected, the estimated sRRR coefficient matrix, Ĉ(r), should be close to the full rank 

coefficient matrix Ĉ(R) and the estimated residual covariance matrix of the sRRR model,

should be close to the corresponding full rank residual covariance Ŝεε(R). The rank trace is 

obtained by plotting, for all values of r in a range from 0 to R, the following two quantities:

and
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where ‖ · ‖F denotes the Frobenius norm. The coefficient ΔĈ(r) quantifies the relative change 

in the size of the regression coefficients between a rank r and the random model (r = 0), 

holding the full rank model as reference. Similarly, the coefficient ΔŜεε(r) represents the 

proportional difference in the corresponding residual covariance matrices. As r varies from 0 

to R in both x and y axes, both coefficients take values in [0, 1]. The two opposite points in 

the plot – those having coordinates (0, 0) and (1, 1) – indicate the two extreme models: a full 

rank model (r = R) and a random model (r = 0), respectively, where Ĉ(0) = 0 and Ŝεε(0) = Ŝyy. 

As more ranks are added, starting at the top-right corner with r = 0, the curve moves towards 

the origin of the plot. When a further rank addition does not produce a significant reduction 

in ΔĈ(r) and ΔŜεε(r), the plot indicates that an ‘optimal’ rank R* has been found. In our 

experience, the rank corresponding to the point which maximises the curvature yields 

satisfactory results – this can be found by fitting a polynomial smoothing spline to the 

(ΔĈ(r), ΔŜεε(r)) points for which second derivatives can be easily evaluated.

Performance assessment criteria

We evaluate the performance of sRRR, and compare it to MULM’s performance, by means 

of ROC (Receiver Operating Characteristic) curves. In each curve, sensitivity (true positive 

rate) is plotted against 1-specificity (false positive rate) (Fawcett, 2004). This eschews 

multiple-testing correction or other model selection issues, as sensitivities can be compared 

for a given specificity. We separately evaluate the detection performance in genetic and 

imaging domains. In the sRRR, the “detected” SNPs correspond to all non-zero entries of b̂
r 

(r = 1, …, R*). As the penalty parameter λb is increased away from zero, sparser solutions 

are obtained and a smaller number of SNPs is retained. In MULM, SNPs are ordered in 

decreasing order of significance, according to the P-value associated to each SNP-ROI pair. 

Since the true causative markers have been removed from the data, we define “true signal” 

SNPs as those that are LD-linked with at least one causal SNP. Specifically, any detected 

SNP whose R2 coefficient with any of the causative SNPs is at least 0.8 is considered a true 

positive, with all others labelled as false positives. This LD threshold is commonly used in 

the literature, for example for tagging SNPs (de Bakker et al., 2005; Wang et al., 2005). 

While the specific threshold may impact the absolute performance somewhat, the relative 

performance between statistical methods will be unaffected. We measure sensitivity as the 

proportion of true signal SNPs correctly detected, and false positive rate as the proportion of 

true null SNPs incorrectly detected. Analogously for ROIs, sRRR selects a phenotype when 

its corresponding coefficient in âr (r = 1, …, R*) has a non-zero element; the number of 

detected ROIs from MULM is then obtained accordingly from the ordered list of SNP-ROI 

pairs.

3 Results

The map of LD among the first 1000 available markers in the simulated population is 

represented in Figure 3. The LD patterns resemble those observed in real human populations 

where neighbouring markers tend to be in high LD, and the pairwise LD coefficient between 

two markers decline with the distance between them. We report on simulation results 

obtained from subsets of the entire set of available markers, with the number of markers, p 
taking values of 1990, 9990, 19990 and 37738. Figure 4 shows the number of LD-linked 
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SNPs as a function of the LD threshold. Our threshold of 0.8 gives exactly 51 LD-linked 

SNPs, which correspond to approximately 2.56%, 0.51%, 0.26% and 0.14% of the total 

number of SNPs, respectively for the four values of p that we have considered.

Pairwise correlations among q = 111 ROIs defined by the GSK CIC Atlas, estimated using 

189 MCI subjects from the ADNI data set, are shown in Figure 5. The inset shows the 

correlations among the 6 affected ROIs in the frontal cortex. The inter-regional correlations 

in the ADNI dataset were mostly positive, and strongest amongst cortical regions, with 

cerebellar and thalamic regions nearly independent of cortical regions.

When applying the sRRR model, a decision has to be made on how many ranks to select and 

how many variables to retain from each rank in both the genotype and phenotype spaces. In 

the statistical analysis of only one data set, these parameters would be optimally tuned using 

model selection criteria such as the cross-validated prediction error (see the Discussion and 

Appendix for further comments). In our simulation study however, in which B = 200 

samples are extracted from the population for each given parameter setting, performing 

model selection is infeasible due to time and computation constraints. Guided by rank trace 

plots (see Figure 11), we take the reduced-rank for all sRRR models to be R* = 3. However, 

the choice of how many SNPs and ROIs to retain from each one of the three ranks (i.e. how 

many zero coefficients to enforce in each ar and br, with r = 1, 2, 3) is difficult. When R* = 

3, a model selection procedure would provide the optimal allocation (h1, h2, h3), meaning 

that h1 > 0 variables are selected from the first rank, h2 > 0 from the second, and h3 > 0 from 

the third. For most results reported here, we have applied the simplest possible rule of 

uniform allocation across ranks: we vary the total number of variables to be retained, g, and 

use the allocation (g/3, g/3, g/3), meaning that 1/3 of the g variables to be retained (either 

SNPs or ROIs) is selected from each rank. In some cases we have tested the (g − 2, 1, 1) rule 

– we select all but two variables from the first rank, and then one variable for each one of the 

remaining two ranks. Although these allocations are arbitrary and do not guarantee that the 

sRRR model will always produce optimal ROC curves, they free us from the computational 

burden introduced by any data-intensive model selection procedure, thus allowing us to carry 

out an exhaustive exploration of several parameter combinations, including different effect 

sizes and sample sizes. Due to lack of optimisation, the results obtained using sRRR are 

conservative, and we expect that a full procedure that include model selection will generally 

perform better.

Figure 6 shows the ROC curves for SNP selection obtained from applying sRRR with three 

different reduced ranks R* = 1, 2, 3 on p = 1990 SNPs and with a 6% effect size; the sample 

sizes are 500 (a) and 1000 (b), respectively. The corresponding ROC curves obtained from 

MULM are also shown for comparison. These curves show that sRRR demonstrates 

consistently better power than MULM for every level of specificity. As expected after 

inspection of the rank trace plots, when only one rank is used, not all LD-linked SNPs are 

detected by sRRR and thus MULM performs slightly better for some portions of the 

corresponding curve. In all cases, a notable gain in performance is obtained when increasing 

the rank from 1 to 2, with performances then improving marginally less as more ranks are 

added. This is in agreement with the rank trace plots and confirms that the true signal is 

captured by the first few ranks.
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Figure 7 shows the SNP detection performance when R* = 3 is used, with genetic effect size 

γ = 0.06 and sample sizes n = 500 (a) and n = 1000 (b). Analogous ROC curves obtained for 

the higher effect size of 10% are shown in Figure 8. In all cases, while power falls off 

appreciably for high specificity, the sRRR method always has better sensitivity. Interestingly, 

whilst the sensitivity of MULM improves as genetic effects and sample sizes increases, it 

only increases linearly with false positive rates. In contrast, as the signal gets stronger or the 

sample size gets larger, the performance of sRRR improves by a larger factor especially at 

lower levels of specificity – this can be appreciated by the higher curvature of the sRRR 

ROC curves. It is also important to remember that such high sensitivity is obtained despite 

no attempt being made to select the best sparsity parameters – for instance, even if sRRR 

was able to detect more than g/3 true positives in the first rank, these will be go undetected 

under the (g/3, g/3, g/3) allocation rule.

To understand how the performance of sRRR scales from 1000’s to 10’s of 1000’s of total 

SNPs, we computed sensitivity and false positive rates of sRRR and MULM for various 

values of p while equating g, the number of selected SNP between the two methods. Table 1 

reports on our findings for a model with γ = 0.06 and n = 1000, where p ranges from 1990 

to 37738 and g ranges from 30 to 450. For every setting considered, sRRR has smaller false 

positive risk (0.60 to 0.95 that of MULM) and larger power (1.72 to 4.66 times greater than 

MULM). Remarkably, the relative power of sRRR compared to MULM gets larger as p 
increases, for any value of g, but particularly so for smaller values of g, when fewer SNPs 

are selected. For one setting, Figure 9 illustrates that the power ratio increases with the 

number of SNPs considered, with sRRR’s power increasing by a large factor when nearly 

40k markers are included. This provides reassurance that, in full-scale GWA studies, sRRR 

can achieve a much higher power than MULM, while keeping the false positive rate at 

acceptable levels. Under our simulated genetic effects, the power of either method rarely 

reaches the desired 80% this indicating the serious challenge of WB-GWA with even n = 

1000 subjects.

An assessment of the ROI selection performance using ROC curves is reported in Figure 10 

for effect sizes of 6% (a) and 10% (b), with a sample size of 500 subjects. In these Figures 

we illustrate the effect of the two allocation rules, uniform allocation, and the (g − 2, 1, 1) 

selecting most variables from rank 1. For the smaller effect size of γ = 0.06, sRRR has 

higher sensitivity compared to MULM, at all specificity levels, and for both rules. However, 

the limitation of these arbitrary allocation rules is evident when a genetic effect size γ = 0, 1 

is used, in plot (b). Clearly, sRRR is able to detect the most important ROIs from rank 1, and 

the rule (g − 2, 1, 1) provides high sensitivity at low specificity. However, since 2 ROIs also 

need to be selected from the second and third rank, MULM outperforms sRRR at lower 

specificity in this instance. At a slightly higher specificity level, when all the affected ROIs 

have been selected, sRRR achieves better power. The limitation of the (g/3, g/3, g/3) 

allocation is also clearly demonstrated here – although sRRR achieves very high sensitivity 

and essentially detects all the affected ROIs with a false discovery rate of about 10%, it has 

low power at lower specificity, because only 1/3 of all total g variables can enter the model 

for each rank.
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4 Discussion

We have tackled the problem of detecting associations between high dimensional genetic 

and imaging variables by casting it as a multivariate regression problem with multiple 

responses. The traditional approach to multivariate regression is to estimate the coefficients 

by ordinary least squares and to use the resulting estimates for prediction. When the number 

of explanatory variables is large and many of them are highly correlated with each other we 

demonstrate that it is advantageous to predict the responses with fewer linear combinations 

of the genetic explanatory variables. In our proposed reduced-rank regression, the 

predictions are obtained from a subspace of the space spanned by the explanatory variables.

An essential ingredient in our formulation is provided by the sparsity constraints, which 

effectively allow us to select highly predictive genetic markers. When thousands of markers 

are included in the model as potential casual variants (for instance, in GWA studies), the 

large majority of them is not expected to be involved with the disease under study. As a 

consequence, the underlying true, but unknown, regression model it necessarily thought of 

as being sparse: only a few markers, if any at all, have a non-zero regression coefficient, 

whereas the majority of them have no influence on the quantitative traits, and do not enter 

the model. Our proposed estimation procedure builds on these assumptions and produces 

sparse solutions accordingly. Sparsity at the phenotypic level is also required when the 

number of candidate quantitative traits entering the regression model is very large; for 

instance, when there are several candidate ROIs (as in our simulation setting) or in whole-

brain analyses carried out at the voxel-level. In these cases, it is not known with certainty 

which quantitative phenotypes provide a good proxy for the disease, and the sRRR model is 

able to discover them alongside the casual genetic markers.

Our approach is related to other multivariate models that have been used to explore linear 

and non-linear dependences between high-dimensional covariates and responses in a least 

squares framework, such as Canonical Correlation Analysis (CCA) and Partial Least 

Squares (PLS). These belong to a larger class of latent variable models (LVMs) that perform 

dimensionality reduction in meaningful, albeit different, ways. When no response variables 

are available, other common examples of LVMs include PCA (Principal Component 

Analysis) and ICA (Independent Component Analysis). PCA extracts a handful of latent 

variables or principal components that explain as much sample variance as possible, while 

ICA seeks linear combinations of variables satisfying some optimal properties subject to 

mutual independence. Where two paired sets of variables are available, CCA finds canonical 
variables that explain as much sample correlation as possible between the two domains. Our 

proposed RRR model is closely related to both CCA and PLS (see Appendix).

In the analysis of genetic data, statistical models that assume the existence of some 

underlying hidden variables or latent factors having some optimal properties (such as 

maximal variance) have recently gained popularity. These approaches offer practical ways to 

deal with the widespread correlation patterns seen in genomic data, and yield interpretable 

results. For instance, it has been observed that the first few principal components extracted 

from genetic markers capture the ancestral information contained in the sample and aid in 

the identification of population sub-structure (Reich et al., 2008). PCA also has a precise 
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genealogical interpretation (McVean, 2009) and has been used for detecting tagging SNPs 

(Lin and Altman, 2004) – ‘landmark’ markers that capture much variability in a given 

chromosomal region and can be used in place of many other neighbouring markers in an 

effort to reduce dimensionality. In case-control association studies, LVMs such as principal 

component regression (Wang and Abbott, 2008), ICA (Dawy et al., 2005) and PLS (Sarkis et 

al., 2006) have also been proposed to exploit correlations among SNPs.

In the analysis of imaging data, LVMs have been used widely, for instance in the modelling 

of correlation patterns and detecting dependences among brain regions. For instance, CCA 

has been used for the segmentation of magnetic resonance spectroscopic images (Laudadio 

et al., 2005), to estimate the shapes of obscured anatomical sections of the brain from visible 

structures in MRI (Liu et al., 2004) and to extract highly correlated modes of variation in 

shape between a number of different anatomical structures within the brain (Rao et al., 

2006). In functional MRI studies, CCA has been proposed to identify activations of low 

contrast in the brain – by accounting for neighbouring correlated voxels, these models yield 

increased sensitivity to detect true signals relative to single voxel analyses (Friman et al., 

2001; Nandy and Cordes, 2003). RRR with regularised covariance matrices has also been 

used as a predictive model of brain activation (Kustra, 2006).

Within the emerging field of imaging genetics, LVMs have only recently made their first 

appearance. A non-linear extension of CCA, kernel CCA, has been used to investigate the 

association between a set of candidate SNPs and a set of voxels taken from the entire brain 

image (Hardoon et al., 2009) – in practice, a linear kernel was used, corresponding to a 

standard linear CCA. An extension of ICA that computes a dependence measure between 

two paired sets of variables, called parallel ICA (pICA), has also been proposed for imaging 

genetics studies. In pICA, latent variables are extracted by maximising the between-domain 

correlation while ensuring that all the extracted variables are as independent as possible 

within each domain (Liu et al., 2008). Both kernel CCA and pICA find shared hidden factors 

that may explain the dependence between genetic and imaging variables. The underlying 

assumption is that such common factors are surrogates of the disease. However, the lack of 

sparsity in the solutions found by these models makes their interpretation particularly 

difficult as there are no rigorous criteria to rank genotypes and phenotypes by importance. 

Our model provides a solution to this problem by performing simultaneous variable 

selection in both domains in a predictive modelling fashion. We believe that the emphasis on 

variable selection is particularly important when the underlying (and unobserved) model that 

generated the ’true’ association has a sparse representation, which is precisely the case in 

association mapping.

As already highlighted, the introduction of sparsity constraints raises important model 

selection issues that adds to the necessity of determining an adequate reduced rank – a task 

analogous to choosing the number of latent factors in CCA and pICA. On real datasets the 

selection of R* can be accomplished by graphical devices such as the rank trace plot, which 

we find to perform well in practice. Permutation-based procedures, cross-validation and 

parametric test statistics have also been proposed in similar problems (Reinsel and Velu, 

1998; Witten et al., 2009; Waaijenborg et al., 2008). The issue of selecting the penalty 

coefficients that control how many variables in each domain enter the regression model can 
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be addressed by adopting the cross-validated prediction error as a search criterion to be 

minimised (see Appendix for further details). We are currently developing analytical 

expressions for evaluating the cross-validated predictive performance of the sRRR model, 

thus allowing model selection to be performed quickly on very large data sets.

5 Conclusion

We have proposed a novel multivariate method, sparse reduced-rank regression (sRRR), for 

identifying associations between imaging phenotypes and genetic markers, and have 

performed detailed, calibrated simulations to evaluate its performance. Our results indicate 

that sRRR is a very promising approach and has high power to detect the most important 

variables in both the genetic and imaging domains. This is particularly the case at small 

sample sizes and with small genetic effects, where our method compares very favourably 

with more traditional univariate approaches. When increasing the number of genetic 

markers, the relative power obtained from sRRR compared to MULM increases with lower 

signal to noise ratios. This result further encourages the use of sRRR as an alternative 

procedure especially in the extremely high dimensional BW-GWA paradigm. To the best of 

our knowledge, this is also the first assessment of statistical power in imaging genetics, and 

the first such comparison between univariate and multivariate methods.

Further work is currently under way to extend the proposed model in a number of directions 

including the implementation of alternative penalty functions, and to enable the detection of 

associations with markers in biological pathways, rather than individual markers. Our 

simulation framework could also be used to directly compare the power of traditional GWA 

studies, using only the case-control status as response, with that of BW-GWA studies that 

rely on multivariate responses.
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Appendix

Connection of sRRR to latent variable models

The RRR model is closely related to two well known multivariate dimensionality reduction 

methods: Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS). Both 
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models can be shown to be special cases of RRR for different choices of the matrix Γ. In this 

Appendix we briefly describe these models and clarify their connection with RRR.

CCA is a well known multivariate technique that reduces the dimensionality of the paired 

sets of variables by extracting R* ≤ min(p, q), mutually orthogonal pairs of latent variables. 

These are formed as T = XU and S = YV where U and V are the (p × R*) and (q × R*) 

matrices of weights. Each pair of weight vectors (ur, vr), r = 1, …, R*, forming the rth 

columns of U and V, is obtained so as to produce pairs of maximally correlated latent 

variables tr = Xur and sr = Yvr that are orthogonal to the previously extracted latent variable 

pairs. The solutions ur and vr are extracted by maximising the correlation between tr and sr, 

the so-called canonical correlation, given by

Unique solution are given by solving

The weights for the first R* CCA latent variables solve to

where H* is the (q × R*) matrix whose columns are the first R* normalised eigenvectors of 

R*, where

(14)

and Ξ is a diagonal matrix composed of the square roots of the corresponding R* 

eigenvalues; these coefficients are also equal to the canonical correlations of the R* latent 

variable pairs. There is a close connection between the solutions of RRR and CCA. When Γ 
is set to be proportional to the inverse of the covariance of the responses, estimated as (Y
′Y)−1, the (q × q) matrix R in Eq. (6) becomes identical to R* in Eq. (14). Consequently, the 

matrix of weights U forms a scaled version of B̂, defined for RRR in equation (5). The 

scaling on each column of B̂ is a result of the different normalisation constraints imposed on 

each optimisation problem. Moreover, the matrix of weights V can be seen as a generalised 

inverse of Â defined for RRR in equation (5). Various estimation algorithms for obtaining 
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sparse CCA solutions have been proposed (Witten et al., 2009; Parkhomenko et al., 2009; 

Waaijenborg et al., 2008; Lykou and Whittaker, 2009).

PLS is another widely used multivariate dimensionality reduction technique that finds pairs 

of latent variables (tr, sr) having maximum covariance. Precisely, ur and vr are extracted by 

maximising

It can be noted that, due to the following covariance decomposition

the maximisation of sample variance explained by the latent factors also maximises the 

sample correlation between factors when the variance explained by each individual 

component is also maximised. The PLS solution for the first R* latent variables is given by

where H+ is the (q × R*) matrix whose columns are the first R* normalised eigenvectors of 

R+, with

(15)

The diagonal matrix M has entries given by the square roots of the R* largest eigenvalues of 

R+ which equal to the covariances of the R* latent variable pairs. Notably, CCA solutions 

also solve the PLS problem when the estimated covariance matrices of X and Y are diagonal 

matrices. The same connection holds between RRR and PLS when additionally Γ is set to be 

the identity matrix. Alternative algorithms to obtain sparse PLS solutions have recently been 

derived (Le Cao et al., 2008; Chun and Keles, 2007).

Sparsity selection using cross-validated prediction error

The sparsity parameters (λa, λb) can be chosen so as to optimise a model selection criterion. 

Among other choices, one such criterion can be the cross-validated prediction error (CVPE), 

a measure of out-of-sample prediction accuracy that avoids over-fitting. Holding the (λa, λb) 

pair fixed to some values, a full K-fold cross-validation procedure can be performed as 

follows. Assuming a random sample with n subjects, the sample is partitioned into two 

disjoint subsets called training and testing sets, with the testing set having approximately 

n/K subjects – there are K possible such sets. For each testing set, the sRRR model is fitted 

using the corresponding training set, that is data matrices Y[−k] and X[−k] (k = 1, …, K) 
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obtained by removing all rows corresponding to subjects in the testing set. The model fit 

provides sparse estimates â[−k] and b̂[−k] or, when more than one rank is required, matrices 

Â[−k] and B̂[−k]. The procedure is then repeated by cycling through all K training and testing 

sets and the CVPE is computed as

where  is the square of the Frobenius norm. A search algorithm can be implemented to 

find the pair (λ̂
a, λ̂

b) that minimises the CVPE.
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Figure 1. 
Sagittal, coronal and axial views of the GSK CIC Atlas defining 111 regions of interest.
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Figure 2. 
Illustration of the Multivariate Multiple Linear Regression Model and the Sparse Reduced 

Rank Regression Model. Both are multivariate models, but the former cannot be fit unless 

sample size n exceeds p or constraints are placed on C.
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Figure 3. 
A map of all pairwise LD coefficients for a subset of 1000 FREGENE-simulated SNPs used 

in this study. The simulated genetic data present the typical LD structure observed in real 

populations, where markers that are physically close to each other on the chromosome are in 

stronger LD, leading to a characteristic block-like structure.
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Figure 4. 
Number of LD-linked SNPs (out of 1990 SNPs) as function of the LD threshold. Most SNPs 

have R2 with causative SNPs that is 0.4 or less; only 51 SNPs with R2 exceeding 0.8 were 

marker as “true” signal SNPs after the causal SNPs were removed from the analysis.
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Figure 5. 
All pairwise correlations among q = 111 ROIs defined by the GSK CIC Atlas and estimated 

using n = 189 MCI subjects from the ADNI data set. The inset shows the correlations among 

the 6 affected ROIs in the frontal cortex: left and right each of precentral gyrus (41, 42), 

anterior dorsolateral prefrontal cortex (43, 44), posterior dorsolateral prefrontal cortex (45, 

46).
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Figure 6. 
ROC curves for SNP selection with a genetic effect size γ = 0.06 and sample sizes n = 500 

(a) and n = 1000 (b). The four ROC curves refer to sRRR with R* = 1, 2, 3 and to the mass-

univariate approach based on several linear models (MULM). For almost all specificities 

considered, the sRRR method has always higher sensitivity than linear models – only when 

n = 500 and R* = 1 the mass-univariate approach performs slightly better for some portions 

of the curve. The sensitivity of sRRR increases substantially when adding two ranks, and 

increases again when adding three ranks. All results are obtained as averages of B = 200 

replicates.
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Figure 7. 
ROC curves for SNP selection with a genetic effect size γ = 0.06, R* = 3 selected ranks and 

sample sizes n = 500 (a) and n = 1000 (b). sRRR always outperforms mass-univariate linear 

models. With the sample size increases, the gain in sensitivity obtained from the mass-

univariate approach is pretty much the same at all specificities, whilst the sRRR yield higher 

sensitivity corresponding to low specificity levels, which results in curves with higher 

curvature. All results are obtained as averages of B = 200 replicates.
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Figure 8. 
ROC curves for SNP selection: genetic effect size γ = 0.1, R* = 3 selected ranks and sample 

sizes n = 500 (a) and n = 1000 (b). sRRR always outperforms mass-univariate linear models. 

With the sample size increases, the gain in sensitivity obtained from the mass-univariate 

approach is pretty much the same at all specificities, whilst the sRRR yield higher sensitivity 

corresponding to low specificity levels, which results in curves with higher curvature. All 

results are obtained as averages of B = 200 replicates.

Vounou et al. Page 30

Neuroimage. Author manuscript; available in PMC 2017 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Comparison of sRRR and MULM for large p: shown here is the ratio of SNP sensitivities 

(sRRR/LMs) as a function of the total number of SNPs included in the study. The genetic 

effect size is γ = 0.06, R* = 3 selected ranks and sample size n = 1000. All results are 

obtained as averages of B = 200 replicates. This result suggests that the potential power gain 

coming from the sRRR model can be much higher in genome-wide scans when the number 

of available SNPs is much higher than 40k. See Table 1 for further details.
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Figure 10. 
ROC curves for ROI selection: n = 500, R* = 3 and genetic effect size γ = 0.06 (a) and γ = 

0.1 (b). For the latter genetic effect sRRR method has worse specificity for lowest false 

positive rates, and the mass-univariate approach shows good performance. Notably, for the 

lower genetic effect, sRRR outperforms linear models. The mass-univariate approach is 

expected to perform well in in this task because all the affected ROIs are observed. All 

results are obtained as averages of B = 200 replicates.
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Figure 11. 
Rank trace plot. In the x-axis, ΔĈ is the ratio of two quantities: the difference between the 

regression coefficients obtained from a model with full rank and one with reduced-rank r, 
and the difference between the regression coefficients obtained from a model with full rank 

and a random model; in the y-axis, ΔŜεε is the proportional difference in the corresponding 

residual covariance matrices. For each reduced-rank r ranging from 0 (top-right corner) to R 
(bottom-left corner) there is a corresponding point (ΔĈ(r), ΔŜεε(r)) along the curve. A 

suitable rank R* can be selected by locating the point at which curvature is maximal – in this 
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example, based on γ = 0.06 and n = 1000, this point corresponds to R* = 4 and is marked by 

the vertical and horizontal lines.
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