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Abstract
Changes in brain structure occur in remote regions following focal damage such as stroke. Such
changes could disrupt processing of information across widely distributed brain networks. We
used diffusion MRI tractography to assess connectivity between brain regions in 9 chronic stroke
patients and 18 age-matched controls. We applied complex network analysis to calculate
‘communicability’, a measure of the ease with which information can travel across a network.
Clustering individuals based on communicability separated patient and control groups, not only in
the lesioned hemisphere but also in the contralesional hemisphere, despite the absence of gross
structural pathology in the latter. In our highly selected patient group, lesions were localised to the
left basal ganglia/internal capsule. We found reduced communicability in patients in regions
surrounding the lesions in the affected hemisphere. In addition, communicability was reduced in
homologous locations in the contralesional hemisphere for a subset of these regions. We interpret
this as evidence for secondary degeneration of fibre pathways which occurs in remote regions
interconnected, directly or indirectly, with the area of primary damage. We also identified regions
with increased communicability in patients that could represent adaptive, plastic changes post-
stroke. Network analysis provides new and powerful tools for understanding subtle changes in
interactions across widely distributed brain networks following stroke.
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Introduction
Following a focal stroke, there are multiple ways in which the structure and function of the
rest of the brain may change. The region immediately surrounding a stroke undergoes
potentially reversible structural change and anterograde or retrograde degeneration of axons
intersecting or connecting with a lesion site may occur. In addition to these degenerative
structural changes, animal studies suggest that the brain has the capacity for potentially
adaptive structural change in response to injury, including dendritic branching and
synaptogenesis ( Biernaskie & Corbett, 2001 and Jones et al., 1996) and even growth of new
long-range connections (Dancause et al., 2005).

Diffusion tensor imaging (DTI) (Basser et al., 1994) and tractography (Jones et al., 1999 and
Mori et al., 1999) provide methods for interrogating white matter structure in vivo.
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Reductions in fractional anisotropy (FA), a DTI-derived measure of white matter
microstructure ( Beaulieu, 2002 and Beaulieu, 2009), have been found above and below a
stroke location, consistent with patterns of Wallerian and retrograde degeneration ( Pierpaoli
et al., 2001 and Werring et al., 2000). DTI-based measures have been used not only to detect
degeneration but also to pinpoint potentially beneficial white matter change. A recent study
found that, while poorly recovered patients had reduced FA in both corticospinal tracts
relative to healthy controls, well-recovered stroke patients had elevated FA relative to
controls in the same regions (Schaechter et al., 2009). This observation is striking as it
shows not only that white matter microstructure can be apparently improved following
stroke, but also that such changes occur not just in the stroke hemisphere but also in the
contralesional hemisphere. This result complements previous demonstrations of functional
plasticity in the contralesional hemisphere in stroke patients ( Johansen-Berg et al., 2002 and
Lotze et al., 2006) and of adaptive white matter plasticity in healthy subjects ( Keller & Just,
2009 and Scholz et al., 2009).

However, one difficulty with voxel-based assessments of structural change following stroke
is the underlying assumption that regions of change will be highly co-localised across
individuals. Given the heterogeneity in even carefully selected stroke populations, this
approach may miss potentially interesting findings if they occur with a less consistent
topography. An alternative approach to assessing structural connectivity is provided by
complex network analysis. This refers to a class of mathematical tools that have been used
to understand networks present in contexts as diverse as the internet, disease spread,
scientific citations or protein interactions (Barabasi, 2009). These approaches have proved
exceptionally powerful in characterising structural and functional brain networks (Bullmore
and Sporns, 2009). Briefly, the brain is divided up according to some parcellation scheme
(e.g., into cortical areas) to form the nodes of the network, then some measure of
connectivity is derived between nodes (e.g., correlation in functional responses (Salvador et
al., 2005), co-variation in cortical thickness (He et al., 2007) or probability of anatomical
connectivity (Gong et al., 2009 and Iturria-Medina et al., 2008) to characterise network
‘edges’. Once a network has been defined in this way, various measures can be derived to
describe the organisation of the network. Such measures can be relatively global, capturing
network organisation by a summary value describing the connectivity of a whole brain or
hemisphere, or can be related back to thenetwork in order to determine which brain regions
are driving observed differences in network measures.

Complex network analysis approaches have recently been shown to be sensitive to subtle
pathology in a number of neurological and neuropsychiatric disorders including Alzheimer’s
Disease (He et al., 2008) and Schizophrenia (Bassett et al., 2008). In general, theaim has
been to identify a network measure that allows separation of patients from healthy controls
with a high degree of sensitivity and specificity. In stroke, there is less need for an imaging
measure to assist with diagnosis, as conventional imaging does well in this regard. Rather,
we wished to assess whether complex network analysis could be used to test the hypothesis
that regions remote from the lesion site (including those in the contralesional hemisphere)
undergo structural change, both degenerative and potentially adaptive, following unilateral
stroke.

Here, we provide the first application of complex network analysis to the study of structural
white matter changes following stroke. We used probabilistic diffusion weighted imaging
tractography (Behrens et al., 2003 and Behrens et al., 2007) to study a group of chronic
stroke patients following left hemisphere subcortical stroke. We derived connectivity
estimates between cortical and subcortical brain regions of the left (lesioned) and right
(contralesional) hemisphere and use these to derive weighted measures of
‘communicability’, a novel network measure that measures the ease with which information
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can flow between network nodes, using both direct and indirect paths (Crofts and Higham,
2009). By comparing connectivity and communicability between patients and controls we
can test the hypothesis that changes in global or local network structure occur following
stroke.

Materials and Methods
Subjects

9 chronic stroke patients (mean age 64, range: 41-83, 1 female) and 18 controls (mean age
58 years, range: 30-81 years, 7 females) participated in the study (Table 1). Patients were at
least 6 months post first ischaemic or haemorrhagic left hemisphere subcortical stroke
without concurrence of any other neurological condition. Healthy controls were recruited via
advertisements and word of mouth. All subjects gave written informed consent to participate
in accordance with the Declaration of Helsinki and local ethical approval (05/Q1607/63).

Data Acquisition
Diffusion scans were obtained on a 1.5T Siemens Sonata MR scanner with maximum
gradient strength of 40 mT.m1. Diffusion-weighted data were acquired using echo planar
imaging (TR = 8500 ms; TE = 80 ms 53 × 2.5 mm thick axial slices; voxel size of 2.5 × 2.5
× 2.5 mm; NEX = 2; FOV = 240 × 240 mm; matrix = 96 × 96). The diffusion weighting was
isotropically distributed in 60 directions using a b value of 1000 s.mm−2. Also, T1-weighted
images (3D FLASH, TE = 5.65 ms, TR = 12 ms, flip angle = 19o, 256 axial slices, voxel
size 1 mm× 1mm × 1 mm) were acquired to improve registration to standarad space.

Data Analysis
FMRIB’s Diffusion Toolbox (FDT), part of the FMRIB Software Library FSL (Smith et al.,
2004), was used to perform initial processing of DTI data. Motion and eddy current
correction as well as image averaging were carried out on the diffusion data. Prior to
analysis, the structural volumes were registered to MNI standard space using FMRIB’s
Linear Registration Tool FLIRT. Diffusion modeling applied a probabilistic diffusion model
(Behrens et al., 2003), modified to allow for estimates of multiple fibre directions (Behrens
et al., 2007). Probabilistic tractography was then run to quantify structural connectivity
between brain regions.

Network Construction
We define a network using the Harvard-Oxford cortical and subcortical atlases as
implemented in fslview, part of FSL, thereby partitioning each hemisphere into 56
anatomically distinct regions– 48 cortical and 8 subcortical (Table 2). For each subject,
probabilistic tractography was run from voxels within each mask of a particular hemisphere
to assess the intra-hemispheric connectivity with every other brain voxel, ignoring any
connections that cross the midline. The approach draws a sample from each fibre orientation
distribution at the current voxel and chooses the sample closest to the orientation of its
previous step. For each subject, we initiated 5000 samples from the connectivity distribution
from each seed voxel. For each pair of seed and target masks in a particular hemisphere, we
stored the average (median) connectivity value from seed voxels to target voxels in a matrix,
P. Note that the resulting matrix is not necessarily symmetric. To impose symmetry on this
matrix we construct A = (P + PT) /2. This results in a pair of weighted, undirected graphs of
order 56 for each subject.
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Network analysis
Suppose we are given a network, i.e. a list of N nodes (brain regions) along with the
corresponding list of undirected edges (white matter pathways) connecting those nodes.
Mathematically, this is an undirected, unweighted graph that can be defined in terms of the
N × N adjacency matrix A whose i, jth element is

We will always set aii = 0 so that self links are disallowed.

Given the adjacency matrix of a graph one can compute many important network
characteristics. For example, the degree of node i, that is, the number of edges incident to it,
is given by (1)

The average degree of the network is then simply given by (∑i degi)/N Another useful
observation is that the i, jth entry of the kth power of the adjacency matrix (2)

counts the number of walks of length k starting at node i and ending at node j. Here a walk
of length k is any traversal through the network that follows k, not necessarily distinct, edges
and length refers to the number of edges involved (Fig. 1).

Network communicability
Communication, to be understood here as transmission of information through a network, is
usually considered to take place along geodesics. However, in many real-world networks the
spread of information is not restricted only to shortest paths (Borgatti, 2005 and Newman,
2005); in the context of our study, a connection between two adjacent brain regions may be
disrupted due to the stroke but the two regions may still be able to communicate via longer
paths. Recently, Estrada and Hatano (2008) introduced the concept of communicability as a
quantitative measure of the ease with which ‘information’ can spread across a network. This
new measure deals with the issue that absence of an edge between a pair of nodes is not
necessarily an indication of a low degree of ‘connectedness’ between them.

Estrada and Hatano assigned a measure of communicability between two nodes by counting
the total number of walks between them, with walks of length k scaled by a factor of 1/ k !,
so that longer walks have less influence than shorter walks. This scaling is particularly
important in our context since experimental noise is expected to increase with walk length.
In this way, communicability between distinct nodes i and j may be defined as (3)

which may be written
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where exp denotes the matrix exponential.

In words, the communicability gives a weighted sum of the number of walks between nodes
i and j; the weighting is such that shorter walks make a larger contribution. Weighted
networks

In the present study, connectivity information, which is provided by the probabilistic
tractography step, takes the from of real-valued, positive weights. Here a larger weight aij
indicates a greater ‘strength’ of connection between nodes i and j (note that strength simply
refers to the number of tractography streamlines that connect two nodes, and does not relate
in a straightforward way to anatomical strength of connection). In this more general setting,
both identities (1) and (2) remain valid, however, their interpretation changes slightly. In (1)
the notion of degree is replaced by that of the weighted, or generalised, degree. Now, rather
than counting the number of edges incident to node i we compute the sum of weights along
incident edges. In the case of identity (2), rather than simply making a zero/one contribution
depending upon whether the walk i  r1  r2  ⋯ rk − 1  j is possible, the term ai, r1ar1,
r2 … ark − 2, rk − 1ark − 1, j contributes the product of the weights along all the edges in the
walk.

Although it is possible to define communicability for a weighted network as in Eq. (3),
difficulties are likely to arise if the weights are poorly calibrated. Nodes with unusually large
weights typically dominate the results. Crofts and Higham (2009) therefore argued for a
normalisation step in which the weight aij is divided by the product

allowing communicability between distinct nodes i and j in a weighted network to be
defined as (4)

Here the N × N diagonal matrix

The study in (Crofts and Higham, 2009) showed that this new measure adds significant
value to the raw connectivity data when unsupervised classification methods are to be
applied.

Note that the communicability matrix can be used to define a new network - the so called
communicability network - whose nodes coincide with those of the original network, but
whose weighted links are given by Eq. (4). In the analysis to follow the communicability
network is used as the basis of our computational study.
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Spectral clustering
In order to compare the two classes, strokes and controls, we build a new m × 27 (27 = 9 +
18 number of data sets) data matrix Adata, whose columns, (Adata)j, contain the m attributes
of interest for the jth subject. For example, when we attempt to distinguish between the two
classes by looking for changes in their respective connectivity patterns, we consider
connections between every pair of brain regions and so we take as attributes the 1540 (=
(562 – 56) /2) distinct connectivity weights—this matrix will be denoted Aconn. Another
attribute that we compare between groups is the generalised degree. Now, the i, jth entry of
the 56 × 27 data matrix, Adeg, contains the generalised degree of the ith node (brain region)
for the jth subject. The generalised degree matrix carries less detailed information than the
full connectivity matrix, Aconn, but it has the benefit of dealing directly with individual brain
regions, as opposed to connections between brain regions, making classification results
easier to interpret. Note that a similar construction can be performed for the
communicability networks, and in this case we use Cconn and Cdeg to denote the respective
data matrices. To summarise, matrices Aconn and Cconn represent the connectivity or
communicability between all pairs of brain regions in each subject; Adeg and Cdeg
summarise connectivity or communicability scores for each brain region in each subject.
While connectivity scores reflect the direct path between two regions, communicability
scores reflect direct and all possible indirect paths.

We perform unsupervised clustering of subjects based on connectivity data in order to assess
how accurately we can distinguish between strokes and controls. Unsupervised clustering
was performed using the singular value decomposition (SVD; Higham et al., 2007). The
approach is closely related to many other techniques, such as Principal Components
Analysis, support vector machines/kernel based methods, machine learning and
multidimensional scaling (Cox & Cox, 1994, MacKay, 2003 and Skillicorn, 2007). It
compresses large amounts of information into a small number of dimensions, allowing for
simple visual interpretation of the data and for further processing, such as clustering or
ranking.

In the case of compression to one dimension, the ith subject is represented by a single real
number, given by the ith component of a right singular vector,v[2]. We focus here on the
extent to which v[2] is able to differentiate between subject types. In the case where the 56 ×
27 generalised degree matrix Cdeg is used, the corresponding left singular value, u[2], has 56
components and thereby assigns a number to each brain region. If v[2] successfully
separates the two groups, then the extreme (most positive and most negative) components in
u[2] indicate which brain regions are most responsible for the separation.

Statistical Validation
In order to determine which brain regions were driving any separation between groups we
performed a repeated measures ANOVA on the communicability degree (Cdeg) scores for
each region followed by post-hoc independent samples t-tests comparing Cdeg between
patients and controls for each of the 56 brain regions considered. We used Bonferonni
correction to calculate a t-threshold of t > 3.75 (df = 25) to be equivalent to a corrected
probability threshold of p < 0.05 (uncorrected p = 0.05/56 = 0.0009). We also report trends
at t > 3.4 (corrected p < 0.1, uncorrected p = 0.1/56 = 0.002). For regions found to have a
significant change in Cdeg we tested for a change in Cconn for each connectionof each region
using independent sample t-tests with a corrected t-threshold of t > 3.7(df = 25) and tested
for correlations between Cdeg and Fugl-Meyer score, stroke volume and time post stroke
using Pearson correlation and a Bonferroni corrected p-threshold of p = 0.05/ (number of
regions tested).
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Results
Spectral Clustering Using Connectivity and Communicability Measures

Measures of connectivity (‘direct’ connections) and communicability (direct plus indirect
connections) between all network nodes were stored in matrices of 1540 values by 27
subjects (Aconn and Cconn). Matrices of measures of degree (Adeg and Cdeg) summarise
connectivity or communicability measures for each of the 56 brain regions for each subject.
We applied spectral clustering to Aconn, Cconn, Adeg and Cdeg (Fig. 2). Most measures
broadly separated stroke patients from healthy control subjects. Interestingly, this separation
was apparent not only using data from the lesioned (left) hemisphere but also based on data
from the contralesional (right) hemisphere (Fig. 2). This clustering did not simply reflect
gender differences (Supplementary Figure 5).

While it is unsurprising that structural connectivity is altered in the lesioned hemisphere, the
observation that communicability of structural networks in the contralesional hemisphere
also differentiates between groups merits further interrogation. We opted to explore this
finding using the communicability measures (Cconn and Cdeg) as these performed better than
connectivity measures (Aconn and Adeg) in separating patients from controls (Fig. 2). We
first tested whether the separation was driven by particular brain regions or connections.
While the total number of connections under consideration is large (1540), the number of
brain regions (56) is more amenable to exploration. To limit the multiple comparisons
problem, we chose first to test whether specific brain regions were implicated and then to
test whether particular connections from those regions were involved. An inspection of the
u[2] scores for both hemispheres reveals that extreme values from a small number of brain
regions are driving the separation between patients and controls (Fig. 3).

Between Group Differences in Communicability Measures
A repeated measures ANOVA of communicability degree scores for each of the 56 regions
across both hemispheres revealed a highly significant effect of hemisphere (F(1, 25) = 9.5, p
= 0.005) so we went on to test data from left (lesioned) and right (contralesional)
hemisphere separately. A repeated measures ANOVA of data from the left (lesioned)
hemisphere revealed a significant main effect of brain area (F(55, 1375) = 66.4, p < 0.001),
a significant interaction between area and group (F(55, 1375) = 7.0, p < 0.001), and a trend
towards a main effect of group (F(1, 25) = 3.5, p = 0.07). An analysis of data from the right
(contralesional) hemisphere showed a significant main effect of area (F(55, 1375) = 66.0, p
< 0.001) and a significant interaction between area and group (F(55, 1375) = 6.0, p < 0.01)
but no main effect of group (F(1, 25) = 0.94, p = 0.3).

Location of Regions of Altered Communicability
Given the interactions with group identified by the ANOVAs, we performed a series of post-
hoc t-tests to compare the communicability degree between patients and controls for each
brain region separately (Fig. 4).

Stroke patients showed significantly reduced Cdeg (compared with healthy controls) in
relation to left (lesioned) hemisphere regions including the caudate (t = 6.1, corrected p <
0.001), paracingulate gyrus (t = 5.1, df = 25, corrected p < 0.001), thalamus (t = 4.9,
corrected p = 0.003), and planum polare (t = 4.7, corrected p = 0.005) and trends for reduced
values in relation to Heschl’s gyrus (t = 3.7, corrected p = 0.06) (Fig. 4a). In the right
(contralesional) hemisphere, stroke patients showed significantly reduced communicability
compared with healthy controls in relation to the caudate (t = 5.7, corrected p < 0.001), and
planum polare (t = 4.3, corrected p = 0.013) and trends for reduced values in relation to
Heschl’s gyrus (t = 3.6, corrected p = 0.077) (Fig. 4b).
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Patients showed significantly increased communicability degree compared with healthy
controls in relation to left (lesioned) hemisphere regions including the inferior temporal
gyrus (anterior division; t = – 4.6, corrected p = 0.006) and cingulate gyrus (posterior
division) (t = – 4.4, p = 0.01) (Fig. 4a). In the right (contralesional) hemisphere, patients
showed significantly increased Cdeg compared with healthy controls in relation to the
orbitofrontal cortex (t = – 4.7, corrected p = 0.0045) and temporal fusiform cortex (anterior
division; t = – 4.3, corrected p = 0.013) and a trend for higher values in relation to the
inferior temporal gyrus (posterior division; t = – 3.6, corrected p = 0.077) (Fig. 4b).

For each region found to have altered communicability degree in patients, we went on to test
for significant differences in communicability scores (Cconn) for individual connections
between patients and controls (Supplementary Table 1). Amongst areas showing reduced
Cdeg in patients compared with controls, significant reductions in Cconn were widespread
(20/55 connections) for the caudate in the lesioned hemisphere. Other regions in the lesioned
and contralesional showed a more selective pattern of significantly increased
communicability over connections (left thalamus (8/56), left planum polare (5/55); left
paracingulate (0/55); right caudate (7/55); right planum polare (6/55)). For regions in which
we found increased Cdeg in patients compared with controls, significant increases in Cconn
were found in very few connections for either hemisphere (Supplementary Table 2; left
posterior cingulate (0/55); left inferior frontal gyrus, anterior division (4/55); right frontal
orbital cortex (3/55); right temporal fusiform gyrus (1/55)).

In addition, for those regions showing a significant difference in Cdeg between patients and
controls, we tested for correlations between Cdeg and Fugl-Meyer score, stroke volume and
time post-stroke within the patient group. None of these correlations was significant (all
corrected p > 0.05).

We went on to consider the spatial distribution of regions of altered communicability in
patients relative to the location of stroke lesions. In this group of highly selected stroke
patients, lesions were clustered around the internal capsule, basal ganglia region (Fig. 5).
Regions of reduced communicability in stroke patients tended to be located around the
lesion sites in the lesioned hemisphere and around their homologous locations in the
contralesional hemisphere (Fig. 5). Regions of increased communicability in patients were
located in prefrontal, cingulate and temporal cortical regions (Fig. 5). We have previously
tested for differences in fractional anisotropy (FA) between the patients and control subjects
studied here (Bosnell et al., submitted for publication) and have overlaid those findings onto
the results reported here in Fig. 5. In the lesioned hemisphere, regions of reduced
communicability co-localised with regions of reduced FA (Fig. 5). In the contralesional
hemisphere, however, our previous study of FA only found evidence for reductions in some
parts of the corpus callosum. We did not previously find evidence for reduced FA around
the pathways showing reduced communicability in the contralesional hemisphere in the
current study.

Basic Network Measures in Patients and Controls
To test whether the communicability measure provided information beyond that available
from basic network measures we compared histograms of matrix norms, weighted clustering
coefficients, and degree distributions, between patients and controls (Supplementary Figures
9, 10 and 11). None of these measures differentiated between patients and controls using
data from the contralesional hemisphere. While these measures capture certain features of
the network architecture, they do not appear to preserve information on the correspondence
between nodes across subjects; such correspondences are important for capturing between-
group differences. Spectral reordering based on weighted path-length, weighted clustering

Crofts et al. Page 8

Neuroimage. Author manuscript; available in PMC 2013 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



coefficients and eigenvector centrality also failed to differentiate between patients and
controls (Supplementary Figures 12, 13 and 14).

Discussion
Using novel network analysis methods, we found evidence for altered structural connectivity
not only in the lesioned hemisphere but also in the contralesional hemisphere of chronic
stroke patients. Clustering of individuals according to measures of structural connectivity
scores broadly separated patients with sub-cortical left hemisphere strokes from age-
matched controls using data from the left (lesioned) hemisphere or the right (contralesional)
hemisphere, particularly when both direct and indirect connections were considered by using
a measure of “communicability”. This finding suggests that alterations in white matter
structure that influence network measures of efficiency of communication are present in
both hemispheres following stroke.

We found that the communicability scores of a few brain regions drove separation of
patients and controls. Our highly selected patient group all had subcortical strokes located
around the basal ganglia/internal capsule. Regions of reduced communicability in patients
tended to cluster around the stroke locations: in the lesioned hemisphere these included the
caudate, paracingulate gyrus, thalamus, planum polare and Heschl’s gyrus. A subset of these
regions (caudate, planum polare, Heschl’s gyrus) also showed evidence for reduced
communicability in patients in the contralesional hemisphere. These areas in the
contralesional hemisphere are remote from the site of primary damage, but are anatomically
connected, directly or indirectly, with their homologues in the lesioned hemisphere (Fisher
et al., 1984 and Pandya & Rosene, 1993 ).

This pattern of reduced communicability shows some similarities to previously reported
patterns of secondary degeneration detected using other imaging modalities or measures. For
example, diffusion studies of fractional anisotropy (FA) reveal patterns of anterograde
(Wallerian) and retrograde white matter tract degeneration in pathways in the lesioned
hemisphere connected to a site of primary damage (Liang et al., 2007, Pierpaoli et al., 2001,
Thomalla et al., 2004 and Werring et al., 2000). Although such changes are rarely detected
in the contralesional hemisphere, observations of transhemispheric diaschisis (Andrews,
1991) support the idea that widespread interconnected regions, even in the contralesional
hemisphere, can be functionally and structurally altered after a focal lesion. We propose that
multivariate network measures such as that used here are more sensitive for detection of
subtle transhemispheric connectivity change than the simple, univariate diffusion MRI
measures of white matter structure.

In addition to regions of reduced communicability, we also found some areas of greater
communicability in patients compared to controls: the left (lesioned) anterior inferior
temporal gyrus and posterior cingulate gyrus and the right (contralesional) orbitofrontal
cortex, anterior temporal fusiform cortex and posterior inferior temporal gyrus. One possible
interpretation of these changes is that increased communicability reflects adaptive changes
in white matter structure that have occurred secondary to the stroke. Consistent with this
possibility, a previous study, using FA as a measure of white matter microstructure, reported
increased FA in patients in an area of the corticospinal tract where a positive correlation
between FA and motor skill was found (Schaechter et al., 2009) and animal studies have
reported formation of novel cortico-cortical connections following damage (Dancause et al.,
2005). Furthermore, longitudinal studies in healthy subjects support the idea that
functionally significant white matter structural changes can occur over weeks or months in
the adult human brain ( Keller & Just, 2009 and Scholz et al., 2009). An alternative
hypothesis is that the changes predated the lesion and represent a marker of stroke risk.

Crofts et al. Page 9

Neuroimage. Author manuscript; available in PMC 2013 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



However, apparent increases in connectivity measures when using probabilistic tractography
also could be an indirect consequence of decreases of tract integrity elsewhere. This
possibility arises because a fixed number of tractography streamlines are initiated from each
seed voxel. Therefore, if the connectivity of some regions is reduced, then the pathways that
should have reached those regions must have either reached other targets or been terminated
for other reasons (in practice exceeding the curvature threshold). Increased uncertainty on
estimates of fiber directions (due to the presence of white matter damage) will result in
tractography pathways diverging away from their true destination and potentially
accumulating in adjacent regions. However, pathways relating to the specific regions
associated with increased communicability in the current study do not have an obvious
anatomical relationship to those damaged by the stroke. It is therefore difficult to interpret
the increased communicability finding with confidence. Future longitudinal studies, using
network measures of brain structure, could be used to distinguish hypotheses concerning
risk-related, adaptive, or incidental change related to focal damage.

The current study is limited by the small number of patients tested. However, our patient
group was highly selected to include only those with left hemisphere subcortical stroke.
Enforcing strict anatomical inclusion criteria means that relatively consistent regional
responses were expected, increasing study sensitivity. It is well established that age has
significant effects on anatomical connectivity, with increasing age associated with
decreasing microstructural integrity (Giorgio et al., 2010, Pfefferbaum et al., 2000 and Salat
et al., 2005) and decreased probability of anatomical connectivity between cortical regions
(Gong et al., 2009). We selected healthy controls that were age-matched to our stroke group,
but both groups had a wide age range. We demonstrated, however, that age did not have any
effect on our clustering of individuals into groups (Supplementary Figure 6) and so we do
not believe that the wide age range influenced the results of interest.

In mathematical terms, communicability assesses the ease with which information can flow
across a network (Crofts & Higham, 2009 and Estrada & Hatano, 2008) using both direct
and indirect routes between nodes, but interpretation of this measure in biological terms is
challenging. Our data only reflect structural properties of the white matter and so we have
no assessment of information flow in a physiological sense. The structure of the network
that we construct depends on the connectivity values provided by diffusion tractography and
will therefore reflect the integrity of white matter connections between brain regions.
Communicability assesses how easy it is to travel between nodes in the constructed network
and will therefore depend in part on the structural integrity of pathways. However, it is
important to note that the effects detected in our current study have not been observed in
previous studies using more conventional measures of white matter microstructure, such as
FA: our prior study of this same cohort did not detect extensive reductions in FA in the
contralesional hemisphere using whole brain analysis (Bosnell et al., submitted for
publication), consistent with a previous region-of-interest study of FA changes following
stroke (Liang et al., 2007). Therefore, the weighted communicability measure may offer
increased sensitivity to subtle change in brain structural networks, particularly if the precise
location of change is difficult to predict.

Brain network analysis has been shown to depend on the strategy used for brain parcellation
and node definition (Wang et al., 2009 and Zalesky et al., 2010). Here, we used an atlas of
cortical regions to define nodes. It is possible that greater sensitivity could be achieved by
using individually defined cortical parcellations, based on gross anatomical landmarks or on
the connectivity data themselves (Perrin et al., 2008).

Our results highlight the possibilities offered by network characterisation of brain structure
in disease and complement recent studies using connectivity analyses to interrogate
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functional network changes after stroke ( Grefkes et al., 2008, Mintzopoulos et al., 2009 and
Sharma et al., 2009). Functional studies have found, for example, that even when regional
activation patterns and motor behaviour appear normal in patients, there is evidence for
reduced functional connectivity between premotor and supplementary areas
duringmovement (Sharma et al., 2009). Future studies should exploit the power of network
analysis of brain structure and function to gain a fuller understanding of the processes of
degeneration or adaptation that occur following stroke.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

References
Andrews RJ. Transhemispheric diachisis. A review and comment. Stroke. 1991; 22(7):943–949.

[PubMed: 1853416]

Barabasi AL. Scale-free networks: a decade and beyond. Science. 2009; 325(5939):412–413.
[PubMed: 19628854]

Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys. J. 1994;
66(1):259–267. [PubMed: 8130344]

Bassett D, Bulmore E, Verchinski BA, Mattay VS, Weinberger DR, Meyer-Lindenberg A.
Hierarchical organization of human cortical networks in health and schizophrenia. J. Neurosci.
2008; 28(37):9239–9248. [PubMed: 18784304]

Beaulieu C. The basis of anisotropic water diffusion in the nervous system - a technical review. NMR
Biomed. 2002; 15(7–8):435–455. [PubMed: 12489094]

Beaulieu, C. The biological basis of diffusion anisotropy. In: Johansen-Berg, H.; Behrens, TEJ.,
editors. Diffusion MRI: From quantitative measurement to in-vivo neuroanatomy. Elsevier;
London: 2009.

Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM,
Brady JM, Smith SM. Characterization and propagation of uncertainty in diffusion-weighted MR
imaging. Magn. Reson. Med. 2003; 50(5):1077–1088. [PubMed: 14587019]

Behrens TEJ, Jbabdi S, Woolrich MW, Andersson JL. A Bayesian framework for global tractography.
Neuroimage. 2007; 37(1):116–129. [PubMed: 17543543]

Biernaskie J, Corbett D. Enriched rehabilitative training promotes improved forelimb motor function
and enhanced dendritic growth after focal ischemic injury. J. Neurosci. 2001; 21(14):5272–5280.
[PubMed: 11438602]

Borgatti SP. Centrality and network flow. Soc. Networks. 2005; 27:55–71.

Bosnell, R.; Stagg, C.; Kincses, ZT.; Kischka, U.; Matthews, PM.; Johansen-berg, H. Contralesional
white matter microstructure integrity contributes to determining new motor skill learning after
stroke. submitted for publication

Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional
systems. Nat. Neurosci. Rev. 2009; 10:186–198.

Cox, TF.; Cox, MAA. Multidimensional Scaling. Chapman and Hall; London: 1994.

Crofts JJ, Higham DJ. A weighted communicability measure applied to complex brain networks. J. R.
Soc. Interface. 2009; 6(33):411–414. [PubMed: 19141429]

Dancause N, Barbay S, Frost SB, Plautz EJ, Chen D, Zoubina EV. Extensive cortical rewiring after
brain injury. J. Neurosci. 2005; 25(44):10167–10179. [PubMed: 16267224]

Estrada E, Hatano N. Communicability in complex networks. Phys. Rev. E. 2008; 77:036111.

Fisher RS, Shiota C, Levine MS, Hull CD, Buchwald NA. Interhemispheric organization of
corticocaudate projections in the cat: a retrograde double-labelling study. Neurosci. Lett. 1984;
1(25–30)

Crofts et al. Page 11

Neuroimage. Author manuscript; available in PMC 2013 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, Stefano ND. Age-related changes in grey and
white matter structure throughout adulthood. Neuroimage. 2010; 51(3):943–951. [PubMed:
20211265]

Gong G, Rosa-Neto P, Carbonell F, Chen ZJ, He Y, Evans AC. Age- and gender-related differences in
the cortical anatomical networks in the human brain. J. Neurosci. 2009; 29(50):15684–15693.
[PubMed: 20016083]

Grefkes C, Nowak DA, Eickhoff SB, Dafotakis M, Kust J, Karbe H. Cortical connectivity after
subcortical stroke assessed with functional magnetic resonance imaging. Ann. Neurol. 2008;
63(2):236–246. [PubMed: 17896791]

He Y, Chen ZJ, Evans A. Small-world anatomical networks in the human brain revealed by cortical
thickness from MRI. Cereb. Cortex. 2007; 17:2407–2419. [PubMed: 17204824]

He Y, Chen Z, Evans A. Structural insights into aberrant topolgical patterns of large-scale cortical
networks in Alzheimer’s disease. J. Neurosci. 2008; 28(18):4756–4766. [PubMed: 18448652]

Higham DJ, Kalna G, Kibble M. Spectral clustering and its use in bioinformatics. J. Comput. Appl.
Math. 2007; 204:25–37.

Iturria-Medina Y, Sotero RC, Canales-Rodriguez EJ, Alemán-Gómez Y, Melie-Garcia L. Studying the
human brain anatomical network via diffusion weighted MRI and Graph Theory. Neuroimage.
2008; 40:1064–1076. [PubMed: 18272400]

Johansen-Berg H, Rushworth MF, Bogdanovic MD, Kischka U, Wimalaratna S, Matthews PM. The
role of ipsilateral premotor cortex in hand movement after stroke. Proc. Natl. Acad. Sci. 2002;
99(22):14518–14523. [PubMed: 12376621]

Jones TA, Kleim JA, Greenough WT. Synaptogenesis and dendritic growth in the cortex opposite
unilateral sensorimotor cortex damage in adult rats: a quantitative electron microscopic
examination. Brain Res. 1996; 733(1):142–148. [PubMed: 8891261]

Jones DK, Simmons A, Williams SC, Horse field MA. Non-invasive assessment of axonal fiber
connectivity in the human brain via diffusion tensor MRI. Magn. Reson. Med. 1999; 42(1):37–41.
[PubMed: 10398948]

Keller TA, Just MA. Altering cortical connectivity: remediation-induced changes in the white matter
of poor readers. Neuron. 2009; 64(5):624–631. [PubMed: 20005820]

Liang Z, Zeng J, Liu S, Ling X, Xu A, Yu J. A prospective study of secondary degeneration following
subcortical infarction using diffusion tensor imaging. J. Neurol. Neurosurg. Psychiatry. 2007;
78(6):581–586. [PubMed: 17237143]

Lotze M, Markert J, Hoppe PSJ, Plewnia C, Gerloff C. The role of multiple contralesional motor areas
for complex hand movements after internal capsular lesion. J. Neurosci. 2006; 26(22):6096–6102.
[PubMed: 16738254]

MacKay, DJC. Information Theory, Inference and Learning Algorithms. Cambridge University Press;
Cambridge: 2003.

Mintzopoulos D, Astrakas LG, Khanicheh A, Konstas AA, Singhal A, Moskowitz MA, Rosen BR,
Tzika AA. Connectivity alterations assessed by combining FMRI and MR-compatible hand robots
in chronic stroke. Neuroimage. 2009; 47(S2):T90–T97. [PubMed: 19286464]

Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal projections in the
brain by magnetic resonance imaging. Ann. Neurol. 1999; 45(2):265–269. [PubMed: 9989633]

Newman MEJ. A measure of betweeness centrality based on random walks. Soc. Networks. 2005;
27:39–54.

Pandya DN, Rosene DL. Laminar termination patterns of thalamic, callosal, and association afferents
in the primary auditory area of the rhesus monkey. Exp. Neurol. 1993; 119(2):220–234. [PubMed:
7679356]

Perrin M, Cointepas Y, Cachia A, Poupon C, Thirion B, Riviere D. Connectivity based parcellation of
the cortical mantle using q-ball diffusion imaging. Int. J. Biomed. Imaging. 2008; 2008:368–406.

Pfefferbaum A, Sullivan EV, Hedehus M, Lim KO, Adalsteinsson E, Moseley M. Age-related decline
in brain white matter anisotropy measured with spatially corrected echo-planar diffusion tensor
imaging. Magn. Reson. Med. 2000; 44(2):259–268. [PubMed: 10918325]

Crofts et al. Page 12

Neuroimage. Author manuscript; available in PMC 2013 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A. Water diffusion changes in Wallerian
degeneration and their dependence on white matter architecture. Neuroimage. 2001; 13(6):1174–
1185. [PubMed: 11352623]

Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK. Age-related alterations
in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging. 2005;
15(9):1332–1342.

Salvador R, Suckling J, Schwarzbauer C, Bullmore E. Neurophysiological architecture of functional
magnetic resonance images of the human brain. Cereb. Cortex. 2005; 15:1332–1342. [PubMed:
15635061]

Schaechter JD, Fricker ZP, Perdue KL, Helmer KG, Vangel MG, Greve DN. Microstructural status of
ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke
patients. Hum. Brain Mapp. 2009; 30(11):3461–3474. [PubMed: 19370766]

Scholz J, Klein MC, Behrens TE, Johansen-berg H. Training induces changes in white-matter
architecture. Nat. Neurosci. 2009; 12(11):1370–1371. [PubMed: 19820707]

Sharma N, Baron JC, Rowe JB. Motor imagery after stroke: relating outcome to motor network
connectivity. Ann. Neurol. 2009; 66(5):604–616. [PubMed: 19938103]

Skillicorn, D. Understanding Complex Datasets. Chapman & Hall/CRC; 2007.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister
PR, Luca MD, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, Stefano ND,
Brady MJ, Matthews PM. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage. 2004; 23(S1):208–219.

Thomalla G, Glauche V, Koch MA, Beaulieu C, Weiller C, Rother J. Diffusion tensor imaging detects
early Wallerian degeneration of the pyramidal tract after ischemic stroke. Neuroimage. 2004;
22(4):1767–1774. [PubMed: 15275932]

Wang J, Wang L, Zang Y, Yang H, Gong Q. Parcellation-dependent small-world functional networks:
a resting state FMRI study. Hum. Brain Mapp. 2009; 30(5):1511–1523. [PubMed: 18649353]

Werring DJ, Toosy AT, Clark CA, Parker GJ, Barker GJ, Miller DH. Diffusion tensor imaging can
detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiatry.
2000; 69(2):269–272. [PubMed: 10896709]

Zalesky A, Fornito A, Harding IH, Cocchi L, Yucel M, Pantelis C. Whole-brain anatomical networks:
does the choice of nodes matter? Neuroimage. 2010; 50(3):970–983. [PubMed: 20035887]

Crofts et al. Page 13

Neuroimage. Author manuscript; available in PMC 2013 June 10.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Fig. 1.
Schematic illustration of the graph theory concepts used in this paper. Figure (a) shows a
simple, undirected graph with N = 5 nodes and 7 edges, along with the corresponding
adjacency matrix, A. The degree of theith node can be obtained from the adjacency matrix
simply by summing the entries in the ith row or column. In (b), we see an example of two
different walks between nodes 1 and 9 of a network. The first walk 1  4  5  6  9
(red), of length 4, gives the shortest walk between the two nodes. Whereas the second,
longer walk 1  2  3  5  7  8  7  9 (green) illustrates the fact that a walk may
use the same link more thanonce; here the edge connecting nodes 7 and 8 is used twice in
succession en route to node 9
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Fig. 2.
Comparison of both connectivity and communicability measures for left (top) and right
(bottom) hemispheres. Ordered components of the second right singular vector v[2] of Adeg,
Cdeg, Aconn and Cconn broadly separated strokes and controls in both left (lesioned) and right
hemispheres. Circles denote stroke patients and crosses denote controls.
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Fig. 3.
u[2] scores for each of the 56 brain regions considered for the left hemisphere (left) and
right hemisphere (right). Extreme values of u[2] will drive the separation of individuals into
classes. Note that we have enclosed those brain regions returned as significant by our
statistical analysis and labelled them accordingly. Red circles denote those brain regions that
were found to have diminished communicability scores in strokes, whilst black squares
highlight regions showing a relative increase.
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Fig. 4.
Mean communicability degree scores per brain region for the left (lesioned) hemisphere
(top) and the right (contralesional) hemisphere (bottom). White bars show control and black
bars show stroke data. Error bars are standard errors. Asterisks indicate significant
differences between patients and controls, corrected for multiple comparisons, at corrected p
< 0.05 (black asterisks) or trends (corrected p < 0.1, grey asterisks).
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Fig. 5.
Spatial relationships between stroke lesions, regions associated with reduced
communicability degree, and pathways showing reduced FA. Overlap map of stroke lesions
is shown in red to white (where colorscale indicates number of patients in whom a lesion is
present) in the region of the internal casule/basal ganglia of the left hemisphere. Top row
also indicates grey matter regions of interest associated with reduced communicability in
patients relative to controls (in blue, where light blue regions are significant (p < 0.05
corrected) and dark blue regions show trends (p < 0.1, corrected). These areas associated
with reduced communicability tend to be located around the stroke lesions in the lesioned
hemispheres and in homologues locations in the contralesional hemsiphere. Top row also
shows narrow pink lines within the white matter that indicate regions of reduced FA on the
white matter ‘skeleton’ detected in our previous study of FA in this population (Bosnell et
al., submitted for publication). This shows that whereas FA reductions are widespread in the
lesioned hemiphere, they are restricted to the corpus callosum of the contralesional
hemisphere and do not appear around the regions associated with reduced communicability
in this hemisphere. Bottom row indicates grey matter regions of interest associated with
increased communicability in patients relative to controls (in green, where light green
regions are significant (p < 0.05, corrected) and dark green region shows a trend (p < 0.1,
corrected).
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Table 1

Patient details.

age sex FM1 stroke volume (mm3) time post stroke (months)

1 61 f 24 7 7

2 59 m 42 9.1 22

3 67 m 61 3.5 36

4 68 m 59 32.4 43

5 69 m 51 72.9 21

6 54 m 50 1.3 23

7 83 m 45 9 18

8 41 m 64 40.73 8

9 70 m 61 6.6 37

1
FM= Fugl-Meyer Score for upper limb.
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Table 2

56 cortical and sub-cortical regions used to construct structural networks as defined by the Harvard-Oxford
atlas. Abbreviations used: anterior division (AD); posterior division (PD); cortex (ctx).

Label Anatomical region

1 Frontal pole

2 Insular ctx

3 Superior frontal gyrus

4 Middle frontal gyrus

5 Inferior frontal gyrus, pars triangularis

6 Inferior frontal gyrus, pars opercularis

7 Precentral gyrus

8 Temporal pole

9 Superior temporal gyrus (AD)

10 Superior temporal gyrus (PD)

11 Middle temporal gyrus (AD)

12 Middle temporal gyrus (PD)

13 Middle temporal gyrus, temporooccipital part

14 Inferior temporal gyrus (AD)

15 Inferior temporal gyrus (PD)

16 Inferior temporal gyrus, ternporooccipital part

17 Postcentral gyrus

18 Superior parietal lobule

19 Supramarginal gyrus (AD)

20 Supramarginal gyrus (PD)

21 Angular gyrus

22 Lateral occipital ctx, superior division

23 Lateral occipital ctx, interior division

24 Intracalcarine ctx

25 Frontal medial ctx

26 Juxtapositional ctx

27 Subcallosal ctx

28 Paracingulate gyrus

29 Cingulate gyrus (AD)

30 Cingulate gyrus (PD)

31 Precuneous ctx

32 Cuneal cortex

33 Frontal orbital ctx

34 Parahippocampal gyrus (AD)

35 Parahippocampal gyrus (PD)

36 Lingual gyrus
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Label Anatomical region

37 Temporal fusiform ctx (AD)

38 Temporal fusiform ctx (PD)

39 Temporal occipital fusiform ctx

40 Occipital fusiform gyrus

41 Frontal operculum ctx

42 Central opercular ctx

43 Parietal operculum ctx

44 Planum polare

45 Heschl’s gyrus

46 Planum temporale

47 Supracalcarine ctx

48 Occipital pole

49 Thalamus

50 Caudate

51 Putamen

52 Pallidum

53 Hippocampus

54 Amygdala

55 Accumbens

56 Brain stem
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