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Abstract
Measurement of changes in brain cortical thickness is useful for assessment of regional gray matter
atrophy in neurodegenerative conditions. A new longitudinal method, called CLADA (cortical
longitudinal atrophy detection algorithm), has been developed for measurement of changes in cortical
thickness in magnetic resonance images (MRI) acquired over time. CLADA creates a subject-specific
cortical model which is longitudinally deformed to match images from individual time points. The
algorithm was designed to work reliably for lower-resolution images, such as the MRIs with
1×1×5mm3 voxels previously acquired for many clinical trials in multiple sclerosis (MS). CLADA
was evaluated to determine reproducibility, accuracy, and sensitivity. Scan-rescan variability was
0.45% for images with 1mm3 isotropic voxels and 0.77% for images with 1×1×5 mm3 voxels. The
mean absolute accuracy error was 0.43 mm, as determined by comparison of CLADA measurements
to cortical thickness measured directly in post- mortem tissue. CLADA’s sensitivity for correctly
detecting at least 0.1 mm change was 86% in a simulation study. A comparison to FreeSurfer showed
good agreement (Pearson correlation = 0.73 for global mean thickness). CLADA was also applied
to MRIs acquired over 18 months in secondary progressive MS patients who were imaged at two
different resolutions. Cortical thinning was detected in this group in both the lower and higher
resolution images. CLADA detected a higher rate of cortical thinning in MS patients compared to
healthy controls over 2 years. These results show that CLADA can be used for reliable measurement
of cortical atrophy in longitudinal studies, even in lower resolution images.
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Introduction
High resolution, high contrast magnetic resonance images (MRI) allow visualization of the
human brain cerebral cortex (Van Essen 2001). Advances in medical image analysis have led
to successful segmentation of the cortex and accurate measurements of cortical thickness (CTh,
(Dale 1999; Han 2004; MacDonald 2000). These measurements are important because cortical
morphometry is pathologically altered by many diseases, including multiple sclerosis (MS)
(Sailer 2003).
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The most common method to measure CTh in vivo is the application of deformable models.
The deformable model, first introduced by Kass et al. (1988) as a “snake,” is a sophisticated
image processing tool which deforms a 2D contour or 3D surface to fit the image by optimizing
the internal (object) and external (image) forces. Deformable models can be classified into
implicit or explicit models. Examples of implicit deformable models include the level set
method (Goldenberg 2002; Han 2004; Zeng 1999) and Fourier-based parametric deformable
models (Staib and Duncan 1996). Explicit methods represent the surface with a collection of
points (Dale 1999; Davatzikos and Prince 1995; Davatzikos 1995; MacDonald 2000; Xu
1999) and are well-suited for modeling highly convoluted surfaces such as the human brain
cortex (Zeng 1999). Explicit deformable models can also take advantage of inherent
topological consistency for estimation of CTh (MacDonald 2000), whereas voxel-based
methods without formulation of cortical surface models (Acosta 2009; Goldenberg 2002;
Hutton 2008; Jones 2000) require specialized topological preserving mechanisms (Das 2009;
Han 2003).

Currently available CTh measurement programs, such as FreeSurfer, require isotropic images
with approximately 1 mm3 voxels (Dale 1999). These methods were not designed for
retrospective analysis of CTh in lower resolution images, such as the MRIs acquired in previous
clinical trials of MS treatments, which typically have a voxel size of 1×1×5 mm3 or 1×1×3
mm3. However, longitudinal measurement of CTh change from pre-existing image data is a
fast and cost-effective approach to determine the clinical importance of cortical thinning in
large groups of patients. In MS, these datasets are particularly valuable since placebo-
controlled trials are less commonly conducted today due to ethical considerations.

Most current cortical measurement methods are cross-sectional, that is, each serial MRI for a
given subject is analyzed independently. Cross-sectional methods tend to have relatively large
measurement errors when applied to longitudinal studies because the data from each time point
is analyzed independently and has its own independent measurement error, effectively
decreasing reproducibility. On the other hand, longitudinal or registration-based methods
achieve more consistent results (Han 2006) because they take advantage of the fact that in
normal aging and many pathologic conditions, morphologic changes over time are small for
individual subjects. There are some existing longitudinal methods for analysis of CTh,
including deformation-based surface morphometry (Chung 2003), registration based CTh
measurement method (DiReCT, (Das 2009), and the longitudinal processing scheme of
FreeSurfer (Han 2006). A potential bias exists in such longitudinal methods where the cortical
model from the first image is used as an initialization for the subsequent image (Das 2009) as
the registration, segmentation and mesh reconstruction may vary. This problematic issue can
be corrected by creating an unbiased template for each subject, as described for FreeSurfer’s
more recent longitudinal processing scheme (version 4.5).1

In this paper, we describe a new unbiased longitudinal method, called cortical longitudinal
atrophy detection algorithm, or CLADA, for measurement of changes in CTh using explicit
deformable models. Unlike existing methods, CLADA can be applied to retrospectively
analyze low resolution images (3–5mm slice thickness). The method has been evaluated to
assess (1) scan-rescan and intra-operator reproducibility, (2) accuracy, (3) sensitivity, (4)
performance across MRIs with different resolutions, (5) comparison with FreeSurfer, and (6)
potential clinical relevance, through comparison of CLADA measurements in MS patients and
healthy normal controls.

1http://surfer.nmr.mgh.harvard.edu/fswiki/LongitudinalProcessing
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Materials and Methods
CLADA Algorithm

Overview—An overview of CLADA is shown in Figure 1. The algorithm combines images
from all time-points, creates a deformable model of the cerebral cortex consisting of two
explicit surfaces based on the combined image, and then deforms the model for each individual
time-point. Each of the four major steps of CLADA and the images used for validation are
described below.

Serial image acquisition—CLADA requires longitudinally acquired T1-weighted images
as input. CLADA can process both 2D low-resolution images (e.g. T1-weighted spin echo
images, T1SE, with 1×1×5 mm3 voxels) and 3D higher-resolution images (e.g. magnetization
prepared rapid gradient echo, MPRAGE or fast low angle shot, FLASH, with 1 mm3 isotropic
voxels). Additional imaging modalities such as fluid attenuated inversion recovery (FLAIR)
or T2-weighted images are helpful, but not required, for differentiating brain, non-brain and
abnormal tissue, such as MS lesions. The acquisition details of the images used in our validation
tests are described in the validation section.

Registration and image averaging—The objective of this first step was to obtain a
subject-specific unbiased image and to improve the image quality by averaging longitudinal
images for each subject. Non-brain constrained symmetric registration (NBCSR, (Chen
2008) was used to register all follow-up images to baseline. Briefly, NBCSR involved six steps:
(1) whole head rigid-body registration, (2) brain-only affine registration, (3) affine registration
in cropped non-brain region where the top of skull and neck are cropped to eliminate variable
appearance, (4) brain-only 6-degrees-of-freedom registration with fixed scaling and skewing
from previous step, (5) repeating steps 1–4 in the backward direction and (6) combination of
the resulting forward and inverse transformations to achieve symmetric registration. This
symmetric registration approach was used to reduce registration-related bias (Smith 2002;
Yushkevich 2010). Image intensity variation was corrected by a parametric intensity non-
uniformity correction algorithm (Styner 2000) and normalized using a differential bias
correction (Lewis and Fox 2004). The corrected images were resampled to 0.75 mm3 isotropic
resolution and transformed into the reference coordinates with spline interpolation to facilitate
computation of the image gradient in a later step. The transformed images were averaged on
voxel-by-voxel basis.

Segmentation—The resulting subject-specific average image was segmented using a
method previously described and validated for T1SE images (Nakamura and Fisher 2009). The
overall scheme was similar to FreeSurfer (Dale 1999) in that the image was segmented into
gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) and a cortical GM-WM
boundary was generated through a combination of segmentation and atlas-based classification
(Dale 1999). For consistency and efficiency in CLADA, this segmentation step was carried
out only once for each subject rather than for each of the follow-up images separately.

The segmented brain mask was further processed using morphologic operations (3mm-dilation,
seed-fill, 1.5mm-opening, and 1mm-median filter) to fill in the lateral ventricles (Nakamura
and Fisher 2009). Next, the “inner brain” mask, which contains the cerebral white matter, lateral
ventricles, and the deep gray matter (Fig. 5-h) was created for initial surface deformation. The
deep gray matter structures (caudate, putamen, and globus pallidus), cerebellum and brainstem
were isolated (once) in the Harvard Brain Atlas (Kikinis 1996). ART nonlinear registration
was used to register the subject image and the atlas (Ardekani 2005). Using the resulting
transformation, the masks for the brainstem and cerebellum were transformed to subject space,
disconnected, and eliminated from subsequent analysis steps. Similarly, the deep gray
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structures were added to the inner brain mask. If necessary, MS lesions were segmented on
FLAIR images using iterative conditional modes (Besag 1986) and added back into the inner
brain mask. Manual editing was performed to correct any remaining segmentation errors due
to lesion holes (if no FLAIR image is available) and misclassification of blood vessels as white
matter, which may occur in low-resolution images due to partial volume effects.

Deformable Model—As in other explicit surface models (Dale 1999; MacDonald 2000),
two explicit surfaces, one for the inner cortical surface (ICS, between white matter and gray
matter) and one for the outer cortical surface (OCS, between CSF and gray matter) were
constructed next. The OCS was difficult to detect due to small separations between opposing
surfaces within tight sulci and partial volume effects (PVE), and thus the ICS was created first
with the inner brain mask (Dale 1999). The approach used in CLADA combined some aspects
of both FreeSurfer (Dale 1999) and anatomic segmentation using proximities (ASP,
(MacDonald 2000). Instead of simultaneously deforming the two surfaces from the start, as in
ASP, a single elliptic surface shrink-wrapped to the inner brain mask first, to define the ICS,
then it deformed outward to define the OCS. Only after the two surfaces were generated,
simultaneous deformation was applied to both surfaces. Unlike other methods, CLADA’s
shrink wrap algorithm used a multiresolution remesh function, a method for fast surface
intersection detection, and a method for surface relaxation on proximal surfaces to improve
efficiency and accuracy.

For remeshing, the algorithm described by Botsch (2004) was implemented to manipulate the
mesh configuration and distribution. This remesh algorithm iteratively (1) split edges longer
than 4/3 of the target length, (2) collapsed edges shorter than 4/5 of the target, (3) flipped edges
to reduce the variations in the number edges among vertices, and (4) tangentially smoothed
the surfaces. For efficiency, a multiresolution approach was implemented by decreasing the
target length from 5 mm to 1 mm. The algorithm was computationally efficient, maintained
consistent topology, and had small geometric distortions due to its use of an iterative tangential
relaxation.

The surface intersection detection used a fast triangle-triangle intersection test (Moller 1997)
and prevented physically impossible overlaps. The intersection tests were performed with fast
recursive bounding boxes (Zomorodian and Edelsbrunner 2000) to decrease computation time.
The surface relaxation on proximal surfaces minimized the local surface area by smoothing
when an object had a tunnel, a common artifact in low-resolution images with significant PVE.
The algorithm detected proximal surface regions by extending the surface deformation and
testing for surface intersection but not actually applying the deformation. If a potential surface
intersection was detected, a local smoothing operation was performed on this surface region
by averaging the neighboring vertex positions.

After ICS detection, the initial OCS was estimated by iteratively expanding ICS outward. A
target OCS vertex was established for each ICS vertex using the surface model, averaged image,
and Sobel-filtered gradient image according to the following rules: (1) the intensity at the OCS
vertex must be above the estimated mean OCS intensity, μOCS, which is the mean intensity of
GM-CSF edge voxels. The edge voxels must have high gradient, above the 75th percentile for
all gradients in the brain mask, and intensity between mean GM and CSF intensities (obtained
from segmentation). (2) The first derivative of the intensity profile along the OCS surface
normal must be negative (i.e. decreasing intensity). (3) The OCS must not intersect another
surface. (4) The OCS vertex must be contained within the brain mask, but not in the cerebellum
or brainstem masks. (5) The distance between the ICS vertex and the target OCS vertex must
be less than predefined distance of 3 mm. Although the cortex is thicker than 3 mm in some
regions, the initial estimate was confined to 3 mm to provide a stable and realistic starting point
that was close to the final surface. As in FreeSurfer and ASP (Dale 1999; MacDonald 2000),
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the correspondence between each inner surface vertex and outer surface vertex was maintained
for calculation of CTh.

Finally, the two cortical surfaces were deformed simultaneously with an additional internal
energy term to ensure CTh smoothness:

Equation 1

Equation 2

Equation 3

Equation 4

where  was the iterative deformation of 3D vertex position, v, determined by the internal
surface smoothness force (Fsurf), internal thickness smoothness force (Fthck), external image
force (Fimag) and the weighting constants (α, β, γ). The surface smoothness term (Fsurf) pulls
the vertex towards the local average point (vlocal); similarly, the thickness smoothness pulls
the vertex towards the point that corresponds to the averaged local thickness (CThlocal) along
the surface normal (n̂). The image force was determined by the image gradient at the vertex
( ∇I(v)), lambda(λ), which regulates the gradient, and a Heaviside function (H) of image
intensity (I(v)) and estimated edge intensity (μCS). Lambda (λ) was the 95 percent value of the
image gradient within the brain. The weighting constants, α, β, and γ, were set to 1.5, 0.5, 1.0,
respectively, as determined through trial-and-error to produce good results. The deformation
iterated until the deformation size (ΔC) was smaller than predefined threshold (ΣΔCn/dn/N <
1%) where dn is the distance between n’th vertex on ICS and OCS and N is the total number
of vertices. The resulting model was the subject-specific cortical model based on the averaged
image and used as initialization for longitudinal deformation in individual images.

Longitudinal Deformation and Cortical Thickness Measurements—The subject-
specific cortical model was subsequently deformed to fit the images from individual time-
points. The cortical model rather than the image was transformed to prevent interpolation
artifacts (Han 2006). In this step, the remesh function was not applied in order to ensure that
consistent ICS-OCS correspondence was maintained. The same deformation process as
described above was applied iteratively for each time point until the change was below a
predefined 1% threshold as before. CTh was determined for each surface vertex in the follow-
up image as the distance between corresponding vertices on the ICS and OCS surfaces (Lerch
and Evans 2005). The global CTh was estimated as the surface-area-weighted average:
CThglobal = ΣAndn / ΣAn (where An is the triangular surface areas surrounding the n’th ICS and
OCS vertices). Although the superior aspect of the brainstem as well as the diencephelon,
hippocampus and amygdala were part of the ICS and OCS surfaces, these non-cortical regions
were excluded from the global CTh measurement by masking with the registered Harvard Brain
Atlas (Kikinis 1996) regions. For regional analysis, the atlas was transformed and filtered (in
surface space. Surface-area-weighted regional CTh was measured for each anatomic region in
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the same manner as for global thickness. Regional labels remain constant across time points
for longitudinal analysis.

Validation: Individual elements of the CLADA deformation model were tested using
simulated data prior to testing on brain MRIs. These tests were done to demonstrate efficacy
of the self-intersection test and surface relaxation step used for tracking the convoluted inner
surface. Further tests were performed to evaluate CLADA in terms of its (1) reproducibility,
(2) accuracy, (3) sensitivity to change in CTh, (4) sensitivity to input image type, (5) sensitivity
to reference time point, (6) comparison with FreeSurfer, and (7) clinical relevance using
longitudinal data from MS patients and healthy normal controls.

Reproducibility Test—The reproducibility of CLADA’s CTh measurements was evaluated
using two scan-rescan MRI datasets: 3D MPRAGE images with high signal-to-noise ratio
(SNR) and 1 mm3 isotropic voxels, as well as for lower resolution 2D T1-weighted spin echo
(T1SE) images. The higher resolution dataset consisted of 10 scan-rescan image pairs from
young controls obtained through the Open Access Series of Imaging Studies database (OASIS,
(Marcus 2007). Subjects were scanned twice within 10 days on a 1.5T scanner with the same
MPRAGE sequence [repetition time (TR)=9.7msec; echo time (TE)=4.0msec; flip angle (FA)
=10°; inversion time (TI)=20msec; slice thickness (THK)=1.25mm; gap=0mm; number of
slices = 128; matrix size=256x256; in-plane resolution=1mm×1mm; number of signal averages
(NSA)=4]. The lower resolution 2D T1SE images were acquired from 9 MS patients on a 1.5T
Siemens Magnetom Vision with the following sequence parameters: TR=800 ms, TE=20 ms,
THK=5.0mm; gap=0mm; number of slices = 30; matrix size = 192×256, in-plane
resolution=0.9 mm × 0.9 mm. The MS patients were scanned twice, with one week between
acquisitions.

CLADA was applied to the images from both scan-rescan datasets to measure global and
regional CTh. Percent error was calculated as the absolute difference in CTh measurements
divided by mean CTh. For visualization of regional variability, surface error maps were
generated for each subject. The intensity of each surface voxel was set to the difference in CTh
from the nearest vertex and the resulting error image was smoothed (FWHM=0.9mm). To
create mean surface error maps, the images were registered to the MNI152 template (Avants
2008; Klein 2009; Klein 2010). The error images were averaged across subjects in MNI space,
inverse transformed back to native space of one subject, and mapped to the cortical surface.

Intra-operator variability was assessed using a subset of these cases (five OASIS MPRAGE
and five MS T1SE). A single operator performed CLADA twice, approximately 4 days apart.
Variability was calculated as the absolute difference in global and regional CTh and Pearson
correlation coefficient (r) of CTh change. An intra-operator variability mean surface error map
was generated in the same manner as for scan-rescan variability.

Accuracy Test—To evaluate the accuracy of the CTh measurements, CLADA was used to
measure CTh from post-mortem MRIs acquired in situ and then compared to a “gold standard”
thickness measured in 2D digital photographs of the same brain slices. The in situ MRPAGE
was acquired with the following sequence parameters [TR=1900 ms, TE=1.71 ms,
THK=1.2mm; number of slices = 120; matrix size = 256×256, in-plane resolution=1mm]. The
MRIs were registered with the photographs using a method previously described (Fisher
2007). Briefly, in addition to the post-mortem MRI acquired in situ, an MRI of the left cerebral
hemisphere post-fixation was acquired in a customized brain slicing box with MRI-visible
markers that indicate positions of the slice planes. The post-fixation image was acquired with
the same MPRAGE protocol as the in situ MRI, except with 1mm isotropic voxel size and four
signal averages to accurately identify the marker locations. The hemisphere was sliced in the
box immediately after acquisition of post-fixation MRI. The post-fixation MRI was used solely

Nakamura et al. Page 6

Neuroimage. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to locate the corresponding slicing plane in the post-mortem MRI, and thus no cortical thickness
measurements were made from post-fixation MRI. The post-mortem MRI was registered to
the post-fixation brain slices using a full affine registration with scaling and shearing to account
for brain shrinkage due to fixation. We then refined the registration using visual inspection to
adjust each slice, thus resulting in nonlinear registration as a whole.

To compare 3D CTh measurements obtained using CLADA to 2D thickness measurements
from photographs of the brain slices, we set four constraints to identify valid regions of interest
(ROI): (1) Corresponding vertices from the inner and outer cortical surfaces had to be within
0.2 mm from the co-registered image/photograph plane (2) The absolute value of the dot
product of normals from the brain slice plane and the cortical surfaces had to be less than 0.3
to ensure they were approximately perpendicular; (3) Large ROIs that spanned gyri and sulci
had to be subdivided to minimize spatial variability as gyrus thickness tends to be larger than
sulcal thickness (2.9mm and 2.2mm respectively, (Fischl and Dale 2000); and (4) As
determined by careful visual inspection, areas that appeared to have any misregistration were
excluded. ROIs were manually selected from all major (frontal, temporal, parietal, and
occipital) lobes throughout the hemisphere. For each valid ROI determined in the MRIs based
on the criteria above, the same ROI was manually selected in the photograph based on
landmarks and the mean CTh was measured within the ROI. To measure CTh from the
photographs, we manually segmented the WM-GM inner edge and GM-CSF outer edge, and
estimated CTh using the Laplacian method (Haidar and Soul 2006). We then calculated the
Pearson correlation and absolute differences between the photograph CTh and MRI CTh
measurements.

Sensitivity Test with Simulation of Atrophy or Growth—The sensitivity of CLADA
for detection of small changes was tested using simulations of regional brain atrophy or growth.
ROIs were manually selected from MRIs of five OASIS datasets. The ROIs on the brain surface
were very slightly deformed by a known amount at sub-voxel level, either inward for atrophy
or outward for growth. The direction of deformation is normal to the brain surface mask and
determined by 1.6mm-FWHM Gaussian and Sobel directional filters. The magnitude of the
deformation is normalized to maximum of 0.3mm at the brain edge after the 1.6mm-FWHM
Gaussian filter. CLADA was applied to the original and deformed images to measure changes
in CTh. The error was calculated as the mean absolute difference between the measured results
and the actual applied deformations. CLADA’s sensitivity was calculated by TP / (TP+FN)
where TP is the number of surface points CLADA correctly deformed more than 0.1mm and
FN is the number of surface points CLADA did not deform even though the image was
deformed more than 0.1mm. We also plotted the actual versus measured deformations, and
calculated the slope of the best fit line.

Sequence Comparison—Next, we compared CLADA results obtained from conventional
2D T1SE images (with 3 mm slice thickness) to results obtained with higher contrast 3D
MPRAGE images (with 1.2 mm slice thickness). Longitudinal data from 15 secondary
progressive multiple sclerosis (SPMS) patients included axial T1SE images (TR=675msec;
TE=17msec; THK=3mm; number of slices=48; matrix size=256×192; in-plane
resolution=0.9mm×0.9mm; NSA=1) acquired on a 1.5T Siemens Symphony scanner and axial
MPRAGE images [TR=1900msec; TE=1.71msec; FA=8°; TI=1.71msec; THK=1.2mm;
number of slices=128; matrix size=256x256; in-plane resolution=1×1mm; NSA=1] acquired
on the same day on a 3T Siemens Magnetom Trio scanner. Images were acquired at baseline
and weeks 2, 4, 26, 52, 78. The T1SE and MPRAGE images were analyzed separately. The
annualized global CTh change was calculated as the difference between CTh measurements
at baseline and last follow-up divided by the time interval (78 weeks or 1.5 years). The Pearson
correlation was determined between annualized global CTh change measurements obtained
from T1SE and MPRAGE images.
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Effect of the Choice of Reference Space—Registration-related variability was
investigated by changing the reference time point from baseline to follow-up. Eight
longitudinal OASIS datasets (each with 2 time points) were analyzed from subjects with or
without dementia (Marcus 2007). CLADA was run twice for each set: once with the baseline
image used as the reference space, and then again with the follow-up image used as the
reference. The absolute difference was calculated for the global and regional CTh
measurements, and a surface error map was generated to compare the annualized CTh changes
measured each way.

Comparison to FreeSurfer—CLADA was compared to FreeSurfer using a subset of seven
of the SPMS patient datasets described in the “Sequence Comparison” section. We ran
FreeSurfer version 4.5.0 on the baseline MPRAGE images. FreeSurfer CTh was measured
within the same regions as CLADA to enable direct comparison of the global and regional CTh
results. Regional labels (global, frontal, temporal, parietal and occipital ROIs) created from
CLADA were used in FreeSurfer as described in FreeSurfer ROI analysis workflow2. For
FreeSurfer analysis, semi-automatically segmented MS lesions were filled with a mean normal
appearing WM intensity estimated during segmentation. FreeSurfer was applied to the lesion-
filled MRIs without manual intervention. To reduce analysis time, this step was performed in
place of correcting the lesions after cortical reconstruction. The results were visually inspected
for errors related to the lesions. A detailed CTh difference map was generated in MNI152 space
by nonlinear registration to visualize regional differences in CTh measured by CLADA and
FreeSurfer.

Clinical Relevance—Finally, to demonstrate a potential clinical application of CLADA, we
compared the longitudinal change in global CTh in MS patients and normal healthy controls
(NHC). Sixty clinically-definite MS patients and 15 age-matched NHC were followed for two
years, with imaging performed semi-annually for MS and annually for NHC. Images were
acquired 1.5T Siemens Vision, and relevant images for this study included T1SE
[TR=600msec; TE=20msec; THK=5mm; contiguous 30 slices; matrix size=256×256; in-plane
resolution=0.94×0.94mm; NSA=1] and FLAIR [TR=6000msec; TE=105msec; TI=2000msec;
THK=3mm contiguous; matrix size=256×256; in-plane resolution=0.94×0.94mm; NSA=1].
There were no major scanner upgrades during the study. T2 hyperintense lesions were
segmented on FLAIR using a modified version of the iterated conditional modes (Besag
1986). We used images acquired at baseline, year 1, and year 2 to measure the global CTh.
Annualized CTh change was estimated by linear regression of CTh over time for each subject.
T-tests were used to compare the baseline CTh and annualized change in global CTh between
MS and NHC groups.

Bias in Estimating Atrophy—To further study the bias in estimating atrophy, we used the
method described by Yushkevich et. al. (2010) and applied it to the data from the
Reproducibility Test. This approach analyzes scan-rescan data as if it were data from an actual
longitudinal study where for each patient, the repeated scans are randomly assigned to be either
“baseline” or “follow-up”. Changes in global and regional CTh were statistically compared to
truth (no change) using t-tests.

Results
Deformable Model Algorithm Feasibility Tests

Tests using simulated data and brain MRIs demonstrated the ability of CLADA to track
convoluted surfaces (Figure 2). Figure 3 shows detailed longitudinal cortical surface detection

2http://surfer.nmr.mgh.harvard.edu/fswiki/VolumeRoiCorticalThickness
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for an atrophic brain from the OASIS dataset. While deformation from a sphere to a smaller
sphere did not cause any problems, even without the self-intersection test, a sphere with a tunnel
caused problems when the surface was deformed without testing for self-intersections because
the surface continued to grow on opposite sides. Although physically impossible in actual brain
white matter, such tunnels and disconnections can result from segmentation errors. This could
be particularly problematic for low-resolution MRIs with significant PVE. For spheres with
straight tunnels, deformations that included the self-intersection test resulted in essentially the
same final surface with or without the inclusion of the relaxation step. However, if there was
a narrowing in the center of the tunnel, similar to the shape of the cortex when white matter
voxels are misclassified due to PVE, the result of the self-intersection method alone will depend
on the position of the initial object. The relaxation step moved the self-intersection point by
relaxing and minimizing the surface area, thus reducing the dependence on the initial condition.

The algorithms were also tested on actual low resolution MRIs (Figure 4). Axial images with
5mm thick slices were reformatted in the coronal plane and resampled to have isotropic voxels
with significant partial volume averaging. The effects of including both the self-intersection
and the relaxation step can be appreciated over using the self-intersection test alone.

CLADA Results
Figure 5 shows an example of CLADA processing on serial MPRAGE images acquired 12
months apart from an MS patient. Changes in CTh were overlaid in color on the original MRI
so that regions of thinning and thickening could be visually verified. The per-subject
computational time for all 6 time points by a single-thread application was approximately 12–
15 hours without manual editing on Intel Xeon E5405 2GHz processor.

Reproducibility
Figure 6 shows boxplots of the percent differences in global and regional CTh measurements
from the scan-rescan datasets. CLADA performed better on MPRAGE than T1SE images. The
mean scan-rescan percent error in global CTh was 0.77% for the T1SE image pairs and 0.45%
for the MPRAGE image pairs. Regional CTh measures had lower percent error for MPRAGE
images in the temporal, parietal and occipital regions. Scan-rescan CTh error maps are also
shown in Figure 6. Overall, MPRAGE images showed more homogeneous errors less than 0.3
mm, and lower-resolution T1SE images resulted in larger errors up to 0.7 mm. The errors
tended to be in the inferior region of the brains.

The mean (standard deviation) intra-operator absolute difference in global mean CTh from the
MPRAGE and T1SE image sets were 0.01 (0.02) mm and 0.01 (0.01) mm, respectively. The
mean (s.d.) absolute differences in CTh change were 0.0009 (0.0012) mm/yr and 0.001 (0.001)
mm/yr for MPRAGE and T1SE, respectively. The repeated CTh change measurements were
highly correlated in both MPRAGE (slope = 1.07, r = 0.997, p < 0.0001) and T1SE (slope =
0.999, r = 0.988, p < 0.0001). The boxplot, plot of CTh changes, and the error maps are
presented in Supplementary Figure 1.

Accuracy
Twenty-seven slices from four brains imaged post-mortem were used in the accuracy test. Out
of a total of 113 ROIs initially selected for analysis, ten ROIs were omitted from three slices
due to misregistration. Thus, accuracy analysis was completed on the remaining 103 ROIs.
CTh measurements from CLADA analysis of MRIs were linearly correlated to CTh
measurements from photographs of the same tissue slices (r = 0.68, p < 0.001). The slope of
the regression line (1.06) was slightly greater than unity (Figure 7). The mean (s.d.) difference
between MRI and photograph CTh measurements was 0.17 (0.54) mm and the mean (s.d.)
absolute difference was 0.43 (0.36) mm.
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Sensitivity to Changes in Cortical Thickness
The sensitivity of CLADA for detecting small changes was measured in simulated atrophy and
growth experiments using a total of 8172 surface points collected from 20 ROIs in five OASIS
datasets (Figure 8). The maximum applied deformation was 0.3 mm, which is on the order of
expected changes due to MS. The sensitivity or the true positive rate with a cut-off of 0.1mm
detection was 86%, and the slope of the best fit line was 0.75. Measured changes were strongly
correlated to applied simulated changes (r = 0.958, p<0.001, Figure 8d). The mean absolute
error (s.d.) between measured and applied changes in CTh was 0.02 (0.02) mm.

Comparison between Image Sequences
CTh measurements differed for T1SE and MPRAGE input images (Figure 9). The mean global
CTh at baseline was 2.71±0.21 for MPRAGE and 3.57±0.23 mm for T1SE (p<0.0001). The
mean annualized changes in CTh measured from MPRAGE and T1SE images were −0.031 ±
0.02 mm and −0.024 ± 0.02 mm, respectively. The correlation was 0.569 (p=0.027). The
percent change in CTh for MPRAGE and T1SE was −1.14% for MPRAGE and −0.69% for
T1SE.

Effect of the Choice of Reference Space
Repeated CLADA analysis with either baseline or follow-up image as the reference space
resulted in a mean absolute difference in mean global CTh of 0.013±0.005mm. The regional
CTh absolute differences (s.d.) were 0.015 (0.016) in frontal, 0.023 (0.021) in temporal, 0.014
(0.013) in parietal, and 0.011 (0.012) mm in occipital lobes. The boxplot and the surface error
map are shown in Supplementary Figure 2.

Comparison with FreeSurfer
CLADA CTh measurements were correlated with FreeSurfer CTh measurements, both
globally (r = 0.73, p = 0.04) and regionally (Figure 10). The global mean absolute difference
between CLADA and FreeSurfer CTh was 0.37 mm. Regional CTh differences were slightly
higher in temporal lobes (0.42 mm) than in other lobes (frontal = 0.37 mm, parietal = 0.35 mm,
and occipital = 0.31 mm). The detailed surface error map showed that differences were
generally less than 0.5 mm, but the temporal and frontal lobes showed larger differences.
Generally, CLADA CTh measurements were higher than FreeSurfer CTh measurements.

Clinical Relevance
The 60 MS patients were age-matched with the 15 normal healthy controls (mean (s.d.) age at
baseline was 42.4 (9.4) versus 40.4 (8.8) for MS and NHC; p = 0.46). Thirty-seven of the MS
patients had relapsing-remitting disease, and 23 had SPMS. At baseline, the mean global CTh
of the MS patients was slightly smaller than NHC (3.51 ± 0.16 mm versus 3.57 ± 0.21 mm, p
= 0.152). The annualized change in global CTh was significantly higher in the MS group
(−0.025 mm/yr, or −0.71 ± 0.91 %/yr) as compared to the NHC group (−0.011 mm/yr, or −0.30
± 0.52 %/yr; p = 0.018), indicating a higher rate of cortical thinning in the MS patients over
the two years of follow-up.

Bias in Estimating Atrophy
The estimation of bias using the scan-rescan datasets was not significantly different from zero.
For the high-resolution OASIS images, the p-values were 0.657, 0.673, 0.354, 0.684, and 0.672
for global, frontal, temporal, parietal, and occipital CTh, and for the low-resolution scan-rescan
images the p-values were 0.383, 0.112, 0.983, 0.758, and 0.633 for global, frontal, temporal,
parietal, and occipital CTh respectively.
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Discussion
This work describes an efficient new method for measurement of cortical atrophy in MRIs
acquired for longitudinal studies. Existing software packages for CTh measurements are
intended for analysis of high contrast images with approximately 1 mm3 voxels. A unique
feature of CLADA is that it has been designed specifically to measure CTh change from lower
resolution 2D images with 3–5 mm slice thickness. The deformable model incorporates
relaxation on self-intersection regions to account for white matter segmentation errors, which
are common in lower resolution images with significant PVE. Our tests showed that the
algorithm was still successful in detecting cortical surfaces and estimating CTh change in 2D
images with 3–5 mm slice thickness. However, as expected, the errors from lower-resolution
images were higher than those obtained with 3D MPRAGE isotropic images. These results
suggest that although studies using older, lower-resolution MRIs may require larger sample
sizes, CLADA is applicable for analysis of retrospective datasets, such as those typically
acquired for clinical trials of MS therapeutics.

CLADA uses explicit rather than implicit surfaces for the cortical model because explicit
representations seem better suited to model highly convoluted surfaces (Zeng 1999) with
smoothness constraints (Acosta 2009). An important feature of our deformable cortical surface
detection algorithm is the incorporation of remeshing and self-intersection tests. These
components lead to an efficient multiresolution shrink-wrap algorithm that maintains surface
topology. Topological inconsistency is a common problem in cortical surface detection
algorithms initialized from a white matter mask (Fischl 2001; Han 2006). The multiresolution
remeshing approach achieves highly complex shapes while still maintaining topology. These
functions are important because deformable models require good initialization to avoid local
minima. The savings in computation time are substantial. Measurement of CTh with CLADA
takes approximately 15 hours for a single subject with six time points, whereas similar methods,
such as FreeSurfer or ASP, require approximately 20–30 hours for a single image at a single
time point (Dale 1999; MacDonald 2000).

A strength of our method is the longitudinal nature of the algorithm, as demonstrated by the
high reproducibility. CLADA uses images from all time-points to create an average image with
high SNR and to estimate the cortical surface by creating a subject-specific cortical surface
model. This model is then deformed to fit the patient’s images from individual time points.
User interaction is kept to a minimum -- only the mask for the subject’s average image is
manually edited, if necessary. Thus, CLADA takes less time to analyze follow-up images once
the initial model has been created.

Various validation tests were performed to quantitatively evaluate our new algorithm in terms
of reproducibility, accuracy, sensitivity, performance with different types of MRIs, effect of
reference space, comparison with FreeSurfer, and potential clinical relevance. Accuracy
validation through comparison with post-mortem brain tissue is a very difficult task (Das
2009). The majority of earlier reports on CTh measurements from autopsied brains did not
account for three dimensions (Mann 1991;Wegner 2006;Wiley 1991). Rosas et al. (2002) used
autopsied brain tissue to validate the accuracy of MRI CTh measurements, but restricted
measurements to the crowns of gyri where curvature is minimal. To compare 3D MRI-based
CTh measurements to 2D tissue-based CTh, we used careful co-registration of image slices to
tissue slices and selection of valid ROIs from MRI to ensure that the 3D thickness vectors were
in the plane of the corresponding tissue slices. Otherwise the measurements would not be
expected to be comparable. These steps also allowed comparison of measurements even in
curved regions and deep sulci. The results demonstrated that CTh as measured by CLADA
was correlated to CTh measured in fixed tissue at the same locations. The slope indicated that
MRI-based measurements were slightly higher than those in the fixed tissue, likely due to
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fixation effects. The absolute error of 0.43 mm was fairly low, considering the voxel size of
1.2 mm3 and complex effects of fixation. Visual inspection revealed that 4 ROIs had large
measurements errors due to inclusion of dura mater in CTh measured by CLADA. The dura
mater is difficult to remove with a single MPRAGE image (van der Kouwe 2008), and
additional imaging modalities might be helpful in future applications of CLADA.

Other complex factors may have affected the results of this validation test. First, the affine
registration applied to minimize the fixation effect may have only been partially effective as
the comparisons showed that CLADA-based CTh was thicker. In addition to tissue shrinkage,
fixation effects are complicated by the fact that damaged tissues may be susceptible to more
variable degrees of deformation than tissues that remain relatively intact. Furthermore, the
cortical surface can be non-linearly distorted during the fixation process, for example,
flattening along the midsagittal surface may occur when the hemisphere is placed in the
container of fixative. Lastly, we compared two different types of CTh measurements: the
distance between corresponding points with CLADA in MRI, and the Laplacian thickness in
photographs. CLADA thickness is defined by straight lines while the Laplacian thickness may
curve, which may underestimate the error in curved areas (Jones 2000). There are various ways
of defining the corresponding points between the inner and outer cortical surfaces for
calculation of thickness (nearest point, perpendicular distance, Laplacian, etc.). We chose the
Laplacian method because it has unique surface correspondence for CTh measurements even
in regions of high curvature. Another important limitation is the accuracy of the gold standard.
While we carefully and accurately measured CTh using high resolution photographs (pixel size
< 0.1 mm), factors like fixation and unclear tissue edges can affect the accuracy of the gold
standard.

The sensitivity test showed that CLADA was able to detect sub-voxel level change. The
detected change tended to be slightly less than the applied deformation partly due to the surface
and CTh smoothness terms incorporated into CLADA. There was also a trend for larger errors
with greater deformation. This observation may be related to an artifact of the applied
deformation, which may be misaligned with the cortical surface normal, and the absolute errors
increase proportionally with the deformation field. As demonstrated by the comparison of
measured to applied deformations in Figure 8, CLADA appeared to have lower sensitivity for
positive change (increases in CTh) than for negative change (cortical thinning), with slopes of
0.67 and 0.78, respectively. We believe this difference was primarily due to the limited range
of motion for applied deformations in the positive direction in cortical regions with small sulci,
which are common in these young normal controls. Measurements of positive deformations
selectively applied to gyri surrounded by larger sulci confirmed this explanation. In these
restricted analyses, the positive deformations had similar sensitivity as negative deformations
(slope = 0.82). Finally, part of the deviation from ideal slope (1.0) may be attributed to bias
introduced by interpolation. In this test, the warped image was interpolated but the original
image was not, and biased interpolation has been shown to lower sensitivity (Yushkevich
2010). Our simulation method avoided deep sulci and used crowns of gyri to properly simulate
atrophy or growth with simple image warping. Rather than to estimate accuracy, the main goal
of these simulations was to determine if CLADA was sufficiently sensitive to detect very small
changes in cortical CTh typical over one year in MS patients, and the results showed that it
was. If necessary, more sophisticated methods for simulating global or regional atrophy using
finite element or topology preserving models (Camara 2006;Karacali and Davatzikos 2006)
could be implemented for future studies.

The reproducibility test results demonstrated a relatively low scan-rescan error (< 1%) in all
regional CTh measurements. This was expected given that CLADA is a longitudinal algorithm
which incorporates images over all time points. Typically, with the use of longitudinal methods,
there is a trade-off of sensitivity for reproducibility (Xue 2006). However, the sensitivity of
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CLADA was evident in simulated deformation studies and in the application to serial MRIs
acquired from a group of MS patients. Our CTh results were consistent with previous reports
of accelerated GM atrophy in MS patients as compared to NHC’s (Fisher 2008).

The image sequence comparison showed that CTh was (on average) 0.8 mm larger when
measured in MRIs with 1×1×3 mm3 voxels as compared to MRIs with ~1 mm3 voxels. Most
likely, blurred tissue boundaries due to PVE led to apparently thicker cortex. This comparison
confirmed the importance of scanning subjects with the same sequence in longitudinal studies.
Intra-operator test-retest showed some variations in CTh measurements, but the variability in
longitudinal change was consistent and small (up to 0.007 mm/yr in temporal lobe) compared
to the expected rate of cortical thinning in MS (mean change of −0.025 mm/yr).

The application of CLADA to a clinical dataset showed a trend for smaller mean CTh in MS
patients than normal controls, consistent with previous findings (Calabrese 2007; Sailer
2003), and the rate of cortical thinning (−0.025 mm/year) was significantly higher than the
reported rate of −0.016 mm per decade in a cross-sectional study of normal aging (Salat
2004). We also found that the rate of cortical thinning was significantly higher in MS than
controls. A higher rate of cortical thinning was not detected in MS patients in a previous
longitudinal study (Chen 2004), however that study had fewer patients and shorter follow-up
time.

Construction of an unbiased template remains a difficult task (Guimond 2000; Joshi 2004).
Comparison of CTh measurements using either baseline or the follow-up image as the reference
space resulted in small differences, which may be the source of scan-rescan error. The
longitudinal change analysis was less affected by the choice of reference space. The differences
in CTh change were on the order of 0.001 mm/yr, which is very low compared to mean atrophy
rate of −0.025 mm/yr in MS. Thus, the choice of reference image did have a small effect on
CTh measurements despite efforts to eliminate such bias. Reference space bias was minimized
through the use of symmetric linear registration prior to averaging the images, construction of
the cortical model from the average image rather than from the baseline image, and
transformation of the cortical model to the space of each time point rather than transforming
each image to a common space prior to model deformation. Bias estimated from scan-rescan
datasets was not statistically different from zero, indicating that CLADA can be reliably applied
to longitudinal CTh studies.

There was surprisingly good agreement between CLADA measurements from MPRAGE
images and the lower resolution T1SE images acquired in the same session, with the exception
of one outlier in the patient group. The outlier in Figure 9 appeared to be related to significant
motion artifacts evident in the T1SE images at both time points. The difference in the scanner
field strength may have affected these results to some extent. However, the objective of this
test was to compare CLADA results from lower resolution MRIs to that of higher resolution,
higher contrast images in a longitudinal setting. These data support the use of CLADA to
analyze retrospective MRI datasets.

CLADA also showed good agreement with FreeSurfer, the most widely used software package
for estimation of CTh. These comparisons showed that CLADA measurements are consistently
higher than FreeSurfer by 0.36±0.14mm, on average (median=0.34mm, mode=0.3mm with
bin size = 0.1mm). This test is a cross-validation analysis to demonstrate comparability with
a widely used method rather than a comparison to a gold standard. One possible interpretation
is that the FreeSurfer measurements are accurate and CLADA has a consistent subvoxel offset
of approximately 0.3mm. However, it may also be the case that neither method is completely
accurate. Correlational agreement is informative in cross-validation comparisons where the
absolute truth is not known (Smith 2007).
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In summary, our results show that CLADA can be used for reliable quantitative measurement
of CTh change in longitudinal MRI studies. In MS, histopathological studies show that the
cortex is demyelinated (Kidd 1999) without evidence of inflammation (Peterson 2001).
Therefore, cortical atrophy most likely reflects severe cortical damage and neuronal loss rather
than effects related to the resolution of edema or pseudoatrophy (Nakamura 2010; Zivadinov
2007). There is also increasing MRI evidence of focal cortical damage as detected by DIR, T1-
weighted, susceptibility and FLAIR MRI (Geurts 2009) as well as diffuse cortical damage
(Amato 2004; Calabrese 2007). Cross-sectional and short-term longitudinal studies have found
that MRI-detected cortical damage is related to patient disability (Calabrese 2007; Charil
2007; Chen 2004) and cognitive impairment (Amato 2004). However, the overall clinical
relevance and predictive value of CTh changes for determination of disability progression over
the long-term are yet to be determined. In future studies, CLADA will be used to analyze
longitudinal CTh changes in larger groups of MS patients and control subjects in order to
determine the clinical significance of cortical thinning. CLADA will also be used for
retrospective analysis of previous MS clinical trials to investigate treatment effects on cortical
atrophy.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
CLADA flowchart. 4 major steps include: (1) Registration and averaging of all images across
time points t00, t01, t02, etc.; (2) Segmentation of brain tissues (gray matter, white matter,
cerebral spinal fluid) and lateral ventricles; (3) Construction of the deformable cortical model;
and (4) longitudinal deformation and cortical thickness (CTh) measurements at individual time
points.
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Figure 2.
Effects of including or excluding the self-intersection test and surface relaxation steps shown
as a collection of cross-sections of 3D objects (black) with the initial starting point of the
deformable surface (blue) and the resulting surface after deformation (red). The images show
cross-sectional views of a deformation starting from the blue object into the red object with
the binary image in black. Top row: With a sphere and well-located initial object, all methods
perform equally well. Second row: When there is a tunnel in the middle of the sphere, the self-
intersection test is needed to stop the deformation. Otherwise, the surfaces continue to move
toward the other side. Third and fourth rows: When the tunnel narrowing is located at the center,
the same results are obtained with or without relaxation. However, when the center is shifted
to the right, as in the fourth row, the relaxation method accurately shifts to the right with the
narrowing.
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Figure 3.
The results of CLADA on a longitudinal OASIS dataset from a demented subject, zoomed in
on the left posterior region (lateral ventricle and nearby cortex). Despite blurring in the
averaged image, the cortical surface detection is quite accurate after longitudinal deformation.
The images were acquired at intervals of 0, 248, 647, 970, and 1233 days. These images were
registered using nonbrain-constrained symmetric registration and transformed with spline
interpolation.
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Figure 4.
Comparison of the resulting surface detected with and without the relaxation step included in
the deformation. (a) resampled low resolution MRI (b) deformed cortical surface detected with
the inclusion of the self-intersection test but without surface relaxation (c) deformed cortical
surface detected with the inclusion of the self-intersection test and surface relaxation step. The
blue arrow indicates the error where the surfaces moved incorrectly due to a tunnel artifact.
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Figure 5.
An example of CLADA results from an MS patient. (a) input baseline T1-weighted MPRAGE
image, (b) follow-up MPRAGE, (c) resampled average image, (d) brain segmentation, (e) MS
lesion mask, (f) ventricle mask, (g) white matter mask, (h) the inner brain mask, (i) initial
cortical model with outer cortical surface (red) and inner cortical surface (yellow) generated
from the average image, (j) final result showing the differential cortical thickness map
(blue=atrophy, red=growth), and (k) 3D rendered cortical inner surface, and (l) rendered outer
surface.
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Figure 6.
(a) Boxplots of percent error in global and regional cortical thickness measurements from scan-
rescan tests. Reproducibility was measured from datasets consisting of T1-weighted spin echo
images of 9 MS patients (blue) and MPRAGE images of 10 healthy subjects from the OASIS
database (green). (b,c) The absolute cortical thickness difference was averaged in MNI space
and mapped back to the cortical surface. The red surface indicates large errors and dark blue
indicates no error (0 mm difference in CTh). MPRAGE images (b) showed very low variability
(less than 0.3 mm) whereas spin echo images (c) had differences of up to 0.7 mm.
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Figure 7.
An example of registration and ROI selection (arrow) for comparing the cortical thickness from
(a) brain slice and (b) corresponding MRI. Cortical thickness within the yellow boundary was
calculated from co-registered photograph and MRI ROIs and then compared. The plot in (c)
shows the results of 103 ROIs sampled from 4 different brains. (solid black line = best fit linear
regression; dashed red line = unity, where all the dots would lie if the error was zero.)
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Figure 8.
An example of the original (a), deformed (b), and difference (c) images, and results of the
sensitivity test (d). The black solid line is the best fit line of the measured thickness change
and the applied deformation (slope = 0.75, r = 0.958, p<0.001). The red dotted line is the ideal
line.
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Figure 9.
Scatter plot of annualized cortical thickness change measured from T1SE and MPRAGE
images in 15 MS patients (slope = 0.423, r=0.569, p=0.027).
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Figure 10.
Cortical thickness measured using CLADA and FreeSurfer in seven SPMS patients (a). CTh
measurements were correlated (r = 0.70, p<0.04) and consistently higher than FreeSurfer. The
surface error map shows averaged absolute CTh differences which were slightly higher in
temporal lobe (b, red surface).
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Figure 11.
Longitudinal evolution of global cortical thickness (CTh) in multiple sclerosis patients (MS)
and healthy normal controls. The annualized change in global CTh was significantly higher in
the MS group (−0.025 mm/yr, or −0.71 ± 0.91 %/yr) than control group (−0.011 mm/yr, or
−0.30 ± 0.52 %/yr; p = 0.018). The error bars are the standard deviations.
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