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Abstract

Quantitative magnetic resonance analysis often irequaccurate, robust, and reliable
automatic extraction of anatomical structures. Rulye template-warping methods
incorporating a label fusion strategy have demamsidl high accuracy in segmenting
cerebral structures. In this study, we propose aeh@atch-based method using expert
manual segmentations as priors to achieve this. taspired by recent work in image
denoising, the proposed nonlocal patch-based l&kmbn produces accurate and robust
segmentation. Validation with two different datasstpresented. In our experiments, the
hippocampi of 80 healthy subjects and the laterahtsicles of 80 patients with
Alzheimer’s disease were segmented. The influameegmentation accuracy of different
parameters such as patch size and number of trgisimbjects was also studied. A
comparison with an appearance-based method andnpléte-based method was also
carried out. The highest median kappa index vahl#ained with the proposed method
were 0.884 for hippocampus segmentation and 0@5@teral ventricle segmentation.

Keywords MRI, brain, hippocampus, lateral ventricles, Admner's disease, image
processing, structure segmentation.

1. Introduction

Magnetic resonance (MR) imaging plays a crucia inlthe detection of pathology, the study of
brain organization, and clinical research. Every, @avast amount of data is produced in clinical
settings, preventing the use of manual approaclesdata analysis. Consequently, the
development of accurate, robust, and reliable satatien techniques for the automatic
extraction of anatomical structures is becomingiraportant challenge in quantitative MR
analysis. In contrast to brain tissue classificatichere the intensity of the MR signal can be
used to segment different tissue types, anatonsiegmentation usually requires information
derived from the manual segmentations done by &xgee., expert priors), since anatomical
structures can be composed of several tissue speslistinct anatomical structures can have
the same MR signal properties. To overcome thificdify, several automatic methods of
segmentation have been proposed, such as deformablels or region growing (Chupin et al.,
2007; Ghanei et al., 1998; Shen et al., 2002), ajapee-based models (Duchesne et al., 2002;
Hu and Collins, 2007), and atlas/template-warpedhhiques (Aljabar et al., 2009; Barnes et al.,
2008; Collins et al., 1995; Fischl et al., 2002;uSias et al., 2008; Hammers et al., 2007;
Heckemann et al., 2006; Rohlfing et al., 2004; Zhod Rajapakse, 2005).



Recently, template-warping techniques that usebrarly of templates (i.e., MR images with
manual expert-based segmentation) have been tiersobintensive investigation for their high
accuracy in segmenting anatomical structures. Baghal. (2008) proposed to register the most
similar template from a library of prelabeled swbgeto segment the hippocampus (HC).
However, the use of only one template may result ibiased segmentation. To avoid this
problem, it is possible to use several similar tegs (Aljabar et al., 2009; Collins and
Pruessner, 2010; Gousias et al., 2008; Heckemaiah,e2006; Lotjonen et al., 2010), which
requires a label fusion strategy (Collins and Psneg 2010; Gousias et al., 2008; Hammers et
al., 2007; Heckemann et al., 2006; Lotjonen et2010; Rohlfing et al., 2004) to efficiently
merge the information derived from the selected plates. In addition, the extensive
computational burden required by the nonlinear stegfion step needs to be reduced, for
instance, by preselecting templates (Aljabar e8i09).

In template-warping techniques, two main assumptame made. First, constraints on the shapes
of structures are used implicitly because of the-tmone correspondence between the voxels of
the image to be segmented and those of the wamragldtes. This restriction presents the
advantage of forcing the resulting segmentatidmeatee a similar shape to those of expert-labeled
structures in the template library. However, acowydto the regularization used during
registration, some details can be lost and logg Rariability cannot be captured. Second, label
fusion techniques usually assign the same weightlteamples during a voting procedure and
consider only the absolute number a criterion. Epproach is sensitive to registration error,
since it does not take into account the relevaricgaoh sample (Lotjonen et al., 2010). In the
present work, we propose a patch-based schemeawitighted label fusion, where the weight
of each sample is only driven by the similarity iotensity between patches (i.e., small
subvolumes of the image defined as three-dimenki@iy cubes). In the proposed method,
voxels with similar surrounding neighborhoods apasidered to belong to the same structure
and thus are used to estimate the final label.

As exemplars, patch-based methods are currentlyothes of attention of the computer vision
community in various domains such as texture swmh@fros and Freeman, 2001), in-painting
(Criminisi et al., 2004), restoration (Buades et a005), and single-frame super resolution
(Protter et al., 2009). In each of these domaias;ipbased methods have been the subject of
intensive investigation because they exhibit veighhperformance despite their simplicity.
Inspired by the nonlocal means denoising filter d&es et al., 2005), we propose a nonlocal
patch-based approach using expert manual segnuwdats priors in the context of anatomical
segmentation. The nonlocal means filter has twer@sting properties that can be exploited to
improve segmentation. First, the natural redundasfapformation contained in the image can
be used to drastically increase the numbers of ksngonsidered during estimation. Second, the
local intensity context (i.e., patch) can be usepdroduce a robust comparison of samples.

In this study, we describe a fully automated pdtaked method using expert priors (i.e.,
information derived from manual segmentations) dhd different steps required for its
utilization. Our method is applied to the HC segtagan of healthy subjects and the lateral
ventricle segmentation of patients with Alzheimedisease (AD). During experiments, the
influences of different parameters were studied, arcomparison with two other methods was
performed. Finally, we discuss further improvemeatsd questions revealed by this new
approach.



2. Materials and Methods

2.1 Datasets

Two different datasets were used during the expariento demonstrate the ability of the
proposed method to (1) segment complex anatomiadtares, (2) address the high variability
of pathological structures, and (3) use multi-Biééning databases.

First, we used our method to segment the hippocahpiealthy subjects. The HC plays an
important role in human memory and orientation. &wer, HC dysfunction is involved in a
variety of diseases, including AD (Jack et al., @0@osttraumatic stress disorder (Bremner et
al., 1995), major depression (Bremner et al., 208€hizophrenia (Buss et al., 2007; Tanskanen
et al.,, 2005), and epilepsy (Bernasconi et al.,320This structure is especially difficult to
segment because of its small size, high variability contrast, and discontinuous boundaries in
MR images (Chupin et al., 2007; Siadat et al., 206ially, the HC is composed of several
tissue types, which prevents the ussiofple intensity-based techniques.

Second, we applied our method to the lateral veletsegmentation of patients with AD. In such
patients, structural variability is increased aseault of the pathology, and this variability
represents a challenge for segmentation techniguels as atlas warping. Ventricular volume
has been shown to provide a useful marker of nalid@generation and thus could be used as
an indicator of AD (Nestor et al., 2008). Howewdespite the high contrast between tissue and
cerebrospinal fluid (CSF), various factors rendentvicle segmentation difficult. First, partial
volume effects can impact segmentation, especatlyMR images with limited resolution
(Wang and Doddrell, 2001). Moreover, the tempoahk and occipital poles of the ventricles
can be disconnected from the main body, which tffappearance-based methods and region-
growing techniques. Finally, the choroid plexus egp with similar intensities to gray matter,
which prevents the use of simple threshold-basgthiques.

* Hippocampus dataset

The HC dataset consists of T1l-weighted (Tlw) MR gesa (fast field echo, TR =17 ms,
TE =10 ms, flip angle = 30 °, 28856 matrix, 1 mm in plane resolution, 1 mm thickes) of

80 subjects randomly extracted from a group of §6@ng, healthy individuals acquired on a
1.5T Philips GyroScan imaging system (Philips Mabti8ystems, Best, The Netherlands) in the
context of the International Consortium for Brairapping (ICBM) project (Mazziotta et al.,
1995). The local ethics committee approved theysamdl informed consent was obtained from
all participants. The 80 subjects selected comprE® males and 41 females of similar ages
(mean age: 25.09 + 4.9 years). The MR images warmeually segmented by an expert directly
into stereotaxic space. For each subject, the W€l las manually defined using the protocol
described by Pruessner et al. (2000). The resulegmentations obtained an intraclass
reliability coefficient (ICC) of 0.900 for inter-tar reliability (4 raters) and 0.925 for intra-nate
reliability (5 repeats).

* Ventricle dataset

The ventricle dataset consists of Tlw MR imagesadgnt-recalled echo, TR =22 ms,
TE =10 ms, flip angle = 30 °, 250 mm field of vie@56<256 matrix, 110 sagittal partitions
1.5 mm thick, resulting in a voxel size of 0x@898x1.5 mnT) of 80 subjects randomly extracted
from a dataset of 271 elderly patients with mildrioderate AD, aged between 50 and 85 years.
The images were acquired at 62 different studgsiteemanual segmentations were performed
on the images in native space. Inter- and intrerraariability were studied on 10 patients



scanned on the same SIEMENS Sonata 1.5T imagirtgmy&Siemens, Erlangen, Germany).
The inter-rater variability (3 raters) was estingate be 0.987, and the intra-rater (10 repeats)
variability to be 0.990. This dataset is not pulglevailable.

2.2 Method overview

As in template-warping methods, the proposed phsded method uses expert manual
segmentations as priors in order to achieve theertation of anatomical structures. However,
our method has two main differences compared eithplate-warping methods: the scale of the
considered objects and the label fusion scheme.

First, while template-warping methods work at tegel of anatomical structure, our method

handles a finer scale by using patches. Thereifasgead of performing the fusion of nonlinearly

deformed template structures, the proposed mettaddevees the labeling of each voxel

individually by comparing its surrounding patch hvipatches in training subjects in which the

labels of the central voxels are known. When thielpainder study resembles a patch in the
training subjects, their central voxels are congdeto belong to the same structure, and this
training patch is used to estimate the final lalit.this method, several samples from each
training subject can be used during the label fusemabling a drastic increase in the number of
sample patches involved in the label estimation.

Second, template-warping methods usually use arityajeoting scheme to fuse the labels
(Aljabar et al., 2009; Collins and Pruessner, 2¢€&ckemann et al., 2006; Rohlfing et al., 2004)
that considers the relevance (or weight) of all $henples labeled as similar. In the proposed
method, the intensity-based distances between aheh punder study and the patches in the
training subjects are used to perform a weightdeblldusion based on the nonlocal means
estimator (Buades et al., 2005). The teromlocalindicates that the spatial distance between the
patches’ centers is not taken into account; thhesweight of each sample is only driven by the
similarity of intensities between patches. In suwh approach, the intensity-based distance
between patches decreases as the relevance afitbidered sample increases.

In other words, by taking advantage of the redungani information present in the image, the
patch-based nonlocal means scheme enables thd wssusf a large number of samples during
estimation. This number will be significantly mommportant than the number of training
subjects, in contrast to in template-based metl{pes where the number of warped subjects
dominates). Moreover, contrary to classical majoriting schemes that give the same weight to
all the samples, the nonlocal means scheme entigebust distinction of the most similar
samples according to their local context (i.e.irtearrounding patches). Finally, in the proposed
method, apatch-basedweighting is used to perform pixel-basedaggregation of the labels
ensuring the independency of the votes.

2.3 Image preprocessing for library construction

The first step of the proposed method involves wigag the library of training subjects to be
used for patch comparison. During this step, vdiglzaused by image formation is minimized
by performing denoising, an inhomogeneity correttioand an intersubject intensity
normalization (see Fig. 1). Moreover, since thet@mécal intersubject regularity will be used to
drive the search within the library, the trainingpgcts of the database are linearly transformed
into stereotaxic space to ensure a coarse corrdspoa between the anatomical locations of the
images (see Fig. 1).



» Denoising

All images in the database were first denoised wWith3D block-wise nonlocal means filter
recently proposed for MR images by Coupe et al0O80To remove the intensity bias
introduced by the Rician nature of noise, a Ricalaptation of nonlocal means (Wiest-
Daessle et al., 2008) was also used. The Riciassenevel, used as a filtering parameter, was
estimated with the object-based method proposedg€et al., 2010).

* Inhomogeneity correction

To ensure that each tissue type has the sameitgtenthin a single image, the well-known
N3 intensity nonuniformity correction of Sled et @998) was used.

* Linear reqistration to stereotaxic space

All the subjects were linearly registered to the MGBM152 template by using affine
registration. For the ventricle dataset, the edh&ransformation was applied to the expert-
based segmentation using nearest-neighbor intéiqolaFor the HC dataset, the label
interpolation was not performed because the ladrelslefined in stereotaxic space.

* Intensity normalization

Finally, the intensities of the images were sef0+r100] and were normalized together by
following the method proposed by Nyul and Udupad@0 With this method, we ensure that
the contrast and luminance of each tissue typea@msistent across the training subjects in
the database.

At the end of this procedure, the images were adpround the structure of interest to reduce
the size of the library (see cropped images in EigThese different preprocessing steps ensure
that the tissue intensities are consistent with@itmages (inhomogeneity correction) and across
the subjects of the database (intensity normatimatiFinally, the proposed library construction
is similar to that used by template-warping tecbhes] However, while these techniques
consider the library at the level of anatomicalisture, our approach considers the library at the
patch level.

2.4 Search strategy within thelibrary

The search within the library is designed to fihd tnost similar patches, but is also constrained
in order to avoid useless computations. Thereftbre,search process uses different strategies.
First, we constrain the segmentation with an ihid#ion mask. Second, we consider the
probability that similar patches can be found imikr subjects. Then, we consider that the
anatomical intersubject variability in stereotagjgace is limited; thus, we can define a limited
search volume around the location under study.llifinae consider that two similar patches
should have similar luminance and contrast.



Subject Space

MNI Space

Intensity normalization and cropping

Fig. 1. Preprocessing. Preprocessing workflow used for library constrocti First, denoising
and inhomogeneity correction steps are performethénsubject space. The subjects are then
linearly registered to the MNI-ICBM152 Template MNI space. Finally, an intensity
normalization of the different subjects is appliefore cropping the images around the structure
of interest



* |nitialization mask

Instead of segmenting the entire image under stwdydefine an initialization mask around
the structure of interest. A number of strategiem ®e used to propose an accurate
initialization, such as matching the best subjdgarfes et al., 2008) followed by a
morphological dilation of the mask. In this case @hose a very fast and simple approach
that uses the union of all the expert segmentatiotise training database as the initial mask.
In this way, we ensure that the structure is cotepfancluded in the mask and demonstrate
the robustness of our method to coarse initiabrasee Fig. 2).

Fig. 2. Initialization masks. Initialization masks used for the hippocampus aedtricle
datasets overlaid in blue on one subject.

e Subject selection

A selection is also performed at the subject I¢vat resembles the selection of best subjects
in the label fusion method (Aljabar et al., 2008).our method, we use the sum of the
squared difference (SSD) across the initializatoask instead of normalized mutual
information over the image, as suggested by Aljaal. (2009). This strategy was chosen
because SSD is sensitive to variation in contragtlaminance; thus, we expect to find a
greater number of similar patches (in the sensth@fL2 norm) in subjects with smaller
SSDs. The saml closest subjects are retained during the entigensatation process (see
Fig. 3 where the three closest subjects are disdlay

e Search volume definition

Initially, the nonlocal means denoising filter waposed as a weighted average of all the
pixels in the image (Buades et al., 2005). For aatafpnal reasons, the entire image cannot
be used and the number of pixels involved has teetbeced. As done for denoising (Buades
et al.,, 2005; Coupe et al., 2008), we use a limgedrch volumeV;, defined as a cube
centered on the voxe& under study. Thus, within each of tNeselected subjects, we search
for similar patches in a cubic region around thmatmn under study (see Fig. 3). This search
volume can be viewed as the intersubject varighdftthe structure of interest in stereotaxic
space. This variability can increase for a subjatit pathology or according to the structure
under consideration.



* Patch preselection

Finally, as proposed for denoising purposes (Caipad., 2008), we perform a preselection
of the patches to be compared in order to redueectimputational time. By using simple
statistics such as mean or variance, it is possibldiscard a priori the most dissimilar
patches. In the proposed approach, we use luminandecontrast criteria to achieve the
patch preselection. Based on the first and secenchst of the well-known structural
similarity measure (SSIM) (Wang et al., 2004), pneselection procedure can be written as
follows:

2:ui:us,j X 20'0

i~s,j

SS=

Y SN @
where u represents the means awodrepresents the standard deviations of the patches
centered on voxed (voxel under consideration) and voxeg|at locationj in subjects. If the
value ofssis greater than a given threshdig the intensity distance between patchaad]

is computed. The threshold was set to 0.95 for all the experiments. This vahas chosen
empirically because it provides a good balance é&etw segmentation accuracy and
computational time reduction for both structureslemstudy. Patch mean and variance are
precomputed as maps of local means and local \@saiat avoid multiple computations.

Finally, the proposed search enables only candidaiiin the most similar training subjects to
be considered (SSD-based subject selection), nathelse whose locations are not too far apart
in stereotaxic space (search volume) and whosel Inemghborhoods are similar to the
neighborhood of the voxel under study (patch pezseln). Hence, the introduction of outliers is
limited during the nonlocal patch-based label fosamd the computational burden is drastically
reduced.

2.5 Nonlocal means label fusion

The proposed label fusion strategy is based on timtooal means estimator (Buades et al.,

2005). In such an approach, the intensity-basetdrdie between patches is used to perform a
robust weighted average of samples. In our casendhlocal means estimator is used to perform
the weighted average of the labels.

* Nonlocal means estimator

For all voxelsx; of the image to be segmented, the estimation offittee label is based on a
weighted label fusion(x) of all labeled samples inside the search volMr®r theN selected
subjects:

quzjﬂvi w(x;, sti)ysvj (2)
z;\l:lzjmvi WX, Xs'j) |

whereys; is the label given by the expert to voxgjat locationj in subjects andw(x;, x ) is the
weight assigned tgs; by patch comparison. Depending on the similariggween the patch
surrounding and that surrounding ;, the weightw(x;, % j) is computed as:

v(x) =
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whereP(x) represents the cubic patch centered; @nd ||.§|is the normalized L2 norm (i.e.,
normalized by the number of elements) computed éetweach intensity of the elements of the
patchesP(x) andP(xs)). As explained in the section on the search strafeggtion 2.4), if the
structural similarityss between the patches is less than the threstipldhe weight is not
computed and is set directly to zero.

Finally, by considering the labejdefined in {0,1}, the final labédl(x) is computed as:

1 v(x)>05

L) = {O v(x)< 05" )

In the event thassis less tharh for all patches in the library, —1 is returnedndicate that the
selected library does not allow a decision to been®ote that our method can be also applied
to probabilistic labely defined in [0,1] without any modifications.

Figure 3 presents an overview of the different stepolved in achieving the segmentation of
one voxelx included in the initialization mask. After the setien of theN most similar subjects

in the training library Nl = 3 in this example), the patd?(x) (in green) is compared with all the
patched(xs ) contained in the search volumewithin theN selected subjects. The most similar
patchesP(xs)) (in blue) to the patcliP(x) obtain the highest weights, as shown in the weigh
maps. For the 2D slice in this illustration, 12dkdal samples have significant weights in subject
s, the two most similar patches are in subggcand no similar patches are found in subgect

* Local adaptation af

As usual in estimation problems using a robust tion¢ the tuning of the decay parameler
plays a crucial role. Wheh is very low, only a few samples are taken intooaot. Whenh is
very high, all samples tend to have the same weigHtthe estimation is similar to a classical
average.

The value ofh should depend on the distance between the patdér wonsideration and the
library content. In fact, when the library contapetches very similar to the patch under stidy,
needs to be decreased to drastically reduce theende of the other patches. However, when no
similar patches exist in the librarly,has to be increased to relax the selection. Teeaehhis
local adaptation oh automatically, we propose an estimationh@f) based on the minimal
distance betweeR(x) and the considered patchHess ):

h(x) = i P(x) — P(x, . ;
(x) =argmin  [P(5) ~P(x, ), +¢ 5)

wheree is a small constant to ensure numerical stabiilityase the patch under consideration is
contained in the library. This kind of local addpia has been similarly used for adaptive MRI
denoising by Manjon et al. (2010).
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Subject selection Patch comparison Nonlocal means label fusion

Fig. 3. Global overview. Overview of the different steps involved in achigythe segmentation
of one voxelx included in the initialization mask. The patefx) (in green) is compared with all
the patche®(xs) contained in the search volurdewithin theN selected subject®N(= 3 in this
example). The weight maps show that the highesgieiare obtained by the most similar
patchesP(xs;) (in blue) to the patckP(x;). After the nonlocal means fusion of the expesdsh
labelsys;, the resulting estimation 1§x) = 0.994. Thus, the final labellix;) = 1

Beyond its high denoising performance, the sucoéfise nonlocal means filter is attributable to

its algorithmic simplicity. In the proposed segnaitn method, we tried to preserve this
interesting aspect by keeping the algorithm as E&rap possible. However, many improvements
on the original nonlocal means denoising filter dndoeen proposed, some of which could be
applied to segmentation. The interested readerficaha review of these improvements in

(Buades et al., 2010). For instance, a locally adasize of the search volume according to the
estimator variance, as suggested by Kervrann andaBger (2008), could avoid useless
computation in large constant areas (e.g., CSkEmricle segmentation).



2.6 The method through an example

In order to provide an intuitive understanding af smethod, we examine the spatial distribution
of the variables involved in the segmentation psscélere, we present a detailed example of HC
segmentation foN = 2 andN = 20, illustrated in Fig. 4:

- First, thenormalized number of samples (see bottom of Fig. 4) shows that the nonlocal
means estimation considers around 500 sample patchaverage for each training subject
(e.g., 10,000 samples on averageNcr 20). Not all the considered samples have significant
weights, but this number is significantly higheatN, the number of training subjects, as
shown in Fig. 3. The spatial variation of this nianllepends on the patch preselection. In
fact, since preselection (see Eq. 1) rejects atih@s with dissimilar luminance and contrast
during the patch comparison, the number of constleamples is lower for the less common
patches. Moreover, this average number decreagéslyshwhenN increases because of the
introduction of subjects with less similar struetushape, contrast, or luminance in the
library (i.e., with lower SSD during subject selen). However, it is interesting to note that
similar patches are found in dissimilar subjectsices the average number does not
drastically decrease whéhincreases.

- The second variable to be studied is the smootip@gmeterh(x) that represents the
minimal distance (see Fig. 4) betweeR(x) and all the patcheB(xs;) considered during
patch comparison (see Eq. 5). A higlx) indicates thathe closest patch found in the library
is not really similar toP(x;). In this case, the estimation provided by thelocad means
estimator is less robust and leads to inaccurasisggmentation. As shown fdt =2, the
areas wher@(x) is high mainly correspond to false positives arldefanegatives (see top of
Fig. 4). WhenN = 20, the higher number of considered patches enaleprocedure to find
more similar patches (the minimal distanieg;) decreases). Thus, the segmentation is
improved, as assessed by kappa index values (s&é Eag. 4).

- The last variabley(x), is the value returned by tm®nlocal means estimator (see Eq. 2).
This value can be viewed as the probability thabxel will be included in the structure. In
this case, the manual labels also have to be counted as probabilities. The dasty of
v(X) shows that the nonlocal means estimator cleastynguishes between the structure and
the background. As expected, the edges obtain dessiminative values. This can be
explained by the higher intra-rater variability edges within the training database. This
aspect is an inherent limitation of all methodd thse expert-based manual segmentations as
priors.

2.7 Implementation details

The proposed method was implemented in MATLAB 7ukiihg C/MEX code. The experiments
were conducted using a single core of an Intel Qof@uad Q6600 processor at 2.4 GHz with
4 GB of RAM. The different preprocessing steps meeefbr library construction were achieved
by usingtools developed in-house in C. The nonlocal means denoising took around 2 nmid, a
the inhomogeneity correction, around 1 min. Thedmregistration required less than 2 min, and
the normalization, close to 1 min. The executiones given in the results section are the times
required only for segmentation, since all the compamethods required these preprocessing
steps. As discussed later, many optimizations canuked because each voxel is treated
independently, which allows multithreading or GPakéd computation
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Fig. 4. Method through an example. Spatial distribution of the variables used by meathod
for N =2 andN = 20. Top. Left: Manual segmentation by the expert and the correipg MR
image. Right: False positives and false negatives maps of tgmeetation provided by our
method.Middle. Spatial distribution of the nonlocal means estonafx) and of the minimal
distanceh(x) used as the smoothing parameiuottom. Spatial distribution of the number of
samples used during the estimation normalized byntimbem of training subjects. Note that
the resulting number of patches evaluated for eantel is much larger than the number of
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2.8 Validation framework

For each dataset, a leave-one-out procedure wésmped for the 80 subjects. The kappa index
(Dice coefficient or similarity index) (Zijdenbog al., 1994) was then computed by comparing
the expert-based segmentations with those obtaiw#gkd our method. For two binary
segmentations andB, the kappa index was computed as:

2ANB
A0 g ©

As usual in quantitative MR analysis, manual segaten is considered the gold standard
(Pruessner et al., 2000). For both datasets, tpaatrof the patch size, search volume size, and
number of training subjects was studied. Moreovke proposed patch-based method was
compared for both datasets with an appearance-lzggedach using level-set shape constraints
(Hu and Collins, 2007) and a template-based tecienigspired by Barnes et al. (2008) that uses
ANIMAL (Collins et al., 1995) for the nonlinear nsgration of the best subject.

In the appearance-based method, only one modadisyused during the processing. We used the
79 remaining subjects to construct the trainingasktt involved in the principal component
analysis (PCA) computation. Although this numbehigher than those proposed by Hu and
Collins (2007) (20, 30, 40, and 60 subjects), wated to conduct a fair comparison with our
method, since the selection of tNeclosest subjects in our patch-based method is datién

the 79 remaining subjects.

For the template-based method inspired by Barned. §2008), the best subject was selected
using the normalized mutual information, as sugggebty Aljabar et al. (2009). This subject was
then nonlinearly warped to the subject under swidly ANIMAL (Collins et al., 1995) within a
multiresolution framework until a resolution of 2im In our validation, the best subject was
selected from the 79 remaining subjects duringaadeone-out procedure.

3. Results

The kappa index values obtained with the initiasknare presented in Fig. 5. The median kappa
index value was 0.44 for the HC dataset and 0.41h@® ventricle dataset, which corresponds to
an average percentage of false negatives (i.em#an number of voxels included in the mask
but not in the manual segmentations) of 71% for k& dataset and 73% for the ventricle
dataset. Note that these results only give a bes#di show that the initial mask does not achieve
an accurate segmentation.

3.1 Impact of the 3D patch size

First, we studied the impact of patch size on segation accuracy. The kappa index results are
presented in Fig. 6 for both datasets. The besianddppa index value was obtained with a
patch size of ¥7x7 voxels for the HC datasek £ 0.882) and &5x5 voxels for the ventricle
dataset K = 0.957). The optimal patch size seems to retleetcomplexity of the anatomical
structure. The patch size needs to be larger ®oH@ than for the ventricle, since the intensities
of the HC are less discriminative. Figure 7 sholmes HC segmentation results for the best, one
median, and the worst subject for the differentpaizes studied. These results indicate that the
patch size needs to be large enough to capturtvt¢hé geometry (holes and discontinuities in
HC segmentation for a patch size &883 voxels). Because of the high contrast betwesnés

for ventricle segmentation, the size of the patmh loe smaller.
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Fig. 5. Initial kappa index distribution. Box plot of the kappa index distribution of the
initialization mask for the hippocampus (HC) anahtiele datasets. Boxes represent the lower
quartile, the median (red line), and the upper tjeasf the kappa index distribution. Moreover,
whiskers indicate the most extreme values withid times the interquartile range. Finally,
outliers (red +) are data with values beyond théseof the whiskers. The size of the notches
indicates the significance interval at 5%. If tregales of two distributions do not overlap, these
distributions have different medians at the 5% ificance level. The median kappa value was
0.44 for the HC dataset and 0.41 for the ventrdd¢aset, which correspond to an average
percentage of false negatives of 71% for the H@s#dtand 73% for the ventricle dataset.

3.2 Impact of the search volume size

We also studied the impact of the size of the seaalume on segmentation accuracy. The
kappa index results are presented in Fig. 8. Tist toedian kappa index was obtained with a
search volume of *8x9 voxels for the HC datasek € 0.882) and 1%15x15 voxels for the
ventricle datasetk(=0.958). The optimal search volume size is rdlai® the anatomical
variability of the structure within stereotaxic spaSince the HC is smaller and was segmented
in healthy subjects, the variability of this st is less than that of the ventricles of the
subjects with AD; thus, a search volume 87%7 voxels or $9x9 voxels provides good results.
For the ventricle, the size of the structure aredglresence of pathology mean that larger search
volumes will give better results. However, the dnmaprovement seen when the search volume
increased from 1411x11 voxels to 1%15x15voxels may not justify the increase in
computational time. Figure 9 presents the ventselgmentation results for the best, one median,
and the worst subject for different search voluimzess As expected, when the search volume is
too small, the anatomical variability of the stuuret of interest within stereotaxic space can lead
to the selection of a subpart of the library thahtains insufficient information for finding
similar patches. For instance, in Fig. 9, the hatethe segmentations indicate that no similar
patches were found for a search volumex#x3 voxels.
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datasets. For the HC dataset, the results wereneltaising 20 training subjects and a search
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subjects and a search volume 0k11x11 voxels.
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Fig. 7. Impact of the patch size. Hippocampus segmentation for the subjects with st
kappa index (top), a median kappa index (middledl, the worst kappa index (bottom) obtained
by our method. These results were obtained usinga@@ing subjects and a search volume of
9x9x9 voxels. The expert-based segmentations are shomea, and the segmentations obtained
with our method, in green.
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3.3 Impact of the number of subjects

The last important parameter of the proposed meithtite number of selected training subjects.
During this experiment, segmentation accuracy wadied for 2 to 30 selected training subjects.
The results are presented in Figs. 10 and 11.HeoHC dataset, the median kappa index value
was 0.848 for 2 subjects and 0.884 for 30 subjéais.the ventricle dataset, the median kappa
index value was 0.942 for 2 subjects and 0.9593fbrsubjects. As expected, increasing the
number of selected training subjects increasedattmiracy of the segmentation. Figure 12
presents the HC segmentation results. Holes app@atbe segmentations when data from only
two training subjects were used, indicating thasimoilar patches have been found. This aspect
can be moderated by decreasing the threshold e&l@ion in order to increase the number of
patches used during estimation. However, thisesjsatannot be more efficient than increasing
the number of subjects, since the final decisidhb@ based on patches that are not very similar.

3.4 Comparison with appearance-based and template-based methods

Finally, the proposed patch-based method was cadparth two other methods. Figure 13
presents the kappa index values obtained for eaathad applied to both datasets. The results
presented for our method were obtained wWitlk 20. For HC segmentation, the appearance-
based method obtained a median kappa index valu@.8%0, the best template approach
obtained 0.837, and the proposed method obtain8820.For ventricle segmentation, the
appearance-based method obtained a median kappa vwadue of 0.788, the best template
approach obtained 0.909, and the proposed appuaideined 0.957. The patch-based approach
obtained significantly better results comparedh®tivo others methods with a p-value << 0.001
in both cases using Kruskal-Wallis tests. In additithe appearance-based method was not able
to capture the variability of the lateral ventrglia patients with AD. Figures 14 and 15 show 3D
representations of the HC and lateral ventriclersagations obtained by each method.
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Fig. 9. Impact of search volume size. Ventricle segmentation for the subjects with Heest
kappa index (top), a median kappa index (middlegl the worst kappa index (bottom) obtained
by our method. These results were obtained using&ing subjects and a 3D patch size of
5x5x5 voxels. The expert segmentations are shown inamed the segmentations obtained with
our method in green.

3.5 Computational time

The computational time required by the proposedhoetwas proportional to the number of

subjects; each subject required around 40 s. Time tould be easily reduced with a better
initialization mask. Compared with other approachée appearance-based method (Hu and
Collins, 2007) took around 45 s to provide the segiation of the HC. By contrast, the best

template-based approach inspired by Barnes eR@D8) required around 6 min to achieve the
nonlinear registration of the cropped images alydatkarly registered into stereotaxic space.
Although comparing these approaches was difficattaoise our method was coded in C-MEX
for MATLAB and not in C like the other two, thesesults show that the PCA-based approach
was quite fast, though at the expense of accufaogplly, methods using nonlinear registration

can become quite computationally intensive whereisd\subjects are involved, as noticed in

(Aljabar et al., 2009).
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4. Discussion

We propose a novel patch-based approach to autathatsegment anatomical structures using
the manual segmentations done by experts as pbespite its simplicity, the accuracy of the
proposed method has been demonstrated within digatian framework for HC and lateral
ventricle segmentation. The highest median kappaxrnvalues obtained during experiments
were 0.884 for the HC dataset and 0.959 for thériodm dataset, foN = 30 training subjects. In
terms of a two-digit mean kappa index value as idely used in the literature, our method
obtained 0.88 for the HC dataset and 0.95 for #r#ncle dataset. Moreover, comparison with
an appearance-based (Hu and Collins, 2007) anchldate-based method (Barnes et al., 2008)
highlighted the competitive results obtained byphegposed nonlocal patch-based approach.

Comparing published methods is always difficult dese of differences between the databases
used for validation, the populations studied, thalidy of expert segmentations, and the reported
quality metrics. Moreover, the number of labeledhgkes defining the segmentation (which
depends on the ratio between the volume of thectsirel and the voxel size) (Rohlfing et al.,
2004) can impact the similarity measure. Nonetlsliegeresting tendencies in method evolution
can be extracted by studying published results.

For HC segmentation, recently published resultsr{@aet al., 2008; Chupin et al., 2007; Morey
et al., 2009; Morra et al., 2008; Pohl et al., 20@ah der Lijn et al., 2008) indicated high kappa
index values greater than 0.80. The latest puldishethods based on the nonlinear warping of
the best templates and involving a label fusiop $€&ollins and Pruessner, 2010; Gousias et al.,
2008; Lotjonen et al., 2010) obtained kappa indalues equal to or greater than 0.88. As
discussed by Aljabar et al. (2009), the accuradginbd with these techniques reach the limit of
the variability of expert human raters. Gousiaalef2008) reported a mean kappa index of 0.88
with the use of a B-spline-based nonlinear regdistnaon the brain of a 2-year-old. Lotjonen et
al. (2010) proposed two intensity-based modelsntprove label fusion: an extension of the
graph-cut-based method described by van der Lial. é2008) and an expectation-maximization
(EM) approach. Using nonlinear deformations of khe 13 closest templates, their graph-cut-
based label fusion obtained a kappa index of 0a&&0 their EM-based label fusion, a kappa
index of 0.885. Obtained by using the ADNI databaiskealthy subjects and patients with AD,
these kappa index values indicate the high perfocmaf these approaches. In our case, only the
method proposed by Collins and Pruessner (2010peadirectly compared with our proposed
one as they used the same database and the sadaimalframework. Collins and Pruessner
(2010) obtained a median kappa index of 0.886 hylimearly registering thé\ =11 closest
subjects with ANIMAL (Collins et al., 1995) and Iliysing the resulting label with a classical
majority voting scheme. By comparison, the propasedhod offers the main advantages of its
simplicity (no nonrigid registration required) aftd computational time (40 s vs. 6 min per
training subject) for a similar segmentation accuré& = 0.884). As a result of the proposed
automatic adaptation of the robust function paremetur approach can be implemented simply
in a fully automatic manner.

For ventricle segmentation, the large variety dhbdases makes comparison with the literature
rather difficult. Hu and Collins (2007) used theposed appearance-based method with a level-
set constraint and obtained a mean kappa index88ffor patients with multiple sclerosis. The
same method obtained a median kappa index of @@B8g our comparison using AD patients.
This low kappa index might result from the highariability of lateral ventricles in patients with
AD. Schonmeyer (2006) obtained a mean kappa ind@<90 for subjects with AD by using an
object-oriented method, while Aljabar et al. (200&)orted a mean kappa index of 0.912 across
a database of 275 healthy subjects. During our agetomparison, we obtained a slightly lower
kappa index of 0.909 with the best template approaks previously mentioned for HC
segmentation, recent template-warping approachigebgk et al., 2009) with a selection strategy
for the best subjects have obtained very goodtesuthe literature.



The new approach to the label fusion problem intoedl by using a patch-based method reveals
several questions. First, in this proof of concey, used linear registration of subjects to save
computational time and demonstrate the robustnésheo proposed method. However, the
complementarity of patch-based weighted label fuswith approaches using nonlinear
registration appears to be a natural extensiorthis way, the spatial distance between the
patches’ locations could be used as a shape @amar,the initialization mask could be greatly
improved, reducing computational time. This tengenoward using local intensity-based
refinement after nonlinear registration seems psorgi as shown by van Rikxoort et al. (2010)
with local piece-wise atlas fusion and by van dgn 2008) and Lotjonen et al. (2010) with
graph-cut-based and EM algorithms. Moreover, expents on a larger diversity of pathologies
and anatomical structures should be studied inrdutapplications. The robustness of the
proposed parameters in these situations shoultsbeested.

Finally, implementation optimization should be istigated. In the literature on nonlocal means
denoising, many papers have been proposed on ngdaomputational time. In our method, a
new patch preselection has been proposed andeadglincluded. However, prototype-based
(Tibell et al., 2009) or cluster tree-based (Brdxak, 2008) approaches could be faster. In
addition, the noniterative nature of the nonloca&ams approach is perfectly suited to parallel
implementation. Work on parallelization (Coupe let2008) or GPU implementations (Huang et
al., 2009; Palhano Xavier de Fontes et al., 2018 bhown a significant reduction in

computational time close to real-time processing.

5. Conclusion

In this paper, we propose a novel patch-based rdaiBing expert segmentations as priors to
segment anatomical structures. Based on the sityitarintensity content between patches, the
new label fusion is achieved by using a nonlocaamseestimator. Validation of hippocampus
segmentation in healthy subjects and of ventriglgngentation in patients with Alzheimer’s
disease was performed. In addition, comparison aitlappearance-based and a template-based
method demonstrated the high performance of ouhwodetDuring validation, the proposed
method obtained a median kappa index value of 0f88the HC and 0.959 for the ventricles.
The use of a nonlocal means scheme in combinatith & method involving nonlinear
registration will be the subject of further investiion.
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Fig. 14. Method comparison. Three-dimensional HC segmentations obtained by tkinee
methods for the subjects with the best kappa irfttg), a median kappa index (middle), and the
worst kappa index (bottom) obtained by the bestptate method. The expert-based
segmentation is shown in red, the proposed patsbhebanethod in green, the best template
method in blue, and the appearance-based methgdllow. Note how the appearance-based
result is much smoother than the other techniques.
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Fig. 15. Method comparison. Three-dimensional ventricle segmentations obtalmethe three
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worst kappa index (bottom) obtained by the bestptata method. The expert-based
segmentation is shown in red, the proposed patshebanethod in green, the best template
method in blue, and the appearance-based methgalaw. Note how the both the appearance-
based method and the best template method carif¢dbeaccipital pole of the lateral ventricle.
The appearance-based method also cuts off the tahymdes of the lateral ventricle.
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