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The “Dual-Core Beamformer” (DCBF) is a new lead-field based MEG inverse-modeling technique designed

for localizing highly correlated networks from noisy MEG data. Conventional beamformer techniques are

successful in localizing neuronal sources that are uncorrelated under poor signal-to-noise ratio (SNR)

conditions. However, they fail to reconstruct multiple highly correlated sources. Though previously

published dual-beamformer techniques can successfully localize multiple correlated sources, they are

computationally expensive and impractical, requiring a priori information. The DCBF is able to automatically

calculate optimal amplitude-weighting and dipole orientation for reconstruction, greatly reducing the

computational cost of the dual-beamformer technique. Paired with a modified Powell algorithm, the DCBF

can quickly identify multiple sets of correlated sources contributing to the MEG signal. Through computer

simulations, we show that the DCBF quickly and accurately reconstructs source locations and their time-

courses under widely varying SNR, degrees of correlation, and source strengths. Simulations also show that

the DCBF identifies multiple simultaneously active correlated networks. Additionally, DCBF performance was

tested using MEG data in humans. In an auditory task, the DCBF localized and reconstructed highly correlated

left and right auditory responses. In a median-nerve stimulation task, the DCBF identified multiple

meaningful networks of activation without any a priori information. Altogether, our results indicate that the

DCBF is an effective and valuable tool for reconstructing correlated networks of neural activity from MEG

recordings.

Published by Elsevier Inc.

Introduction

Magnetoencephalography (MEG) is a functional imaging modal-

ity that directly detects neuronal activitywith amillisecond temporal

resolution. However, since a number of different source configura-

tions can generate the same MEG signal, assumptions must be made

about the nature of the sources (source models) to uniquely localize

them. A variety of MEG source-modeling methods have been put

forth, yet no single technique is capable of adequately localizing

highly correlated networks from noisy MEG data, without requiring

a priori information, and faithfully reproducing their time courses. In

the lead-field-based approach, a predefined grid of source dipoles is

constructed. The MEG inverse problem is solved by computing the

dipole moments of each source dipole located at each grid point

(Hamalainen and Ilmoniemi, 1994). The dipole moments can then be

examined to locate dipoles with greatest source power or strength,

which yields the configuration of the source signal. However, the

solution to the MEG inverse problem is highly under-determined as

there are more unknown dipole moment parameters than number of

MEG sensors. Thus, in order to obtain a unique solution, additional

constraints must be imposed. In the minimum L2-norm approach, the

source-grid solution that minimizes the total power of the dipole

moments is chosen as the optimal solution (Hamalainen and

Ilmoniemi, 1994). Given that this solution can be directly calculated

as a regularized pseudo-inverse of the lead-field matrix or its

variations, it has an extremely low computational cost and has

been used in many MEG applications (Dale et al., 2000; Dale and

Halgren, 2001; Marinkovic et al., 2003). The reconstructed signals

also have smooth source time-courses. However, minimum L2-norm

solutions have low spatial accuracy, and reconstructions tend to be

spatially distributed even with truly focal generators.

The minimum L1-norm approach was developed to address the

problem of low spatial resolution by selecting the source-grid solution

that minimizes the total absolute value of the source strength. Though

this approach provides better spatial resolution, the computational cost
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as implemented by algorithms such as magnetic current estimation

(MCE) is increased because non-linear optimization and iterative steps

are needed in the reconstruction (Uutela et al., 1999; Vanni and Uutela,

2000; Tesche, 2000; Stenbacka et al., 2002; Pulvermuller et al., 2003;

Osipova et al., 2005; Auranen et al., 2005; Liljestrom et al., 2005). The

time-courses of the generators determined byMCE also tend to contain

discontinuities. To address these limitations, a vector-based spatial–

temporal analysis using a L1-minimum-norm solution (VESTAL) was

developed (Huang et al., 2006). In VESTAL, the linear relationship

between sensor waveforms and source time-courses is ensured in a

spatio-temporal sense for the L1-minimum-norm solution, and sources

can be reconstructed that are fully correlated in time with high spatial

accuracy. However, like L2-minimum-norm solutions, VESTAL requires

good SNR, rendering it unsuitable for detecting weak brain networks.

The beamformer methodology is a spatial-filtering approach wherein

the MEG sensor signal is filtered by different beams based on lead-field

vectors corresponding to specific source-gridpoints (Robinson andVrba,

1998; Sekihara et al., 2002a; Van Drongelen et al., 1996; Van Veen et al.,

1997). Each of these operations generates a pseudo-Z-statistic, which

can be maximized to find the most highly contributing source-grid

dipoles. The beamformer method has low computational cost, although

theorientation angle of each dipolemust be optimized. The beamformer

approach generally works well for MEG data with a low SNR. However,

the conventional beamformer suppresses source-power estimates from

source-grid dipoles that have highly correlated time-courses, as the

method assumes that source time-courses from different generators are

uncorrelated (Van Veen et al., 1997; Sekihara et al., 2002b). Variants of

the beamformer method, including the coherently combining signal-to-

interference plus noise ratio (CC-SINR) beamformer and the constant

modulus algorithm (CMA) beamformer, address reconstruction of

correlated sources, but have been met with moderate success (Kim

et al., 2006; Nguyen and Ding, 1997). Likewise, the coherent source

suppression model (CCSM) and the independently developed nulling

beamformer (NB) accurately reconstruct correlated sources but require a

priori information of interfering source locations. Furthermore, all

sources cannot be simultaneously identified since correlated sources

are suppressed to reconstruct a single source of interest (Dalal et al.,

2006; Hui and Leahy, 2006; Hui et al., 2010; Quuran and Cheyne, 2010).

Brookes et al. (2007) developed a dual-beamformer approach to

address the problem of identifying highly correlated generators by

constructing a spatial filter from a linear combination of lead-field

vectors from two source dipoles. Two source dipoles that generate a

signal can be found by non-linearly optimizing the orientation angles

of the two source dipoles, optimizing the weighting between the two

sources, and searching over all combinations of source dipoles. This

approach has a high computational cost, which greatly limits its

application in practice. Furthermore, only the two source dipoles with

most highly correlated time-courses are found, while other correlated

source networks that may exist are not identified. To make the

method more useful, Brookes et al. suggest using a priori information

to fix the position of one of the two beams; however, this solution

limits the method's application to well-understood neurobehavioral

networks or requires information from other functional neuroimaging

techniques (e.g., fMRI).

In the present study, we propose a new formulation of the

beamformer technique that addresses many previous limitations of

beamformer approaches. By using a spatial filter that contains the

lead-fields of two simultaneous dipole sources (i.e., rather than the

linear combination of the two as for the approach by Brookes and

colleagues), our Dual-Core Beamformer (DCBF) can directly compute

and obtain optimal source orientations and weights between two

highly correlated sources. In effect, this renders non-linear optimi-

zation and non-linear searching for optimal orientations and

weighting unnecessary, thereby reducing the computational time

of the dual beamformer method and making it a much more useful

MEG inverse-modeling technique. At the same time, the DCBF retains

many desirable characteristics of the dual-beamformer approach

proposed by Brookes et al. For example, our computer simulations

demonstrate that DCBF successfully localizes dipole sources at very

low SNR (SNR of 0.25), which is useful for many MEG recordings.

In the present approach, we use a modified Powell search to find

the optimal pseudo-Z-score, which not only greatly reduces the

computational time required for source localization, but also

identifies other local maxima. All maxima, consisting of two sources

each, are defined as pathways. With simulations, we show how such

a search can find multiple pairs of correlated sources present in a

single MEG data set. In a median-nerve stimulation experiment, we

present how these pathwaysmay bemeaningful and are not simply a

byproduct of DCBF.

Materials and methods

Conventional vector beamformer solution (general approach)

The beamformer spatial filter is a method by which the lead-field

approach of MEG is used to estimate neuronal current sources in the

brain. The lead-field approach states that for a given set of current

dipole sources, the MEG sensor readings can be described by a linear

combination of the source signals. The relationship between MEG

sensor signals and source time-courses can be expressed as:

b tð Þ = G⋅p tð Þ ð1Þ

where p(t) is a 3p dimensional column vector of p source signals in 3

principle orientations; G is an m×3p gain matrix, or lead-field matrix,

estimated by MEG forward modeling for the MEG sensor grid; and b(t)

is an m dimensional column vector of m MEG sensor signals for the

same temporal range.

The lead-field vector (Lp) for each of p source dipoles is defined as

the three columns of G that correspond to the specific source dipole.

Besides the lead-field vector, C , an m×m signal covariant matrix

computed from b tð Þ, and ε , anm×m noise covariantmatrix computed

from noise-only MEG signal are also used to construct the beamfor-

mer (Van Veen et al., 1997). In order to compute the source power,

orientation, and estimated neuronal activity for a dipole, the matrices

Q and K must first be defined (Robinson and Vrba, 1998; Vrba and

Robinson, 2001; Sekihara et al., 2004).

Q = L
T
p⋅C

−1
⋅Lp

! "

ð2Þ

K = L
T
p⋅C

−1
⋅Lp

! "

−1

⋅ L
T
p⋅ C

−1
⋅ε⋅C

−1
! "

⋅Lp

! "

ð3Þ

Q is inversely proportional to the source power. It has been shown

that the optimal power may be obtained by inverting the minimum

eigenvalue of Q (Sekihara et al., 2004):

Popt = min eig Qð Þð Þð Þ
−1

ð4Þ

The optimal source orientation is therefore given by Umin, the

three-component eigenvector corresponding to the minimum eigen-

value of Q (Sekihara et al., 2004):

Oopt = Umin ð5Þ

K is inversely proportional to the signal-to-noise ratio in source

space. The estimated neuronal activity or pseudo-Z-score may be

obtained by diagonalizing K with eigenvalue decomposition and

inverting the smallest eigenvalue (Robinson and Vrba, 1998; Vrba and

Robinson, 2001; Sekihara et al., 2004):

Zopt = min eig Kð Þð Þð Þ
−1

ð6Þ
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Z is a measure of the signal-to-noise ratio in the source space. The

reconstructed source signal from a particular dipole is given by

(Sekihara et al., 2004):

p tð Þ = Oopt⋅ Popt⋅C
−1

⋅Lp⋅Oopt

! "

T

⋅b tð Þ ð7Þ

In essence, the beamformer is a method wherein the signal is

spatially filtered by the lead-field vectors to find the source location

with maximum activity using a scanning approach over a pre-

specified source grid with thousands of nodes (potential source

locations). In the vector formulation, the optimal source power,

orientation, and pseudo-Z-score may be computed with eigenvalue

analysis. In the scalar formulation, the optimal dipole orientation

must first be found using a search (Robinson and Vrba, 1998; Vrba and

Robinson, 2001). However, the scalar and vector beamformer

formulations have been shown to be mathematically equivalent

(Sekihara et al., 2004).

Previous dual beamformer solution (general approach)

The single beamformer approach, as described above, has an

important limitation when spatially distinct yet temporally correlated

sources are present in the MEG signal (Van Veen et al., 1997).

Different modifications of the single beamformer approach attempt to

compensate for this limitation (Kim et al., 2006; Nguyen and Ding,

1997; Brookes et al., 2007). Brookes et al. developed the dual

beamformer approach specifically for reconstructing correlated

sources. In this approach, a new lead-field vector is computed based

on the linear combination of the two lead-field vectors from two

particular source dipoles as follows:

Ldual = αLθ1 + 1−αð ÞLθ2 ð8Þ

Lθ1 and Lθ2 are the lead-fields of the two source dipoles rotated to

the orientations specified by θ1 and θ2, respectively. The relative

dipole weights are specified by α, the weighting parameter. The

pseudo-Z-statistic and reconstructed source signal are recovered in an

identical manner to the scalar single beamformer method. However,

to find the optimal pseudo-Z-score, both orientation angles and the

weighting parameter α must also be optimized non-linearly. Using

this method, only a single signal is recovered for both dipoles. The

relative weighting of these signals can be estimated by the optimized

weighting parameter αopt. Due to the time-consuming nature of non-

linear optimizing over these parameters, computing pseudo-Z-scores

for every combination of current dipoles is not time-efficient. Thus,

the use of other sources of information (e.g., fMRI) is suggested to fix

one of the two dipoles in an a priori fashion, which reduces the

computational needs of the dual-beamformer method (Brookes et al.,

2007).

New dual-core beamformer approach (DCBF)

A major limitation of the dual-beamformer method proposed by

Brookes and colleagues is the necessity to optimize the orientation of

both beams and their relative weighting. Their approach requires

non-linear optimizations which increase the computational complex-

ity of the dual beamformer approach many-fold when compared to

the single beamformer approach. In the present study, we show that

the optimal orientations and weighting of both beams can be directly

computed, instead of searched, by using a vector formulation of the

dual beamformer approach. First, we start with lead-field vector for

each dipole as an m×3 matrix expressed in a pre-defined coordinate

basis with three axes. Alternatively, since MEG is insensitive to

radially directed currents, the lead-field vector for each dipole can be

decomposed by singular value decomposition (SVD) and expressed

instead as an m×2 matrix to reduce the inverse problem to two

spatial dimensions (Huang et al., 2006). Then, we define the combined

lead-field vectors from both dipoles in the dual beamformer as an

m×6 matrix, instead of a linear combination of two lead-fields:

Ldual = L1 L2½ $ ð9Þ

The new Ldual is therefore a spatial filter with two cores rather than

one. Such a description of the spatial filter allows eigenvalue analysis

to analytically determine optimal orientations of each beam and

optimal weighting between each beam. Similar to the pseudo-Z-

statistic computation for the single vector beamformer in (3) and (6),

we define the 6×6 matrix Kdual:

Kdual = L
T
dual⋅C

−1
⋅Ldual

! "

−1

⋅ L
T
dual⋅ C

−1
⋅ε⋅C

−1
! "

⋅Ldual

! "

ð10Þ

By diagonalizing Kdual with eigenvalue decomposition and invert-

ing the smallest eigenvalue, we obtain the best possible pseudo-Z-

score for the two dipoles.

Z
dual
opt = min eig Kdualð Þð Þð Þ

−1
ð11Þ

This step is an extension of the approach used in the single

beamformer in (6) (Sekihara et al., 2004). We can also define a matrix

analogous to Qdual for the single beamformer in (2) to estimate the

source powers and orientations:

Qdual = L
T
dual⋅C

−1
⋅Ldual ð12Þ

By diagonalizing Qdual with eigenvalue decomposition, we can

obtain the optimum beamformer power, the optimum orientations,

and the optimum weighting of the two source dipoles as follows

(Sekihara et al., 2004):

P
dual
opt = min eig Qdualð Þð Þð Þ

−1
ð13Þ

O
dual
opt = Umin ð14Þ

Umin is defined as the six-component eigenvector associated with

the minimum eigenvalue of Qdual. The first three elements of Oopt
dual

contain the optimal beam 1 weighting in the three different basis

directions. The last three elements contain the optimal beam 2

weighting in its basis directions. The elements corresponding to beam

1 and the elements corresponding to beam 2 are scaled such that

relative weighting between the beams is optimal. The cost of

computation is low because the eigenvalue decompositions are

performed on matrices (Kdual and Qdual) with low dimensions (6 by

6). Since the DCBF is a vector formulation of the previous dual

beamformer method (Brookes et al., 2007), reconstructed dipole

orientations and weighting should be the same for both methods. To

examine the computational efficiency (speed) resulting from directly

computing orientations and weights instead of performing a non-

linear search, 100 direct computations and 100 Nelder–Mead non-

linear simplex searches were performed and timed.

The reconstructed time-course for the source dipoles is given by:

p tð Þ = O
dual
opt ⋅ P

dual
opt ⋅C

−1
⋅Ldual⋅O

dual
opt

! "

T

⋅b tð Þ ð15Þ

p tð Þ, the source time-course, is a 6× tmatrix whose first three rows

comprise the time-course for the first source and whose last three

rows comprise the time-course for the second source. Each row

contains the component of the time-course along each axis. An

assumption of signal reconstruction is that both signals are highly

correlated. As a result, only one time-course is actually reconstructed.
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However, this time-course is weighted appropriately to generate a

time-course for each component of each source.

Since the optimal weighting, orientations, and pseudo-Z-statistic

are computed directly, the only parameter left to optimize is the

specific combination of dipoles that leads to the maximum pseudo-Z-

score. As noted before, this can be accomplished by an exhaustive

brute-force search over all possible dipole combinations (Brookes

et al., 2007). In this scenario, if p is the number of dipoles, one would

have to compute p(p+1)/2 pseudo-Z-scores to find the best dipole

combination. To circumvent the long computational time of a brute-

force search, a priori information can be used to fix the location of one

dipole (Brookes et al., 2007). However, this method is not ideal when

knowledge of sources is not widely accepted or is unavailable.

In the present study, a modified Powell search algorithm was

implemented to find the best dipole combination without performing

a brute-force calculation and without requiring a priori information.

Let [r1, r2] be the two coordinate axes on which the search is

performed. The r1 axis corresponds to the index of the first dipole in

a given source grid, while r2 corresponds to the index of the second

dipole. Let the function that we are searching over be defined as:

f r1; r2ð Þ = Z
dual
opt ðr1; r2Þ ð16Þ

Suppose r1
0 is a dipole picked randomly from a given source grid.

The profile f r01 ; r2
# $

is calculated and then maximized to find the

corresponding r2
opt value. Subsequently, the profile f r1; ropt2

! "

is

calculated to find an optimized r1 value. This process is repeated

until stable Zopt
dual, r1

opt, and r2
opt are reached. Since this search may

converge to a local maximum, the process may be iterated multiple

times using random initializations of dipoles. In this manner, r1
opt and

r2
opt, or the optimal dipole combination can be reached more quickly

than the brute-force method. In our reconstructions, the Powell

search was also implemented with a taboo list to reduce computa-

tional time by interrupting the search every time a dipole combina-

tion that had already been traversed was selected again.

The results of all Powell search iterations (pairs of correlated

sources) were saved as they are local maxima of Zopt
dual. These local

maxima, or pathways of cortical activation, represent different highly

correlated networks that co-exist in the data.

Setup for computer simulations

Computer simulations were performed in order to examine the

performance of both the dual-core spatial filter and the non-linear

modified Powell search portions of the DCBF. The simulator was

programmed to test up to three pairs of source dipoles under differing

conditions of frequency, cross-correlation, and amplitude. The base

signal for each dipole was programmed to be a simple sinusoidal wave

in a specific direction. In addition, the noise simulation was

programmed so that the SNR of each simulation could be chosen

manually by adding uncorrelated random noise. The searchable

source space was simulated with a fixed-source grid based on the

gray-matter boundary obtained from a healthy subject's T1-weighted

MRI using Freesurfer (Dale et al., 1999; Fischl et al., 2004) and a grid

spacing of 7 mm. The boundary element method (BEM) was used for

the MEG forward model calculation with the BEM mesh (5 mm mesh

size) being the inner-skull surface from theMRI. In each case, SVDwas

used to reduce the lead-field vectors to m×2 matrices (Huang et al.,

2006). In each simulation, the search was given 1000 random re-

starts. Performance was evaluated by average time to find the correct

solution or equivalently, the number of searches required on average

to find the solution.

To evaluate the performance of our reconstruction under differing

levels of noise, simulationswere performedwith the following control

conditions: 1 pair of sources, 30 Hz frequency, 100% intra-pair

correlation, and 1:1 amplitude ratio for the two source dipoles.

Reconstruction was evaluated at SNRs of 4.0, 3.0, 2.0, 1.0, 0.50, 0.33,

and 0.25. In our simulations, we defined SNR in sensor domain as the

total power of the signal divided by the total power of the noise that

was added to the signal. To examine the effects of source signals

containing more than one frequency component, the 0.25 SNR test

condition was repeated for 1 pair of 100% correlated sources with a

dominant 30 Hz component and a half-amplitude 20 Hz component.

The 0.25 SNR test condition was also repeated to test DCBF

performance in the presence of correlated noise at 10 Hz. Correlated

noise was introduced by means of a single noise source of same

amplitude oscillating at a frequency of 10 Hz throughout the entire

simulation.

To evaluate the performance of our reconstruction under differing

correlations within the source pair, simulations were performed with

the control conditions: 1 pair of sources, 30 Hz frequency, 1:1 source

amplitude ratio, and SNR of 2.0. The following intra-pair correlations

were simulated as the variable condition: 86.6%, 75%, and 50%. To

evaluate the performance of our reconstruction under differing source

amplitudes, simulations were performed with the control conditions:

1 pair of sources, 30 Hz frequency, 100% intra-pair correlation, and

SNR of 2.0. The following amplitude ratios were simulated as the

variable condition: 1:1, 2:1, and 3:1. To evaluate the performance of

our reconstruction in a more realistic scenario and for multiple

dipoles, three source-pairs were selected with frequencies of 20 Hz,

30 Hz, and 40 Hz. Each source dipole had differing amplitudes. Each

pair of dipoles was programmed with slightly different intra-pair

correlations. The dipoles were also uncorrelated across pairs. The SNR

was set to 0.6075.

To evaluate the performance of our reconstruction in the presence

of three correlated sources, three sources were given a sinusoidal

signal with a frequency of 30 Hz at a SNR of 0.25. The second and third

sources were phase-shifted 22.5 degrees and 45 degrees from the first

source. Activation maps were generated for the pathway with highest

pseudo-Z-score from the formula:

Zcomb =
max Z1ð Þ⋅½Z1−min Z1ð Þ$

max Z1ð Þ−min Z1ð Þ
+

max Z2ð Þ⋅½Z2−min Z2ð Þ$

max Z2ð Þ−min Z2ð Þ
ð17Þ

Z1contains the pair-wise pseudo-Z-scores for the first optimal

dipole with all other dipole sources. Z2 contains the pair-wise pseudo-

Z-scores for the second optimal dipole with all other dipole sources.

Monte Carlo simulations were used to obtain a distribution of pseudo-

Z-scores produced by noise. A kernel-smoothed density-estimate was

computed to produce a continuous distribution. Statistical signifi-

cance of pseudo-Z-scores for all activation maps was determined by

integration of the continuous distribution.

Setup for auditory steady-state MEG response

An auditory stimulus experiment was designed to test DCBF

reconstruction of correlated sources in an actual MEG measurement.

The experiment consisted of 200 epochs of evoked responses to a

stereo test file. The test file consisted of an 1800 ms pre-stimulus

noise measurement period and a 2000 ms post-stimulus period. The

stimulus was a 500 Hz pure tone with a 40 Hz envelope modulated at

100% level. The intensity of the stimulus was balanced between left

and right ears. The start and end of the stimulus were smoothed with

a cosine roll-off to prevent any artifacts from the stimulus. Magnetic

fields evoked by auditory stimulation weremeasured using an Elekta/

NeuromagTM whole-head MEG system (VectorView) with 204

gradiometers and 102 magnetometers in a magnetically shielded

room (IMEDCO-AG, Switzerland). EOG electrodes were used to detect

eye blinks and eye movements. An interval of 1900 ms post-stimulus

data was recorded, using 1500 ms of pre-stimulus data for noise

measurement. Data were sampled at 1000 Hz and run through

256 M. Diwakar et al. / NeuroImage 54 (2011) 253–263



MaxFilter to remove environment noise (Taulu et al., 2004; Taulu and

Simola, 2006; Song et al., 2008, 2009). 188 artifact-free MEG

responses were averaged with respect to the stimulus trigger. A

BEMmesh of 5-mmmesh size for the subject was generated from the

inner-skull surface using a set of T1 MRI images taken on a 1.5 T GE

scanner. A fixed source grid with 7-mm spacing was generated from

the gray-white matter boundary of the T1 image by Freesurfer. Lead-

field vectors for each dipole source were reduced tom×2matrices by

ignoring the weakest orientation (Huang et al., 2006), reducing all

reconstructed time-courses to two components. Registration of MRI

andMEGwas performed using data obtained from the Isotrack system

prior to subject scanning in the MEG machine. The signal was then

reconstructed using the dual-core beamformer approach coupled to

the non-linear modified Powell search. Activation maps were

generated in the same fashion as in (17). Source time-courses were

low-pass filtered under 50 Hz to display the auditory response. Time–

frequency (TF) analysis of the source time-courses with Morelet

wavelets (5 cycle width) was performed between 1 and 50 Hz to

identify transient and steady-state auditory responses.

Setup for right median nerve stimulation MEG response

The performance of the DCBF was further examined using human

MEG responses to right median nerve stimulation. This task is widely

used to study the somatosensory system and provides a useful

standard for analyzing DCBF performance since the location of

activated dipole sources is easily predictable. We conducted MEG

recordings for this experiment on 6 healthy subjects (men, ages 20–

42) as they underwent right median-nerve stimulation. All subjects

signed the consent forms approved by the Institutional Review Board

of the University of California at San Diego. Each subject's median

nerve was stimulated using a bipolar GrassTM constant-current

stimulator. The stimuli were square-wave electric pulses of 0.2 ms

duration delivered at a frequency of 1 Hz. The inter-stimulus-interval

(ISI) was between 800 and 1200 ms. The intensity of the stimulation

was adjusted until robust thumb twitches were observed. A trigger

was designed to simultaneously send a signal to the MEG for every

stimulus delivery to allow averaging over evoked trials. Magnetic

fields evoked by median nerve stimulation were measured using the

Elekta/NeuromagTM whole-head MEG system. EOG electrodes were

used to detect eye blinks and eye movements. An interval of 500 ms

post-stimulus was recorded, using 300 ms of pre-stimulus data for

noise measurement. Data were sampled at 1000 Hz and run through a

high-pass filter with a 0.1 Hz cut-off and throughMaxFilter to remove

environmental noise (Taulu et al., 2004; Taulu and Simola, 2006; Song

et al., 2008; Song et al., 2009). A minimum of 150 artifact-free MEG

responses per subject were averaged with respect to the stimulus

trigger. BEM mesh generation, source grid generation, MRI-MEG

registration, and source time-course reconstruction were carried out

in the same manner as in the auditory steady-state MEG response

experiment. Activationmapswere generated in the same fashion as in

(17).

Results

Computer simulations

Computational time for obtaining the optimal dipole orientations and

weights

To examine the difference in computational costs between the

non-linear search approach from Brookes and colleagues and our

analytical approach, we performed 100 Nelder-Mead non-linear

simplex searches and 100 eigenvalue decompositions to obtain the

optimal dipole orientations and optimal dipole weighting for two

simulated dipoles. Non-linear searching and eigenvalue decomposi-

tion both resulted in accurate reconstruction of orientations and

weighting with less than 1% difference. The average times for

reconstruction were 0.0142 s and 1.4×10−4s for the simplex search

and the eigenvalue decomposition, respectively, resulting in a speed

up of 100 times using our approach. Performing the exhausted

analysis for all combinations of two-dipole pairs in a 5000 dipole-grid

would take approximately 50 h using the non-linear search approach

from Brookes and colleagues. In contrast, our direct computation

approach based on eigenvalue decomposition would take approxi-

mately 30 min. As we show later in this section, the modified Powell

approach further speeds up the analysis by bypassing the exhaustive

analysis of all dipole combinations.

SNR

The results from the simulations designed to test performance

under varying SNR are listed in Table 1. In each test, the dipole-pair

locations reconstructed with the highest pseudo-Z-score were

identical to the dipole-pair locations that were originally programmed

with the signal. Thus, even under an SNR of 0.25, the reconstruction

was able to localize the sources perfectly. Under all levels of SNR, the

orientations were recovered faithfully 0:27%bεb2:56%ð Þ. Orientation

error, ε , was defined as the mean of the fractional errors of the

individual dipole orientation ratios. Source amplitudes were recon-

structed accurately across all levels of SNR 6:8%bεb7:2%ð Þ. Recon-

structed amplitudes were determined by finding the intensity of the

Fourier transform for the reconstructed time-course at the appropri-

ate frequency. When source dipoles contained signals of two

frequencies, the accuracy of reconstructing each frequency compo-

nent's amplitude was similar to the single frequency scenario

ε30 = 7:24%; ε20 = 7:70%ð Þ. In the presence of correlated noise,

source dipole locations were reconstructed accurately and quickly,

though the amplitude error ε = 8:5%ð Þ and orientation error

ε = 4:29%ð Þ were slightly higher. Interestingly, the average number

of searches and the average time taken to find the optimum dipole

pair are reduced linearly as the SNR decreases, but saturate as the SNR

approaches zero r2search = 0:9608; r2time = 0:9599
# $

.

Signal correlation

The results from the simulations designed to test performance

under varying signal correlations are displayed in Table 2. In each case,

the dipole pair reconstructedwas identical to the original source dipoles.

Table 1

DCBF Performance under varying SNR.

SNR Amplitude (nAm) Reconstructed Amplitude

(nAm)

Orientation ratio Reconstructed

orientation ratio

Average # Searches Average Time (min) Pseudo-Z-score

Dipole 1 Dipole 2 Dipole 1 Dipole 2 Dipole 1 Dipole 2 Dipole 1 Dipole 2

4.0 10 20 10 20 9.4 18.7 9.2 18.5 0.5 0.5 0.501 0.498 31.3 1.502 11.3

3.0 10 20 10 20 9.4 18.7 9.2 18.5 0.5 0.5 0.501 0.498 28.6 1.411 11.2

2.0 10 20 10 20 9.4 18.8 9.2 18.4 0.5 0.5 0.502 0.497 21.7 1.015 11.1

1.0 10 20 10 20 9.5 18.9 9.1 18.3 0.5 0.5 0.503 0.495 14.3 0.716 10.9

0.50 10 20 10 20 9.7 19.3 8.9 18.1 0.5 0.5 0.505 0.491 5.4 0.257 10.3

0.33 10 20 10 20 9.9 19.5 8.7 17.8 0.5 0.5 0.507 0.487 2.3 0.102 9.9

0.25 10 20 10 20 10.1 19.8 8.5 17.6 0.5 0.5 0.509 0.483 1.4 0.059 9.4
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Thus, even under a correlation of only 50%, the reconstruction was

able to localize the sources perfectly. The reconstructed amplitudes in

each of these simulations faithfully matched the original source

amplitudes ε
– = 12:5% ; σ ε

– = 5:1%
! "

and became linearly more

accurate as the pair correlation increased r2 = 0:99905
# $

. The recon-

structed orientations also faithfully matched the original source

orientations and exhibited little dependence on the correlation

ε
– = 0:40% ; σ ε

– = 0:18%
! "

. Interestingly, the proper dipole pair was

found more immediately, repeatedly, and quickly for non-perfectly

correlated than perfectly correlated sources. For each non-perfectly

correlated simulation, decreasing the original source correlation led to a

concomitant linear decrease in the pseudo-Z-score r2 = 0:99998
# $

.

Source amplitude ratio

The results from the simulations designed to test performance

under varying amplitude ratios within a pair of dipoles are shown in

Table 3. The reconstructed amplitude ratios in each simulation closely

reflect the original source amplitude ratio 1:97%bεb4:48%ð Þ. In the

reconstruction, the orientations faithfully represent the original

source orientations 0:34%bεb1:63%ð Þ. As one increases the relative

amplitude ratios within each pair of dipoles from 1 to 2 to 3, the

number of searches and the time required to find the dipole pair

decrease linearly r2search = 0:908 ; r2time = 0:905
# $

. The amplitude

ratio did not affect the computed pseudo-Z-scores.

Three pairs of dipoles

The results for the six dipole (3 source-pair) simulation are

presented in Table 4. All six sources were reconstructed in an average

of 4.8 min and 143 searches. Increasing the number of correlated two-

source networks in the simulation did not result in an unmanageable

increase in computational time. Even with the low SNR (0.6075),

differing intra-pair correlations, and differing amplitudes both inside

and outside of each dipole pair, all of the dipoles were reconstructed

to the proper spatial position. The three inter-pair correlations in this

study were all zero. Furthermore, the twelve reconstructed

amplitudes closely represented the original source amplitudes

ε
– = 11:32% ; σ ε

– = 5:67%
! "

. Reconstruction of each source's orienta-

tion was reasonably accurate ε
– = 3:16% ; σ ε

– = 2:22%
! "

.

A third correlated source

Two of the three sources in the simulation were reconstructed

accurately in an average of 1.03 searches and 0.04 min. As expected, the

amplitudes of the reconstructed sourceswere suppressed by 47.29%due

to the third correlated source. Fig. 1 shows the activation map of the

three reconstructed sources, which was derived by combining the

dipole pseudo-Z-scores. Red values were thresholded at Pb0.05, and

yellow values were thresholded at Pb10−5. The combined pseudo-Z-

score for all three dipoles was significant (Pb10−5).

Applying DCBF to human auditory MEG responses

MEG data were obtained for the 500 Hz tone auditory stimulus

tests (Brookes et al., 2007). All data were subsequently processedwith

MaxFilter (Taulu et al., 2004; Taulu and Simola, 2006; Song et al.,

2008; Song et al., 2009) and the signal was reconstructed utilizing our

new DCBF approach coupled with the modified Powell search

restricted to inter-hemispheric searches. To enhance the SNR of the

relatively weak auditory response, 188 responses were averaged.

Fig. 2 displays the pseudo-Z-scores of the local maxima, or pathways,

found by the modified Powell search algorithm. After 1000 starts, the

optimum pathway had a pseudo-Z-score of 1.0791 (Pb1.3×10−5),

indicating that two highly correlated dipoles had been found. Out of

the 3 identified pathways, this pathway was also found most often,

taking an average of 1.1 searches or 0.0305 min. Fig. 3 displays the

cortical activation map derived from plotting the combined correla-

tions of each optimal dipole with all other dipoles in the brain. For

both hemispheres, red values were thresholded at Pb0.05, and yellow

values were thresholded at Pb0.005. Fig. 3 also shows that the activity

is localized to Brodmann Areas 41 and 42 (primary and association

auditory cortices) in both left and right hemispheres. Pathways with

low pseudo-Z-scores localized to deep sources. Fig. 4 displays the

time-courses of the transient and steady-state auditory responses. The

left to right hemisphere source amplitude ratio was 1.11. Wavelet

transform time–frequency (TF) analysis was performed on the

reconstructed signal to identify the transient and steady-state

responses. TF analysis between 4 and 12 Hz revealed a focal region

of power immediately following stimulus delivery, corresponding to

the auditory transient response. TF analysis of the source signal in the

32–48 Hz band indicated the presence of power throughout the entire

stimulus period centered at 40 Hz, corresponding to the auditory

steady-state response (Huang et al., 2004; Ross et al., 2005; Simpson

et al., 2005).

Applying DCBF to human median nerve stimulation MEG responses

MEG data were obtained from six healthy subjects for the right

median nerve stimulus test. Individual trials were averaged to

enhance the SNR of the MEG evoked-response. All data were

Table 2

DCBF Performance under varying source correlation.

Correlation Amplitude (nAm) Reconstructed

amplitude (nAm)

Orientation ratio Reconstructed

orientation ratio

Average # Searches Average Time (min) Pseudo-Z-score

Dipole 1 Dipole 2 Dipole 1 Dipole 2 Dipole 1 Dipole 2 Dipole 1 Dipole 2

100% 10 20 10 20 9.4 18.8 9.2 18.4 0.5 0.5 0.502 0.498 21.7 1.015 11.1

86.6% 10 20 10 20 9.1 18.2 8.8 17.8 0.5 0.5 0.501 0.497 1 0.034 11.3

75.0% 10 20 10 20 8.9 17.7 8.5 17.1 0.5 0.5 0.501 0.497 1 0.033 11.0

50.0% 10 20 10 20 8.3 16.5 7.8 15.7 0.5 0.5 0.501 0.497 1 0.035 10.5

Table 3

DCBF performance under varying source amplitude ratio.

Amplitude Ratio Reconstructed amplitude ratio Orientation ratio Reconstructed

orientation ratio

Average # searches Average time (min) Pseudo-Z-score

Dipole 1 Dipole 2 Dipole 1 Dipole 2

1:1 0.98 0.5 0.5 0.502 0.497 21.7 1.015 11.1

2:1 1.93 0.5 0.5 0.505 0.497 6.1 0.274 11.2

3:1 2.87 0.5 0.5 0.508 0.498 1.5 0.065 11.2
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subsequently processed with MaxFilter (Taulu et al., 2004; Taulu and

Simola, 2006; Song et al., 2008, 2009), and spatial locations were

reconstructed utilizing the DCBF approach. Fig. 5 shows the multiple

pathways found by DCBF sorted according to pseudo-Z-score or

correlation for a single representative subject (Subject #1).

The plateaus in Fig. 5 designate searches that yielded the same

result multiple times, which are considered to be important pathways

or networks of activation. Fig. 5 shows activation maps computed

with (17) for three of these selected networks along with similar

networks reconstructed from other subjects. The activation maps

were computed in the same manner as for the auditory-response

analysis. All subjects had a common network of activation in the

primary somatosensory cortex (S1, including Brodmann Areas 1, 2,

and 3) and the secondary somatosensory cortex (S2) (Fig. 6a). Three

subjects showed common networks involving the primary somato-

sensory cortex (S1) and Brodmann Area 5 of the posterior parietal

lobe (Fig. 6b). Three subjects also had a common network of

activation involving the primary motor cortex (M1) and parts of the

somatosensory cortex (S1 or S2) (Fig. 6c). Two subjects showed a

previously observed network of activation involving the primary

somatosensory cortex (S1) and the temporal-parietal junction, a poly-

sensory area (Huang et al., 2006).

Discussion

In the present study, we implemented a novel and powerful dual-

beamformermethod that was pairedwith themodified-Powell search

to create the DCBF. Our DCBF approach addressed various short-

comings of the earlier dual-beamformer method, the CCSM, and the

NB. Instead of using a spatial filter or lead-field vector consisting of a

linear combination of lead-field vectors from two dipoles, we chose to

concatenate the lead-field vectors from the two dipoles together,

which simultaneously covered two spatial locations at once. We were

also able to perform eigenvalue decomposition and analysis of the

low-dimensional K matrix to analytically find the optimal pseudo-Z-

score of two dipoles directly, without having to search for their best

orientations non-linearly. In addition, we performed eigenvalue

decomposition of another low-dimensional Q matrix to analytically

recover the most favorable weighting between dipoles and the best

orientation of the dipoles that optimized the pseudo-Z-score

(Sekihara et al., 2004) without the need for a time-consuming non-

linear search process that takes approximately 100 times longer.

Optimal source dipoles were found by our modified non-linear Powell

search instead of through exhaustive brute-force search, which is

about three times slower. The Powell search also enabled analysis

without a priori information about any of the dipole positions. Thus,

we were able to identify multiple highly correlated neuronal

networks that were associated with meaningful local maxima of

pseudo-Z-scores.

We conducted a series of computer simulations to test the

robustness and performance of the DCBF with regards to variations

in several important parameters. We showed that decreased SNR

Table 4

DCBF performance with three source pairs.

Source

Index

Correlation Frequency

(Hz)

Amplitude (nAm) Reconstructed

amplitude (nAm)

Orientation ratio Reconstructed

orientation ratio

Average #

searches

Average time

(min)

Pseudo-Z-score

Direction

1

Direction

2

Direction

1

Direction

2

1 92.39% 20 10 20 8.26 16.27 0.500 0.508 6.37 0.21 7.57

2 92.39% 20 15 25 13.88 23.97 0.600 0.579 6.37 0.21 7.57

3 95.11% 30 30 20 28.30 18.98 1.500 1.492 1.20 0.04 8.97

4 95.11% 30 12 8 9.77 6.90 1.500 1.415 1.20 0.04 8.97

5 96.59% 40 20 15 17.90 14.26 1.333 1.255 142.86 4.80 7.09

6 96.59% 40 10 12 8.59 10.12 0.833 0.849 142.86 4.80 7.09

Fig. 1. Activation map for three correlated sources. The red arrows on the activation

map indicate the position of the three source dipoles. The map was thresholded such

that red indicates Pb0.05 and yellow indicates Pb10−5.

Fig. 2. Stereo auditory stimulation in a human subject: pathways with associated

pseudo-Z-scores. Plateaus in the plot denote searches that yielded the same result

(local maximum) multiple times. Results that were found multiple times were

considered important pathways. Only 300 out of 1000 searches are shown to

emphasize the transition between pathways. The pathway with maximum correlation

(pseudo-Z-score) and maximum size involved both primary auditory cortices. Its

activation map is depicted in Fig. 3.

259M. Diwakar et al. / NeuroImage 54 (2011) 253–263



leads to faster localization of the source dipoles during the modified

Powell search. A Powell search has the best probability of finding

peaks with broad bases. Thus, we believe that lower SNR leads to a

broader peak in pseudo-Z-score, which allows the optimal dipole

combination to be identified more readily. In fact, the reconstruction

performed reliably even under conditions of 0.25 SNR for both single

Fig. 3. Cortical activation map during stereo auditory-stimulation. Left hemisphere: The cortical activation map shows activation in the left primary auditory cortex. a. Right

hemisphere: The cortical activation map shows activation in the right primary auditory cortex. Red regions were thresholded at Pb0.05 and yellow regions were thresholded at

Pb0.005.

Fig. 4. Stereo auditory-stimulation signal time-courses. The top panel shows the averaged sensor waveform for the auditory response. The second panel shows the auditory response

for both right hemisphere (blue) and left hemisphere (green). The third panel shows the transient auditory-response between 4 and 12 Hz with time–frequency analysis. The fourth

panel shows the steady-state auditory centered at 40 Hz with time–frequency analysis.
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and dual frequency sources and for both uncorrelated and correlated

band-limited noise. At every SNR tested, our reconstruction technique

successfully located the source dipoles without error. For spontaneous

recordings, the MEG signal can often have a very low SNR, especially

since the data cannot be averaged. For evoked recordings, a higher

SNR can be obtained from averaging. Our computer simulations show

that the DCBF may be applied for both types of recordings, since the

method operates over a wide range of SNR.

By varying source correlation, we found that the DCBF successfully

identified sources even when their signals were only 50% correlated.

In fact, non-purely correlated sources were localized much more

quickly than 100% correlated sources because the pseudo-Z-score

solution space is less sharply peaked around the global maximum for

non-purely correlated sources than for fully correlated sources.

To test the performance of our direct computation of optimal

dipole weighting, we performed computer simulations with source

dipoles emitting signals at varying ratios of amplitudes. Interestingly,

as we increased the disparity in amplitude between signals, the

reconstruction was able to localize the source dipoles more quickly.

Differing source amplitudes likely led to a broader peak in pseudo-Z-

score, allowing the optimal dipole combination to be identified more

readily. The primary purpose of the amplitude simulations, however,

was to examine if the reconstructed signals still maintained the

proper amplitude weighting. Reconstructed amplitude ratios were

indeed quite close to the original source amplitude ratios, confirming

that our approach to obtaining optimal weighting was successful.

To determine whether the DCBF could perform in real-world

conditions, we designed one simulation with three pairs of non-

purely correlated dipoles. All three pairs of correlated sources were

localized accurately within an average of 5 min. Furthermore, the

amplitude ratios and orientations were reconstructed with only

minor error, demonstrating that the DCBF can accurately reconstruct

multiple simultaneously activated networks of correlation.

Another simulation was designed at low SNR to test the ability of

the DCBF to reconstruct three correlated dipoles. Only two sources

could be located with the Powell search, and their amplitudes were

suppressed. The suppression occurred due to the underlying assump-

tion that only two sources are correlated. Thus, the effect was similar

to suppression of the conventional single beamformer in the presence

of a second correlated source. However, the generated activation map

shows that the DCBF successfully localized all three correlated-source

in a significant manner (Fig. 1).

By applying our novel method to the analysis of bilateral auditory-

stimulation data in humans, we showed that the DCBF could quickly

(b 20 s) and accurately reconstruct correlated sources in a real

experiment. Analysis of the pathway most frequently found and with

highest pseudo-Z-score revealed sources located in the primary

auditory cortices, as expected. In addition, time–frequency analysis

of the reconstructed signal showed both the expected 40 Hz steady-

state response and the transient response.

To explore the idea offindingmultiple networks,we also applied the

DCBF approach in an analysis of right median-nerve stimulation data

from six healthy subjects. A plot of the number of searches as a function

of pseudo-Z-scores showed different local maxima that were found

multiple times, indicating the presence of different pathways.We found

that the most common pathway among subjects corresponded to

activation in the primary somatosensory area (S1, including BA 1, 2,

and3) and the secondary somatosensory area (S2). Twoother pathways

identified in half of the subjects included S1 and a classic sensory-

transduction area (BrodmannArea 5), and S1 or S2 and thedorsal aspect

of the primary motor area (M1). The activations in S1, S2, and M1

evoked by median-nerve stimuli are well-documented by MEG

(see review in Huang et al., 2000a,b, 2005).

Summary

The most important features of the DCBF approach arise from

incorporating the lead-field vectors of two simultaneously activated

neuronal sources into a single spatial filter. With this novel

beamformer, we were able to successfully compute optimal dipole

weights, orientations, and pseudo-Z-scores, eliminating time-con-

suming searches that hindered the previous dual-beamformer

approach. In addition, by utilizing a powerful Powell search with a

taboo list, we were able to reconstruct optimal source dipoles quickly

without the use of a priori information. The changes and optimizations

we made decreased the total computing time from tens of hours

(Brookes et al., 2007) to less than 15 min, making the DCBF a viable

and useful MEG source localization method for correlated sources.

Future directions include extending the DCBF framework to three or

four beams to find tightly correlated and complex networks of

activity. The DCBF can also be migrated from a time-domain analysis

to a frequency domain or time–frequency (wavelet) domain analysis

to reduce the effects of noise and phasing.
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Fig. 5. Right median-nerve stimulation for human subject #1: pathways with

associated pseudo-Z-scores. Plateaus in the plot above denote searches that yielded

the same result (local maximum) multiple times. Results that were found multiple

times were considered important pathways. Fig. 6 depicts the activation maps of

selected pathways for subject #1 and other subjects.
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