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The combination of electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) has
been proposed as a tool to study brain dynamics with both high temporal and high spatial resolution.
Integration through EEG-fMRI trial-by-trial coupling has been proposed as a method to combine the different
data sets and achieve temporal expansion of the fMRI data (Eichele et al., 2005). To fully benefit of this type
of analysis simultaneous EEG-fMRI acquisitions are necessary (Debener et al., 2006).
Here we address the issue of predicting the signal in one modality using information from the other
modality. We use multivariate Relevance Vector Machine (RVM) regression to “learn” the relation between
fMRI activation patterns and simultaneously acquired EEG responses in the context of a complex cognitive
task entailing an auditory cue, visual mental imagery and a control visual target. We show that multivariate
regression is a valuable approach for predicting evoked and induced oscillatory EEG responses from fMRI
time series. Prediction of EEG from fMRI is largely influenced by the overall filtering effects of the
hemodynamic response function. However, a detailed analysis of the auditory evoked responses shows that
there is a small but significant contribution of single trial modulations that can be exploited for linking
spatially-distributed patterns of fMRI activation to specific components of the simultaneously-recorded EEG
signal.
stricht, The Netherlands. Fax:
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Introduction

The complementary nature of Electroencephalography (EEG; high
temporal resolution and low spatial resolution) and functional
Magnetic Resonance Imaging (fMRI; high spatial resolution and low
temporal resolution) makes their combination appealing for investi-
gating human brain dynamics (Dale and Halgren, 2001; Valdes-Sosa
et al., 2009; Goebel and Esposito, in press; Ritter and Villringer, 2006;
Debener et al., 2006; Logothetis, 2008).

Combining EEG and fMRI presents several challenges, which stem
from the experimental and interpretational (Logothetis, 2008;
Whittingstall and Logothesis, 2009; Sirotin and Aniruddha, 2009)
difficulty of linking measurements of electrophysiological potentials
on the scalp (EEG) with local blood-oxygen-level-dependent (BOLD)
signal changes as measured by fMRI, in most cases collected in
different moments and conditions.

The development of simultaneous EEG-fMRI measurements offers
several advantages over separate session recordings, despite the
degraded EEG data quality. Simultaneous measurements guarantee
identical sensory stimulation, perception and behaviour, and also
provide a unique way to study how ongoing fluctuations of brain
signals can reflect anticipatory signals that interact with, and modify,
the processing of sensory events (Debener et al., 2006).

In the last few years several techniques have been proposed to
combine brain signals as measured by EEG and fMRI into one
analytical framework. These methods range from the separate
analysis of the data and subsequent juxtaposition of the results to
truly integrated methods (Dale and Halgren, 2001; Valdes-Sosa et al.,
2009). The combination of brain signals acquired with different
imaging modalities relies on the assumption of common neuronal
sources generating the different signals. In the case of EEG and fMRI
this results in assuming that blood-oxygen-level changes depicted in
the fMRI data and electrical activity at the level of the scalp as
measured by EEG are generated from the same neuronal activity.
Truly integrated analysis of simultaneous EEG-fMRI make this
assumption explicit in the model while simple juxtaposition verifies
this assumption post-hoc, when interpreting the results. The
superiority of truly integrated analysis in the explanation of stimulus
related effects with respect to the use of the singlemodalities has been
recently investigated using an information theoretic approach
(Ostwald et al., 2010).

Integrated analysis of multimodal data can be divided in two
categories of methods: 1) fMRI-constrained EEG analysis (equivalent
current dipoles estimates and continuous current dipoles estimates)

http://dx.doi.org/10.1016/j.neuroimage.2010.07.068
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(e.g. Dale and Halgren, 2001; Goebel and Esposito, in press); 2) EEG-
constrained fMRI analysis (fMRI correlates of EEG powermodulations,
trial-by-trial coupling) (e.g. Eichele et al., 2005).

In this article, we focus on the latter and use Relevance Vector
Machine (RVM) regression to learn the relation between simulta-
neously collected EEG and fMRI responses at single trial level and
derive a combined spatio-temporal representation of the data.

In most cases, a typical trial-by-trial analysis follows a massively
univariate approach. First, the modulation of EEG single trial
responses in both the time (ERP) and time-frequency (ERSP) domain
are extracted from a single electrode (Eichele et al., 2005) or the
weighted average multiple electrodes (e.g. by means of Independent
Component Analysis of the EEG data; Debener et al., 2005). Second,
these single trial responses are convolved with a canonical hemody-
namic response function (HRF, Friston et al., 1998) in order to
construct one or multiple EEG-based predictors. Third, these pre-
dictors are used in a conventional voxel-by-voxel statistical analysis of
the fMRI data based on the General Linear Model (GLM). Applications,
among others, to the processing of target-detection (oddball
paradigm, Eichele et al., 2005; Goldman et al., 2009), performance
monitoring (Debener et al., 2005), decision making (Mulert et al.,
2008), working memory maintenance (Scheeringa et al., 2009) and
simple auditory responses (Mayhew et al., 2010) have proved the
relation between different spatial networks (fMRI) and the electro-
encephalographic response (both at the level of event related
responses and event related spectral power). These ‘massively
univariate’ approaches, however, do not consider the multivariate
nature of the fMRI data and thus can be suboptimal in detecting
relations between EEG signals and fMRI activation patterns.

As an alternative, the use of multivariate analysis of the fMRI data
based e.g. on Independent Component Analysis (ICA) has been
proposed (Eichele et al., 2008). In this approach, a parallel
(multivariate) decomposition of the two data sets (spatial ICA in
fMRI and temporal ICA in EEG) is performed. The temporal profiles of
the fMRI spatial modes are correlated post-hoc with the EEG single
trial responses. As the fMRI data are decomposed “blindly” (without
making use of any a-priori hypothesis, e.g. the temporal profile of the
EEG modulations), this approach leaves the problem of finding the
unique (if present) fMRI network that explains most of the
information in the trial-by-trial modulation present in the EEG data
unresolved.

Theuse of correlation as themeasureof the coupling between surface
EEG and fMRI is reliable in explaining the relations between the
available data sets. However, in order to estimate an fMRI pattern (i.e.
multivariate model) associated with a specific EEG signal (thus not
using ‘blind’ models of the fMRI data or EEG data), the use of a
correlation-based approach is highly prone to overfitting (i.e. explaining
EEGmodulations with randommultivariate noise in the fMRI). In order
to avoid overfitting, the generalization to different data sets (i.e.
predictive modelling) can be used instead of correlation to validate the
estimated relation between fMRI patterns and EEG signals.

Recently, predictive models have been introduced to investigate
the relation betweenmultivariate fMRI BOLD signals and a continuous
experimental variable (Formisano et al., 2008; Friston et al., 2008;
Valente et al., submitted for publication). These methods are
particularly suited to the analysis of fMRI data given the typical
dimensionality of the problem (number of voxels NNnumber of
samples). Beyond the simple correlation, these methods allow, after a
learning phase, the prediction of the experimental variable (i.e.
stimulus, behaviour) by exploiting the multivariate information
present in the data.

We have recently introduced the use of multivariate machine-
learning based regression to the multi-modal analysis of the coupling
between two brain signals. More specifically, we have shown the
superiority of multivariate predictive models, compared to previously
introduced univariate and multivariate methods, in predicting
ongoing EEG power oscillations from simultaneously acquired BOLD
fMRI (De Martino et al., 2010).

Here we extend the use of multivariate predictive models to trial-
by-trial coupling. We test the ability of this method to predict EEG
single trial event related potentials (ERPs) or event related spectral
power (ERSP) in a mental visual imagery task (de Borst et al.,
submitted), involving processing of an acoustic cue, imagining of a
complex visual scene and a behavioral response to a control visual
target.

We show that prediction of EEG from fMRI is largely influenced by
the overall filtering effects of the hemodynamic response function, but
also that patterns of fMRI responses allow predicting a small but
significant portion of ERP and ERSP modulations.

Methods

General description of the approach

Raw EEG data are pre-processed in order to remove the artefacts
induced by the Magnetic Resonance Imaging (MRI) environment
(gradient artefact and ballistocardiogram (BCG) artefact; Allen et al.,
2000; Niazy et al., 2005; Debener et al., 2007, see below). After
epoching and removal of trials exhibiting clear artefactual responses,
EEG data are decomposed using temporal Independent Component
Analysis (tICA; Makeig et al., 1997). As for conventional trial-by-trial
analysis, single trial responses (amplitude and latency) in both time
(ERP) and time-frequency (ERSP) domain are then extracted from
selected ICs (see below). Finally, an EEG-based predictor is obtained
by convolution of single trial responses with a canonical HRF (Friston
et al., 1998), and resampled at the temporal resolution of the fMRI
data.

The use of predictive models requires both data sets (i.e. the pre-
processed fMRI time series and EEG-based predictors) to bedivided into
training and testing sets. The training set is used to learn the coupling
between fMRI and EEG at a trial-by-trial level using Relevance Vector
Machines (RVM). A map depicting the contribution of each voxel to the
learned coupling is obtained. The test data are used to assess the validity
of the learned coupling on the basis of the correlation between EEG
fluctuations from test data (after convolutionwith a canonical HRF) and
prediction obtained from fMRI-based RVM (accuracy).

Relevance Vector Machine Regression

Belowwe review briefly the concepts of RVMwhich are relevant to
our application. For a complete description of RVM we refer to
(Tipping, 2001; Formisano et al., 2008). Let us consider a data set D
consisting of an fMRI time series, represented by an N x Vmatrix X (N
being the number of volumes and V the number of voxels), and an EEG
based predictor, represented by the N dimensional vector p. Such
dataset can be described as a collection of N pairs (xi; pi), where xi
denotes a sample vector of dimension V (one volume of the fMRI time
series) and pi the corresponding one-dimensional label (the EEG trial-
by-trial modulation of a specific component).

In machine learning for fMRI data analysis it is common choice to
use a linear model due to a typically high feature (i.e. voxel) to sample
(i.e. scan) ratio. A standard linear model has the following form:

p = y x;wð Þ + ε ð1Þ

where y x;wð Þ is the deterministic input-output mapping part and ε
accounts for the noise in the measurements. The deterministic
mapping can be modelled as (Bishop, 2006):

y x;wð Þ = w
Tϕ x̃ð Þ ð2Þ
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where ϕ :ℜV→ℜM is a mapping (i.e. kernel) from V-dimensional
space of x into an M-dimensional one and w is an M-dimensional
vector of parameters.

Without loss of generality, we refer to the first functional run (X1)
as the training data set and subsequent runs as test set. Suppose that
both the time courses of the voxels in the fMRI data and the
simultaneously recorded EEG signals have zero mean. The choice of a
linear kernel results in the following model:

y X1;wð Þ = X1X
T
1w = Kw ð3Þ

withw n1 × 1ð Þbeing themodelweightsvectorandK = X1X
T
1ðn1 × n1Þ

the linear kernel constructed from the starting training dataset
X1ðn1 × VÞ.

The RVM training aims at finding an estimate of the posterior
distribution of the weights w. This posterior distribution can then be
used to perform predictions on a new dataset (second functional run).
Denotingwithw̃ the estimated posterior mean, then the prediction on
the second functional run X2ðn2 × VÞ can be expressed as:

p̃2 = X2X
T
1 w̃ ð4Þ

It is possible to express the prediction in terms of maps:

p̃2 = X2 M̃ ð5Þ

with

M̃ = X
T
1 w̃ ð6Þ

where M̃ ðV × 1Þ can be interpreted as a map of relative contribution
of the different voxels to the final prediction.
Fig. 1. (Top) General description of the mental visual imagery task including a training phas
trial includes the presentation of an auditory cue, an imagery period, the presentation of th
activation (fixed effect, deconvolution analysis) projected on the flattened representation of
codes the time (TR) of the stick predictor whose beta weight contribute the most to the respo
highlighted in both hemispheres (Auditory Cortex; Intra Parietal Sulcus; Superior Tempora
Data acquisition

Simultaneous EEG-fMRI data were collected from three healthy
subjects (all female with normal or corrected-to-normal vision, mean
age of 25 years), three runs per subject, and 72 trials per run. Fig. 1
(top) shows the timeline of one exemplary trial. Each trial of the
simultaneous EEG-fMRI experiment started with an auditory cue (one
of three 400 ms tones [800, 1000 and 1200 Hz]) presented in silent
gaps during the acquisition (see below). During the subsequent
interval the participant imagined the scene, which they previously
had learned to associate with the cue. After a variable delay (mean of
7500 ms) a mirrored or non-mirrored fragment of the scene was
visually presented as a target. The participants decided, using a
button-box, whether the fragment matched the imagined scene, or
was mirrored. All trials ended with a fixation period (mean of
10500 ms) during which the participants performed no task.

Prior to themeasurements, participants were trained on imagining
three scenes, associated with three auditory cues. After training the
participants received task instructions and were asked to vividly
visualize the correct scene after each cue in the main experiment,
while fixating at the fixation cross.

EEG data

EEG data were recorded using a 64-channel high-input impedance
amplifier system specifically designed to operate in the MRI
environment (Brainproducts, Munich, Germany). The setup consisted
of two 32-channel MR compatible EEG plus amplifiers powered by a
rechargeable power unit. The amplifiers were placed directly behind
the scanner bore inside the MR room, which allowed the use of short
wires with a total length of about 1.2 m from recording electrodes to
amplifier. Sintered Ag/AgCl ring electrodeswith built-in 5 kΩ resistors
were used. Data were recorded from 62 equidistant scalp sites
e (pre-scanning session) and the trials performed during the scanning session. A typical
e visual target and the final fixation period. (Bottom) Spatio-temporal pattern of BOLD
the mean cortex of the three subjects after cortex based alignment. The color in the map
nse (early responses in black late responses in white). Major anatomical landmarks are
l Gyrus; Superior Parietal Lubule; Pre-Motor cortex; Superior Frontal Gyrus).
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mounted in a cap system (Easycap, Falk Minow Services, Herrsching,
Germany). Continuous data were also recorded from one electrode
placed below the left eye to monitor eye blinks and another electrode
placed at the lower back for electrocardiogram (ECG) recording. All
64-channel data were referenced to the vertex. The data were
recorded with a pass-band of 0.016–250 Hz and digitized with 5000
samples/s at 16-bit resolution, resulting in a dynamic range of
16.38 mV. The amplified signal was transmitted via fiber-optic cables
to a recording PC placed outside the MR room. Electrode impedances
were maintained below 20 kΩ before recordings.

The EEG data processing was carried out using EEGLAB (Delorme
and Makeig, 2004). Functional MRI gradient and ballistocardiogram
(BCG) artefacts were removed using the EEGLAB plug-in FMRIB 1.21
(Niazy et al., 2005), as developed by the Centre for the Functional MRI
of the Brain (Oxford, UK). For each subject, temporal Independent
Component Analysis was used on the continuous data to extract 62
components after concatenating the data from the three runs. The
Independent Components (ICs) were visually reviewed in order to
discard components reflecting residual BCG or gradient artefacts
(Debener et al., 2007).

After removing channels with a high noise level, the continuous
data were epoched around the auditory cue (-1000 to 7500 ms) and
the visual target (-1000 to 1000 ms). Epochs exhibiting clear artefacts
(eye blinks or muscle artefacts) were removed prior to subsequent
processing steps. Independent component analysis was used on the
concatenated epoched data sets to find components of interest
associated to the presentation of the auditory cue, the imagery
processing and the presentation of the visual target. The use of ICA on
all available data preserves the single trial variability and allows for a
more accurate estimation of the components (i.e. better de-noising).
Furthermore the unsupervised nature of ICA does not bias the
subsequent use of predictive models as no labels are used in the
extraction of the components. In this study, relevant independent
components (ICs) were manually selected based on the inspection of
topography, ERP, ERSP, consistency across subject and correspon-
dence to results obtained in a separate EEG study conducted outside
the MR scanner (de Borst et al., submitted for publication). Time
frequency decomposition (Morlet wavelets; window size=1119 ms)
was applied to the selected ICs time courses in order to extract the
power modulations in the band [2 – 28 Hz].
Fig. 2. Independent Components from the analysis of the EEG data epoched with respect to t
and event related spectral power (ERSP) of the IC representing a typical auditory response
In order to estimate the single trial event related responses (ERP),
first themean in a baseline period [-200 to 0 ms] was removed trial-by-
trial in the selected IC time course, second the maximum (minimum)
value and its latency were extracted from temporal windows (50 ms)
selected around thepeaks of the average ERP response (e.g. auditoryN1,
visual P1). This procedure resulted in one single point per single trial as
representative of the selected peak response. Note that the single trial
latency estimation as adopted here (limited to a 50 ms window around
the mean ERP peak) likely leads to the same results if compared to the
conventional strategy in EEG-fMRI studies of attributing to each trial a
latency equal to the mean latency of the ERP peak.

ERSP single trials were characterized by a continuous response over
extend timewindows. First themean in a baseline period [-200 to 0 ms]
was removed trial-by-trial for each frequency, second the average
across a selected frequency window was considered as an estimate of
the time-varying powermodulation over a selected time interval (i.e. in
this case the estimation procedure resulted in a signal with several
points for each trial which was subsequently convolved with the
hemodynamic response function). Frequency and time windows were
chosen based on the average event related spectral power (ERSP) of the
selected ICs. All single trial measures were estimated using custom
software implemented in Matlab (The MathWorks, Inc.).

Single trial information from both the ERP and the ERSP was
subsequently convolved with a standard hemodynamic response
function (HRF, Friston et al., 1998) and re-sampled to the fMRI
sampling rate (0.5 Hz, see below) to obtain the final predictors. Prior
to the regression procedure all predictors were z-normalized.

fMRI data

Functional magnetic resonance time series were acquired in a 3 T
system (Siemens Allegra, Erlangen, Germany). Functional runs
consisted of 22 axial slices obtained with a T2*-weighted gradient
echo, EPI sequence (TR 2 s; TA 1.4 s; FOV224×224;matrix size64×64,
voxel size=3.5×3.5×4 mm). Anatomical images were obtained
using a high resolution (1×1×1 mm) T1-weighted sequence.

After standard pre-processing steps (slice-scan-time correction;
head motion correction; temporal filtering; resampling in three-
dimensional standard, Talairach, space) data sets of the three functional
runs of each subject were used for the multivariate regression analysis
he auditory cue [-1000 to 7500 ms]. a) Group topography, event related potential (ERP)
. b) Group topography, ERP and ERSP of the IC associated with imagery processing.

image of Fig.�2


Fig. 3. Results obtained from the prediction of the prominent ERP peaks of the early
auditory IC. a) Group topography and event related potential (ERP) of the IC
representing a typical auditory response (the three prominent peaks are highlighted).
b) Example of predictors obtained for the three peaks (N1, P2, Sustained Negativity) in
one exemplary subject and run (first 180 TRs). c) Group accuracy (correlation) in the
prediction of the three selected peaks. Median (red line) lower and upper quartiles
(blue box) andmean (red dot) accuracy across subjects are plotted for each of the three
peaks. The mean accuracy across subjects was computed after applying a Fisher r to z
transform to the single subject accuracies and then transforming back to r the mean
score (red dot).
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using Relevance VectorMachines (RVM). Trainingwas performed using
thedata of two runs (e.g. run1 and2) andpredictionswere evaluatedon
the data from the left out run (i.e. leave-one-run-out strategy).

Voxel pre-selection was based on conventional univariate analysis
(GLM with predictors accounting for the auditory cue, delay period
and visual cue) performed only on the training data (i.e. separately for
each cross-validation step). The most significant (N=5000) voxels
according to an F-statistics were used for the subsequent RVM
training procedure.

Evaluation of single trial modulations in multivariate predictions

Considering the presence of the hemodynamic response, a high
value of cross-correlation between predicted and actual responsemay
simply reflect a good prediction of the overall response but not
necessarily of the single-trial EEG fluctuations (see Results). To
evaluate the contribution of the actual single trial EEG modulations to
our predictions we employed three different procedures.

First, we modelled post hoc (using a GLM analysis) the time
courses of the RVM-based predictions in terms of “overall BOLD
response” (modelled as a standard fMRI predictor with constant
amplitude and duration equal to the auditory cue) and “EEG
modulations” (obtained from the EEG-based predictor, informed by
both amplitude and latency of test-data and orthogonalized with
respect to the overall BOLD response). To evaluate the contribution of
considering EEG information during learning in explaining EEG
modulations in test data, we compared the beta coefficients for the
second predictor for RVM-based predictions obtained with and
without EEG information (see Fig. 5). Comparison was based on a
two-way ANOVA for repeated measures with Subject (s1, s2, s3) and
Training (EEG-informed, no-EEG) as factors. Significance values in
Fig. 5 (pb0.05) refers to the factor “Training”; in all cases, the factor
“Subject” and the interaction term were not significant.

Second, we orthogonalized both fMRI time series (voxel-by-voxel)
and EEG-based predictors with respect to the overall BOLD response
to the experimental protocol. Training and testing was then
performed on the orthogonalized time series. This voxel-by-voxel
orthogonalization is necessary as methods of multivariate regression
are currently limited to “learning” of single predictors and treat
multiple predictors sequentially/separately.

Third, we extracted single trial values from our prediction time
courses and evaluated the coupling of predicted and real EEG
modulations on a trial-by-trial basis (Debener et al., 2005). This
procedure largely reduces the contribution of the overall hemody-
namic response to the obtained correlation values. Furthermore, the
significance of correlations is not inflated by the intrinsic autocorre-
lation of time courses.

Results

fMRI data analysis

Fig. 1 shows the spatio-temporal pattern of BOLD activation, based
on a fixed effect deconvolution analysis (F map, p=5 ⋅10−15,
Bonferroni correction performed based on the number of voxels),
projected on the flattened representation of the mean cortex of the
three subjects after cortex-based alignment (Goebel et al., 2006). The
color in the map codes for the time of the stick predictor for which the
beta weights contribute themost to the response (e.g. a dark red color
corresponds to the first TR after sound onset). After the presentation
of the auditory cue, early activation was detected in the auditory
cortex (AC) and superior temporal gyrus (STG) (black and dark red
color). In the subsequent mental imagery period, activation extended
to a large fronto-parietal network including superior parietal lobule
(SPL) and intra parietal sulcus (IPS) together with the mesial superior
frontal gyrus (SFG) (extending from the supplementary motor area to
the anterior cingulate cortex) (PreM) were activated during the
imagery period (red color). Finally, a large network of visual areas
among which the fusiform gyrus (FG) was associated with the
presentation of the target picture (light-pink to white). These results
are consistent with data acquired in a separate non-simultaneous
fMRI study (de Borst et al., submitted for publication) and with
previous studies of visual mental imagery employing a time-resolved
fMRI approach (Formisano et al., 2002).

EEG data analysis

Results obtained on the EEG data epoched with respect to the
presentation of the auditory cue [-1000 – 7500 ms] are summarized in
Fig. 2. After pre-processing and de-noising, ICs reflecting clear event
related potentials and power modulations could be detected (Fig. 2).
Themost consistent of these ICs included: a) a componentwith a typical
ERP pattern and central topography reflecting the response to the
auditory instruction (Fig. 2a) and b) a component with a fronto-central
topography and prominent ERSP power modulations in the 9 – 12 Hz
and 19 – 23 Hz frequency bands (Fig. 2b). In a separate EEG-only study,
this latter component was found to be associated with the imagery

image of Fig.�3


Fig. 4. Group maps obtained from EEG-informed and non EEG-informed training.
a) Union of the group map (after cortex based alignment) obtained from training based
on the single trial modulations of the N1, P2 and sustained negativity in each subject.
Single subject maps were sampled on the cortex, thresholded (in order to select the 40%
most relevant vertices for the prediction) and binarized. A vertex in the group map is
colour coded if present in at least two of the three single subject maps. Major
anatomical landmarks are highlighted (Heschl’ Gyrus, Central Sulcus, Intra Parietal
Sulcus, Supplementary Motor Area and Lateral Occipital Gyrus). b) Zoomed-in portion
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processing and related to the behavioural response of the subjects (i.e.
showing a difference in the ERSP between “fast” and “slow” responding
trials). Considering consistency, physiologicalplausibility and functional
interest, these two ICswere considered as signal of interest for the fMRI-
based predictions.

Prediction of auditory ERPs

To understand the relation between fMRI and EEG responses
following the auditory instruction, RVM regression of fMRI data was
used to predict the prominent ERP peaks of the early auditory IC (Fig. 3a).
The predictors (after HRF convolution and resampling to the fMRI
sampling frequency) obtained for the three separate peaks (N1, P2 and
sustained negativity, see e.g Fig. 3b) were used for RVM training in three
separate analyses. Cross-correlation between predicted and actual
response was high and significant in all cases (N1, cc=0.51,
p=5.4⋅10−32; P2, cc=0.58, p=4.1⋅10−42; Sustained Negativity,
cc=0.63, p=1.9⋅10−51, p-values computed using the number of
points in each predicted run [n=450], see Fig. 3c and Table 1 for single
run predictions).

High correlation values were obtained also when learning was
based on non-EEG informed predictors (constant amplitude and
latency defined by the duration of the auditory cue, see Table 1 for
single subject/run and mean accuracies). This indicates that high
values of correlation between predicted and actual response and their
significance (computed on the total number of 450 points) simply
reflect a good prediction of the hemodynamic response to the sound
presentation but not necessarily of the single-trial EEG fluctuations.

Fig. 4a shows the “group” map, resulting from the training of the
RVM on the three different ERP based predictors (N1, P2 and
sustained negativity). The map represents the union of the maps
obtained for the three different peaks. To obtain these maps, single
subject maps were sampled on the cortex, cortically realigned,
thresholded (to select the 40% most relevant vertices for the
prediction) and binarized. A vertex in the group map is colour
coded if present in at least two of the three single subject maps. The
map includes regions in the auditory cortex (mostly right hemi-
sphere), bilateral intraparietal sulcus (IPS), supplementarymotor area
(SMA) and lateral occipital gyrus (LOG). Fig. 4b shows a zoomed-in
portion of the predictive patterns in the right auditory cortex
associated with the three selected peaks. For comparison, the map
obtained after non-EEG informed training (i.e. one predictor with
constant amplitude and duration equal to the auditory cue is used to
predict all three peaks) is shown in Fig. 4c.
Table 1
Comparison between EEG-informed and uniformed learning. Accuracies are computed
as the correlation between fMRI-based predictions and real EEG signals after
convolution with a canonical HRF response. Mean accuracies were computed by
transforming individual r-values into z-values and re-transforming the resulting mean
z into an r-value. Statistical significance is computed using n equal to the minimum
number of points present in each run (n=450).

All EEG Info No EEG Info

Run1 Run2 Run3 Run1 Run2 Run3

S1 N1 0.46 0.54 0.61 0.51 0.55 0.60
P2 0.59 0.63 0.71 0.59 0.62 0.62
Sust. Neg. 0.62 0.64 0.66 0.60 0.67 0.70

S2 N1 0.43 0.50 0.52 0.54 0.55 0.59
P2 0.55 0.58 0.61 0.54 0.55 0.53
Sust. Neg. 0.61 0.64 0.67 0.66 0.60 0.62

S3 N1 0.45 0.49 0.59 0.50 0.55 0.58
P2 0.48 0.56 0.48 0.48 0.55 0.63
Sust. Neg. 0.55 0.63 0.68 0.59 0.60 0.75

Mean N1 0.51 0.55
p=5.4 ⋅10−32 p=3 ⋅10−37

P2 0.58 0.57
p=4.1 ⋅10−42 p=5.2 ⋅10−41

Sust. Neg. 0.63 0.65
p=1.9 ⋅10−51 p=4.1 ⋅10−56

(right auditory cortex, groupmap) of themaps obtained using three different sources of
ERP information during training (N1, P2 and sustained negativity). The maps are
displayed after thresholding single subject maps to select the best 60% (red) and 40%
(yellow) of the voxels. HG=Heschl's gyrus. c) Zoomed-in portion (right auditory
cortex, group map) of the map obtained using non EEG-informed training (one
predictor with constant amplitude and duration equal to the auditory cue is used to
predict all three peaks). Themaps are displayed after thresholding the single subjects to
select the best 60% (red) and 40% (yellow) of the voxels. HG = Heschl's gyrus.
Although the various maps are very similar, the map for the
prediction of auditory electrical activity in the N1 and P2 time
windows includes both a region in the lateral aspect of the Heschl's
Gyrus and a more posterior region on the planum temporale;
prediction maps of later electrical activity (Sustained Negativity)
only includes the region in planum temporale. Considering the small
number of subjects and the empirical thresholding procedure
employed, however, these maps are to be considered as a qualitative
description of the informative patterns and the statistical validity of
the observed difference needs to be addressed in further studies with
a larger number of subjects.

Fig. 5 shows the results of a first analysis we conducted to examine
the contribution of single trial EEGmodulations (seeMethods).With a
post hoc GLM, we compared the beta values associated to the EEG
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modulations obtained with the EEG-based learning predictions and
non-EEG based learning predictions for the same data (two-way
ANOVA for repeated measures with “Subject” and “Training” as
factors). Each prediction (N1, P2, sustained negativity) is illustrated in
a different panel. It can be seen that the beta values associated to the
EEG information are significantly (pb0.05) higher for the prediction
obtained by the EEG informed training (black bars) compared to non-
EEG-informed training (gray bars). Furthermore, the beta values are
higher (in most cases significantly at pb0.05, see Fig. 5 for detail) for
the targeted EEG component. For example, when N1 information is
used during training (top panel), the beta value associated to the N1
variations in test data (orthogonalized with respect to the protocol) is
significantly higher than the beta obtained when analyzing the non-
informed training prediction are higher than betas obtained for P2
(significantly at pb0.03) and Sustained Negativity (although not
significantly p=0.051). Similar results are found for P2 (middle
panel) and sustained negativity (lower panel). The last panel of Fig. 5
shows the single subject/run beta values associated to the three
relevant peaks (N1, P2, Sustaned Negativity) obtained with EEG
informed and non EEG-informed predictions.

Fig. 6 shows the results of a second analysis we conducted to
examine the contribution of single trial EEG modulations (see
Methods). After the standard hemodynamic response to the stimulus
was removed from the fMRI time-courses and EEG-based predictors,
the correlations between predicted and actual responses in test data
were much smaller, but still significant for P2 and Sustained
Negativity (Fig. 6b, N1, cc=0.07, p=0.07; P2, cc=0.08, p=0.03;
Sustained Negativity, cc=0.11, p=0.007, p-values computed using
the minimum number of points in each prediction [n=450]; see also
prediction accuracies at single-subject/run level in Table 2). The maps
obtained from training using single trial information of the three
auditory ERP peaks (N1, P2, Sustained Negativity) were similar to
those obtained with non-orthogonalized data (Fig. 6).

Finally, the predictions obtained from EEG-informed training on
both non-orthogonalized (Fig. 3 and Table 1) and orthogonalized data
(Fig. 6 and Table 2) were evaluated in terms of trial-by-trial
correlations. Estimates of single trial EEG modulations were obtained
averaging the signal values at three TRs after each stimulus onset for
both the RVM-based predicted response and the real EEG modula-
tions. The results of this analysis are reported in Table 3 (p-values
were computed using the minimum number of trials in each
prediction [n=68]). This table also reports the correlations obtained
in case of non-EEG informed training. It can be seen that – although
variable across runs and subjects - correlation values obtained with
EEG informed training (original and orthogonal data) are generally
higher than those obtained with non-EEG informed training.

Overall, these three different analyses of the auditory event-
related responses indicate that considering the information of single-
trial modulations in training data provides a small but significant
improvement in predicting modulations of corresponding EEG
responses in test data.

Prediction of mental imagery related oscillations

Fig. 7 shows the results obtained from the prediction of two time-
frequency windows ([9 – 12 Hz], [19 – 23 Hz], highlighted in Fig. 7a) in
Fig. 5. Statistical analysis performed on the prediction time course obtained using N1
(first panel), P2 (second panel) and Sustained Negativity (third panel) information for
training. Black bars represent the beta values associated with the orthogonalized
single-trial EEG predictor in the case of EEG-informed training. Gray bars represent the
beta values associated with the same predictor in the case of uninformed learning.
Significant (pb0.05) differences are highlighted (asterisk). Bottom panel shows beta
values associated to the relevant EEG modulations obtained from EEG-informed and
non EEG-informed predictions for each individual run/subjects.
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Table 2
Results of EEG-informed learning with fMRI time series orthogonalized with respect to
the overall auditory response. Accuracies are computed as the correlation of the EEG
modulations predicted by the fMRI and the real modulations of each run convolved
with a canonical HRF response and orthogonalized with respect to the stimulation
protocol. Mean accuracies were computed by transforming individual r-values into z-
values and re-transforming the resulting mean z into an r-value. Statistical significance
on the single runs and on the mean was computed using n equal to the minimum
number of points present in each run (n=450).

All EEG Info

Run1 Run2 Run3

S1 N1 0.10 0.04 0.08
p=0.01 p=0.16 p=0.04

P2 0.13 0.06 0.17
p=0.002 p=0.09 p=8.5 ⋅10−5

Sust. Neg. 0.16 0.09 0.12
p=1.7 ⋅10−4 p=0.01 p=0.003

S2 N1 0.09 0.01 0.07
p=0.02 p=0.3 p=0.05

P2 0.04 0.04 0.03
p=0.16 p=0.16 p=0.2

Sust. Neg. 0.07 0.07 0.03
p=0.05 p=0.05 p=0.2

S3 N1 0.003 0.14 0.03
p=0.4 p=7.6 ⋅10−4 p=0.2

P2 0.08 0.12 0.05
p=0.04 p=0.003 p=0.11

Sust. Neg. 0.17 0.13 0.14
p=8.5 ⋅10−5 p=0.002 p=7.6 ⋅10−4

Mean N1 0.06
p=0.07

P2 0.08
p=0.03

Sust. Neg. 0.11
p=0.007

Fig. 6. Results obtained from the prediction of the prominent ERP peaks of the early
auditory IC after decorrelating the fMRI signals and predictors with respect to the
experimental protocol. a) Zoomed-in portion (right auditory cortex, group map) of the
maps obtained using three different sources of ERP information during training (N1, P2
and sustained negativity). The maps are displayed after thresholding the single subjects
to select the best 40% of the voxels. HG=Heschl's gyrus. a) Group accuracy
(correlation) in the prediction of the three selected peaks. Median (red line) lower
and upper quartiles (blue box) and mean (red dot) accuracy across subjects are plotted
for each of the three peaks. The mean accuracy across subjects was computed after
applying a Fisher r to z transform to the single subject accuracies and then transforming
back to r the mean score (red dot).
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the ERSP of the IC associated with mental visual imagery (7a). Fig. 7b
shows the group map (after cortex based alignment, thresholding as in
Fig. 3d) obtained from the training of the RVM in each subject. Themap
highlights areas in bilateral intra parietal sulcus (IPS), supplementary
motor area (SMA) and lateral occipital gyrus (LOG). Group accuracy
(computed as in Fig. 3c) in theprediction of the two selectedwindows is
presented in Fig. 7c. Significance for the predictions was computed
based on the mean z value and the minimum time samples in each run
(n=450). Obtained accuracy values are lower - compared to the ERP
results ([9 – 12 Hz] cc=0.21, p=3.7⋅10−6; [19 – 23 Hz] cc=0.19,
p=2.1⋅10−5).
Prediction of visual ERPs

Fig. 8 summarizes the results obtained on the EEG data epoched
with respect to the visual target [-1000 – 1000 ms]. The top panel
shows the selected independent component (group topography and
ERP) characterized by a posterior distribution typical of early visual
processing. The middle panel shows the group map (after cortex
based alignment, thresholding as in Fig. 3c) obtained from the training
of the RVM in each subject to the prediction of the P1 peak. The map
highlights areas in the calcarine sulcus (CalS) and lateral occipital
gyrus (LOG). Group accuracy is reported in the lower panel (cc=0.75;
p=4.9 ⋅10−86, computed based on the mean z value and the
minimum points in each run [n=450]) was obtained. While highly
significant these prediction accuracies are largely determined by the
overall hemodynamic response to the visual stimulus.
Discussion

Combining fMRI with EEG allows studying brain dynamics with
high temporal and spatial resolution. In particular, the use of EEG
modulations (event related responses and oscillations), on a trial-by-
trial basis has been shown to increase the sensitivity of fMRI analysis in
a variety of tasks. This technique belongs to the broader spectrum of
multi-modal integration methods that are referred to as “integration
through prediction” (Kilner et al., 2005; Ostwald et al., 2010). Such
integration methods have been implemented by means of the
correlation between single brain locations (univariate analysis) or
global patterns (multivariate analysis) and the EEG signal (repre-
sented by a single channel or a weighted average of the channels).

Here we have introduced the use of multivariate regression and
predictive modelling to the analysis of trial-by-trial coupling in
simultaneous EEG-fMRI measurements. Beyond the simple correlation
between the two signals,wehave shown that it is possible to predict– in
a new data set - the event related (ERP and ERSP) modulations of
electrical activity as measured by surface EEG from the multivariate
patterns measured in fMRI.

Among multivariate techniques for fMRI, multivariate regression is
an appealing tool for investigating the relevant question of coupling
between simultaneous EEG/fMRI responses. Given the massive multi-
variate nature of the dataset, the use of “regularized” models such as
Relevance Vector Machines (RVM) is necessary in order to avoid
“overfitting” of the data. These methods expressly aim at optimizing
prediction abilities to unseen data sets, by estimating smooth models,
which may reduce the fit of the training set. This is in contraposition
with classical univariate models that aim at reducing the error of fit in
the available data. Maps obtained using RVM show the brain network
that (multivariately) is most relevant in generalizing the learned
coupling.

To examine the ability of multivariate regression in predicting
trial-by-trial modulations of the EEG signal we have used data from a
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Table 3
Comparison between EEG informed learning with original and orthogonalized fMRI time series and non-EEG informed training. Accuracies are computed as the correlation of
predicted (estimated as the mean over 3 TRs after each stimulus onset) and real single trial EEG modulations. Mean accuracies were computed by transforming individual r-values
into z-values and re-transforming the resulting mean z into an r-value. Statistical significance is computed using n equal to the minimum number of trials present in each run
(n=68).

All EEG Info (non orth. data) All EEG Info (orth. data) No EEG Info

Run1 Run2 Run3 Run1 Run2 Run3 Run1 Run2 Run3

S1 N1 0.23 0.21 0.24 0.16 0.21 0.19 0.02 0.14 0.004
p=0.02 p=0.03 p=0.02 p=0.07 p=0.03 p=0.05 p=0.4 p=0.1 p=0.5

P2 0.17 0.12 0.13 0.24 0.11 0.12 0.01 0.05 0.11
p=0.07 p=0.14 p=0.12 p=0.02 p=0.16 p=0.14 p=0.4 p=0.3 p=0.16

Sust. Neg. 0.30 0.11 0.14 0.22 0.17 0.09 0.11 0.09 0.04
p=0.005 p=0.16 p=0.1 p=0.02 p=0.07 p=0.2 p=0.16 p=0.2 p=0.4

S2 N1 0.19 0.15 0.12 0.17 0.16 0.16 0.01 0.05 0.006
p=0.05 p=0.1 p=0.14 p=0.07 p=0.07 p=0.07 p=0.4 p=0.33 p=0.5

P2 0.09 0.17 0.05 0.12 0.15 0.14 0.09 0.13 0.21
p=0.2 p=0.07 p=0.33 p=0.14 p=0.1 p=0.1 p=0.2 p=0.12 p=0.03

Sust. Neg. 0.17 0.19 0.33 0.22 0.12 0.27 0.01 0.09 0.09
p=0.07 p=0.05 p=0.001 p=0.02 p=0.14 p=0.009 p=0.4 p=0.2

S3 N1 0.08 0.13 0.18 0.14 0.15 0.19 0.0006 0.01 0.01
p=0.24 p=0.12 p=0.06 p=0.1 p=0.1 p=0.05 p=0.5 p=0.4 p=0.4

P2 0.19 0.35 0.09 0.33 0.11 0.09 0.01 0.01 0.0003
p=0.05 p=0.001 p=0.2 p=0.001 p=0.16 p=0.2 p=0.4 p=0.4 p=0.5

Sust. Neg. 0.14 0.09 0.24 0.13 0.18 0.18 0.01 0.14 0.07
p=0.1 p=0.2 p=0.02 p=0.13 p=0.06 p=0.06 p=0.4 p=0.1 p=0.2

Mean N1 0.17 0.17 0.03
p=0.07 p=0.07 p=0.3

P2 0.15 0.16 0.07
p=0.1 p=0.07 p=0.2

Sust. Neg. 0.19 0.18 0.07
p=0.05 p=0.06 p=0.2
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visual imagery task. The nature of the task allowed us to analyse ERP
responses associated with auditory (cue) and visual (target) proces-
sing as well as the induced ERSP modulations of a component
previously shown to be associated with the performance of the
subjects in the task. We have recently investigated the same task in a
study in which fMRI and EEG data were collected separately (de Borst
et al., submitted for publication). Here we focused our analysis to
those EEG components that replicated the results obtained outside the
MR environment (Fig. 2).

Our results show that RVM is able to capture themodulations of the
ERP peaks associated with the processing of the auditory cue (N1, P2
and Sustained Negativity). RVM-based predictions lead to a high
correlation value between predicted and actual test data. However,
because of the filtering effects of the hemodynamic response, such
high values are largely determined by the overall variations of the fMRI
signal with the auditory stimulus (the on-off type of response to the
sound), which makes it difficult evaluating the actual contribution of
EEG modulations. Comparing the results obtained with EEG informed
training to results obtained from non-EEG informed training (Table 1)
supports this conclusion.

In previous trial-by-trial EEG-fMRI coupling studies the specific
contribution of EEG information was assessed in two ways: 1)
introducing two predictors in the univariate statistical model (one
accounting for the overall “evoked” response and the second
accounting for the trial-by-trial variability decorrelated from the
first) (Eichele et al., 2005); 2) extracting single trial responses from the
fMRI time courses and measuring the trial-by-trial coupling with the
EEG modulations (Debener et al., 2005).

Here we attempted to address this same issue with three different
analyses. First, we analyzed the predicted modulations with a
statistical model accounting for the overall “evoked” response and
the trial-by-trial variability. We compared (two-way ANOVA for
repeated measures) the beta values associated to the EEG modula-
tions in predictions obtained from EEG informed training and non-
EEG informed training (Fig. 5). We show that predictions obtained
from an EEG-informed learning can better explain EEGmodulations in
test data than predictions obtainedwithout using EEG information the
training. Furthermore the predictions are selective to the specific
targeted information, which shows that - even without removing the
main response - the RVM training is able to pick up a portion of the
trial-by-trial variations of selected peaks.

Methods of multivariate regression are currently limited to
“learning” of single predictors and treat them sequentially/separately.
Therefore, in our second analysis we decorrelated both the fMRI time
series and the EEG modulations with respect to the experimental
protocol prior to the training. Despite being lower, accuracies in
predicting the test data are still significant (for the P2 and Sustained
Negativities, Fig. 6 and Table 2). The maps obtained from this analysis
highlight similar regions in the auditory cortex to the maps obtained
from learning on the non-orthogonalized data (Figs. 3 and 6).
Extension of multivariate regression to “learning” multiple predictors
at the same timemay lead to further improvements in our results as it
would allow fully multivariate modeling of both the overall response
and the single-trial variability simultaneously.

In a third analysis we evaluated the accuracies of the predictions
obtained by EEG informed (original and orthogonalized data) and non-
EEG informed training in terms of trial-by-trial coupling (Table 3). As
expected this procedure reduced the correlation values obtained from
the original data as it accounted for the effect of the hemodynamic
response to the overall protocol. Conversely, the predictions obtained
from the orthogonalized data were higher (but not more significant)
when computed on the single trials instead of the whole time course.
Predictions obtained by non-EEG informed trainingwere not significant
and in line with the results obtained in the previous analysis. The
variability of the results at single run/subject level indicates that –

although promising – this approach needs further improvement and
optimization to allow an accurate trial-by-trial prediction.

Maps obtained from the RVM-training (Fig. 4) highlight the
involvement of a broad network comprising the auditory cortex and
superior temporal gyrus (mainly on the right), intra parietal sulcus and
supplementary motor area. The maps obtained from the prediction of
the three peaks of the auditory ERPs suggest a temporal difference



Fig. 7. Results obtained from the prediction of the single trial power modulation of the
“imagery” IC. a) Group topography and event related spectral power (ERSP) of the IC
representing imagery processing. Time-frequency windows showing a prominent
synchronization are highlighted. b) Groupmap (after cortex based alignment) obtained
from the training of the RVM on the two selected time-frequency windows ([9 – 12 Hz;
19 – 23 Hz]) in each subject. Maps are thresholded as in Fig. 3. Major anatomical
landmarks are highlighted (Intra Parietal Sulcus, Supplementary Motor Area and
Lateral Occipital Gyrus).c) Group accuracy in the prediction of the power modulations
of the two selected time-frequency windows. Median (red line) lower and upper
quartiles (blue box) and mean (red dot) accuracy across subjects are plotted for each of
the time-frequency windows.

Fig. 8. Results obtained from the prediction of the prominent ERP peaks of the early
visual IC. a) Group topography and event related potential (ERP) of the IC characterized
by an early visual event related response (P1 highlighted). b)Group map (after cortex
based alignment) obtained from the training of the RVM on the P1 response in each
subject. The map is thresholded as in Fig. 3. Major anatomical landmarks are
highlighted (Calcarine Sulcus and Lateral Occipital Gyrus).
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between areas of the auditory cortex closer to the Heschl's gyrus and
more posterior regions. While physiologically plausible a definitive
statistical conclusion on these observations is limited by the small
sample of subjects.

The EEG results highlighted the contribution of a frontal EEG
component to the process of forming themental visual image (Fig. 2). In
particular, EEG measurements outside the MR scanner (de Borst et al.,
submitted for publication) showed that oscillations in the low beta and
theta ranges of this frontal component are associated with the
behavioral performances of the subjects in the imagery task. When
predicting such ERSP modulations from simultaneously acquired fMRI
data (Fig. 7), the accuracywas lower (but significant) if compared to the
ERP-based predictions. It has to be noted that as the predictors for the
imagery period were obtained from a temporal window encompassing
almost the whole trial length, these predictors were less affected by the
problem of a high degree of correlation to the experimental protocol.
This may be a contributing factor to the lower prediction accuracies.
Furthermore, degraded quality of the single trial oscillations and a non
adequate selection for the HRF used for the convolution (fixed to same
parameters used for the ERP modulations) may be other relevant
factors. Nonetheless the maps obtained from the training of the RVM
(Fig. 7) point towards the hypothesized coupling between the frontal
EEG component and the supplementary motor area (de Borst et al.,
submitted for publication) within a network of areas including the
bilateral intra parietal sulcus and ventral visual areas.

To show that our method can produce physiologically plausible
results we also predicted the ERP responses associated with the
presentation of the visual target (Fig. 8). While highly significant
these results are still contaminated by the overall hemodynamic
response. Similar analyses as the one carried on for the auditory ERPs
are needed to evaluate the contribution to the prediction of the single
trial ERP modulations.

Conclusions

We have shown that multivariate regression is a valuable tool to
study the relation between single trial modulations as measured by
EEG and fMRI. While previously introduced methods for measuring
trial-by-trial coupling are based on the simple correlation between
simultaneously acquired signals, we suggest that the use of machine
learning approaches as RVM allows evaluating the real capability of
predicting one modality (EEG) from another modality (fMRI).
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