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In this work we illustrate the approach of the Maastricht Brain Imaging Center to the PBAIC 2007 competition,
where participants had to predict, based on fMRI measurements of brain activity, subject driven actions and
sensory experience in a virtual world. After standard pre-processing (slice scan time correction, motion
correction), we generated rating predictions based on linear Relevance Vector Machine (RVM) learning from
all brain voxels. Spatial and temporal filtering of the time series was optimized rating by rating. For some of
the ratings (e.g. Instructions, Hits, Faces, Velocity), linear RVM regression was accurate and very consistent
within and between subjects. For other ratings (e.g. Arousal, Valence) results were less satisfactory. Our
approach ranked overall second.
To investigate the role of different brain regions in ratings prediction we generated predictive maps, i.e. maps
of the weighted contribution of each voxel to the predicted rating. These maps generally included (but were
not limited to) “specialized” regions which are consistent with results from conventional neuroimaging
studies and known functional neuroanatomy.
In conclusion, Sparse Bayesian Learning models, such as RVM, appear to be a valuable approach to the
multivariate regression of fMRI time series. The implementation of the Automatic Relevance Determination
criterion is particularly suitable and provides a good generalization, despite the limited number of samples
which is typically available in fMRI. Predictive maps allow disclosing multi-voxel patterns of brain activity that
predict perceptual and behavioral subjective experience.
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Introduction

Machine learning and pattern recognition techniques are being
increasingly employed in functional MRI data analysis. Thesemethods
outperform conventional univariate statistical models and allow
detecting subtle, non-strictly localized effects. In typical fMRI
applications, pattern recognition algorithms “learn” a functional
relationship between multivoxel brain response patterns (Multi
Voxel Patterns, MVP) and a perceptual, cognitive or behavioral state
of a subject expressed in terms of a label, which may assume discrete
(classification) or continuous (regression) values. This learned func-
tional relationship is then used to predict the unseen labels from a
new dataset (“brain reading”).

This approachwasfirst proposedbyHaxby et al. (2001), showing that
spatial multi-voxel patterns of BOLD responses evoked by a visual
stimulus are informativewith respect to the perceptual or cognitive state
of a subject. Following this study, several other groups investigated, with
different approaches, the multivariate relationship between sensory and
cognitive stimuli and measured brain activity (Cox and Savoy, 2003;
Haynes and Rees, 2005; Kamitani and Tong, 2005; Mitchell et al., 2004;
Mourao-Miranda et al., 2005; LaConte et al., 2005; Kriegeskorte et al.,
2006; De Martino et al., 2008; Formisano et al., 2008).

In this work we describe the approach of the Maastricht Brain
Imaging Center (MBIC) group in the PBAIC 2007 competition, where
our group ranked overall second, regressing continuous perceptual,
behavioral and emotional ratings on multivariate patterns of
activation (see next section and http://www.lrdc.pitt.edu/ebc/2007/
competition.html for a description of the competition).

To predict the ratings, we employed a Sparse Bayesian Learning
model (Relevance VectorMachine, RVM, Tipping, 2001). This method is
particularly appealing in the context of fMRI “brain reading” as the large
ratio between problem dimension (number of voxels) and training
samples (scans) requires parsimonious models. Bayesian methods are
therefore particularly suited, as they usually embed an estimation of
model complexity and implement Ockham's razor on estimated
parameters. Sparse Bayesian learning algorithms have been recently
successfully employed in the context of multi-class classification for
fMRI datasets in (Yamashita et al., 2008). The competition has received
great visibility and approximately 50 different participants have
submitted their predictions of the ratings based on the same brain
data. Descriptions of two of these submissions, based on Elastic Net
(Carroll et al., 2009) and on low-dimensional embedding (Shen and

http://www.lrdc.pitt.edu/ebc/2007/competition.html
http://www.lrdc.pitt.edu/ebc/2007/competition.html
http://dx.doi.org/10.1016/j.neuroimage.2010.09.062
mailto:giancarlo.valente@maastrichtuniversity.nl
http://dx.doi.org/10.1016/j.neuroimage.2010.09.062
http://www.sciencedirect.com/science/journal/10538119


Fig. 1. A schematic description of the steps performed during the learning and the
prediction phase in fMRI brain reading. Red arrows indicate temporally distinct phases of
the learning procedure, while green arrows indicate parameters settings, voxel selection
and model weights which are transferred from the training dataset to the test dataset.
Black arrows indicate feedbacks during the learning phase.
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Meyer, 2008) respectively, have already been published. A submission
based on Relevance Vector Machine and Kernel Ridge Regression, from
Chu and colleagues is described in this issue (Chu et al., 2011). Similarly
to these submissions, we estimated a separate model for each subject
and for each rating. While Carroll et al. (2009) used Elastic Net
Regression, which is based on a linear combination of L1- and L2-norm
penalizations, we used a kernel method, where model sparsity is
enforced on the kernel representation rather than on the voxel space
(like in L1-normpenalizationmethods). Furthermore, given the current
Bayesian formulation, the parameters are estimated from all training
data (using evidence approximation) and thus there is no need of
cross-validation. Similarly to (Chuet al.)we employedRelevanceVector
Machine to predict the final ratings; however, in order to be able tomap
voxel's relevance for each voxel, we did not employ non-linear kernels,
which seemed to provide slightly higher accuracy on same ratings.

In thefirst part of thisworkwe illustrate the PBAIC 2007 competition
framework and dataset, and we describe several general aspects of the
multivariate regression of fMRI time series with pattern recognition
algorithms with particular emphasis on linear predictive models and
Sparse Bayesian learning algorithms. We then describe in detail our
analysis of the PBAIC 2007 data, including the analyses performed with
BrainVoyager QX (www.brainvoyager.com). Besides theoretical
considerations, our choice for this regression method was further
motivated by a critical analysis of various regressionmethods that were
employed on the PBAIC 2006 competition. We considered the five
best ranking approaches, which included Recurrent Neural Networks
(ITC-IRST, Italy, first), Ridge Regression (Princeton University, second
and fourth), Dynamic Gaussian Markov Random Field (Stanford
University, third), and Relevance Vector Machine (University College
London, fifth). This analysis suggested that the application of RVM
regression to fMRI ‘brain reading’ data provides a good compromise
between accuracy in predicting the subjective/objective ratings and
interpretability of the resultingmodels in terms of predictivemaps, also
at single-subject level.

Materials and methods

PBAIC 2007 competition

The PBAIC 2007 competition, organized by Walt Schneider and
Greg Siegle of the University of Pittsburgh, was an open competition
that involved fMRI data analysis of subject-driven behavior in a virtual
world. Such behaviors included navigating, collecting objects,
responding to cell phones, taking pictures and avoiding a threatening
dog.

The aim of the competition was to evaluate and benchmark, in an
objective framework, the capabilities of brain reading techniques to
predict subjects' behavior based on fMRI data.

The data were collected on a Siemens Allegra 3T scanner in
Pittsburgh University. Thirty-four axial 3.5 mm thick slices were
acquired parallel to the AC-PC line using a reverse EPI sequence
(TR=1.75 s, TE=25 ms, FOV=210 mm, FA=76degrees). Structural
data were acquired with 1 mm spatial resolution. Three functional
runs, each approximately 20 min in length, were collected per subject.

During each task, subjects performed a game in the virtual reality
environment. In this game, subjects were paid by and anthropology
department to gather information on urban culture, exploring a
neighborhoodandcollecting samplesof toyweapons, fruit, andcollecting
pictures of people's piercings. Subjects had to avoid a threatening dog,
whose growl indicated when he was approaching. All the actions
performed correctly during the game were rewarded with real money,
unless the subject was bitten by the dog.

Based on Virtual Reality logfiles, eye movement as recorded by an
eye-tracking system and subsequent subjective evaluation from the
subject, a set of ratings of subjects' activity was associated with each
functional run. These ratings were related to different components of
the subjects' task such as actions (Velocity, Hits, Search People, Search
Weapons, and Search Fruit), vision (Body, Faces, Weapons and Tools,
Interior and Exterior, Gender, Fruits and Vegetables), audition (Instruc-
tions, Dog) and emotional valence (Arousal, Valence). Each rating was
convolved with the double gamma model for hemodynamic response
function (Friston et al., 1998) and downsampled tomatch the functional
scans temporal resolution. For more details on the competition frame-
work, please refer to http://www.lrdc.pitt.edu/ebc/2007/competition.
html.

The dataset provided to the participants consisted of measure-
ments from three subjects, with three functional runs each. For each
subject, two runs were made available to participants, together with
the associated ratings (training dataset), while the third run (test
dataset) was provided without ratings. Participants were to learn the
association between ratings and functional data from the training data
(e.g. usingmultivariate regression) and submit the prediction for each
rating on the test dataset to the organizers for scoring and
performance assessment.

Multivariate regression in fMRI: general principles

Consider an fMRI data set X and some associated labels t (e.g. the
subjects' feature ratings provided together with the PBAIC fMRI
dataset).

Pattern analysis algorithms “learn” a functional relationship
between data and labels in a training dataset and use this relationship
to predict the unseen labels of a new dataset (test dataset).

A suitable performance metric, which can be expressed as an error
(or loss) function ε (for instance, the sumof squares error, or someother
suitable measures), is generally considered while evaluating and
comparing different models. In very general words, pattern recognition
algorithms aim at learning a model on the training dataset D that gives
the minimum error on an unseen dataset test D'. Several models and
several performance metrics can be introduced to perform this task.

Fig. 1 summarizes in a block diagram the steps that are generally
performed. Pre-processing is usually employed in order to reduce the
effects of noise. The first general steps are slice scan time correction,
motion correction and removal of linear trends from the time series.
In the context of multivariate pattern analysis, particular attention
must be paid to the coregistration of different functional runs.

Spatial and temporal filtering, can be adjusted repeatedly contex-
tually to themodel training. To avoid removing useful information from
the data by means of spatio-temporal filter, it is safer to evaluate
different amounts of filtering on the training dataset and choose the

http://www.brainvoyager.com
http://www.lrdc.pitt.edu/ebc/2007/competition.html
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settings that provide the highest performance metric (Formisano et al.,
2008). Several filtering strategies are usually available, ranging from
simple box-car smoothing functions to multi-resolution approaches.

Subsequently, features are extracted from the data, on which the
model will be trained. The aim of this step is to transform the fMRI
dataset into a different representation that may be more suitable for
the regression scheme implemented. As pointed out in Duda et al.
(2001), the boundary between feature extraction and pattern
classification is not clear-cut, as there may be a classification scheme
so powerful that it does not need any feature extraction, while there
may be an ideal feature extraction scheme that makes the work of the
classifier trivial.

In the context of regression for fMRI brain reading, different
features can be considered. When using Kernel methods (that are
better suited in handling fMRI data of large dimension), all voxels'
time courses can be considered as features.

In many cases some dimension reduction scheme may be
employed. In fact, the reduction of the number of features (dimen-
sions) generally helps data understanding, reduces memory storage
requirements and training times and helps mitigating the effects of
the curse of dimensionality improving the overall performances
(Guyon and Elisseeff, 2003).

Univariate ranking methods are generally employed due to their
reduced computational demands. The number of considered features
may be decided in advance, or it may be evaluated and assessed in
cross-validation. In order to have better generalization performances,
several pre-processing and feature extraction/selection possibilities
may be evaluated during the training phase, hence the feedback
arrows on top of Fig. 1.

Training and test dataset should be strictly separated, and once the
pre-processing, feature extraction and selection parameters and
model weights have been estimated on the training dataset, they are
used for the final prediction on a new dataset.

The main part of any pattern analysis approach is the use of a
suitable model and its estimation on the available data. After the
preprocessing and the feature extraction/selection steps, the training
dataset D consists of a collection of N pairs (xi, ti), denoting with xi a
sample vector of dimension D and with ti the corresponding one-
dimensional label. The choice of the model is a crucial part of the
learning process. A model too simple may fail to grasp the variability
of the data, while a model too complex may also fit the noise
component in the data (overfitting). Good generalization performance
on a new dataset is based on finding a proper trade-off (given the
training dataset D).

The choice of the best learning model is not trivial and–if no prior
assumptions about the nature of the regression task are available–it is
not possible to prefer a model to another, as stated by the No Free
Lunch Theorem (Duda et al., 2001). This theorem indicates that there is
no algorithm that can outperform any other (even random guessing)
on any problem. Once some aspects of the problem, like data
distribution, amount of training data and cost functions, are available,
it is possible to compare different algorithms. In the context of the
Brain Reading competition, in order to choose the model and the
learning algorithm, we conducted an analysis on the best five ranking
approaches on the previous year's dataset. This analysis suggested the
use of Relevance Vector Machine due to the high accuracies at a single
subject level and to the possibility of mapping voxels' contribution to
the prediction.

Model parameters can be set using cross-validation approach. The
training dataset is divided intom disjoint parts and a model is trained
m times, each time leaving a part as a validation set. The mean of the
errors of the models on the different datasets is then considered while
comparing parameters (m-fold cross-validation) (Duda et al., 2001).

Bayesian methods generally do not require cross-validation to
estimate model parameters (although sometimes cross-validation is
used in Bayesian frameworks for model selection (Rasmussen and
Williams, 2006)). In Bayesian analysis, model comparison involves
the use of marginal probabilities of the choice of a suitable model
(Duda et al., 2001; Bishop, 2006).

Once the training phase is completed, a set of pre-processing
parameters, of features and of model parameters is available to
perform the prediction on a new dataset. This dataset is preprocessed
in the same way, and the prediction is performed using the trained
model.

Linear models for multivariate regression

Model estimation
Linear models are a natural choice for fMRI “brain reading.” There

are both computational and interpretational reasons for this. In fact,
being fMRI in an extremely high dimensional space, the use of non-
linearities does not provide significant improvement over linear
models, while making model estimation more demanding. Another
reason for the widespread use of linear models lies in the
straightforward interpretation of the results. In fact, together with
generalization performances, it is possible to assess the relative
“importance” of single features (i.e. voxels); in functional neuroima-
ging this aspect is as important as the generalization performance, as
it helps improve the understanding of the brain and the functional
role of different locations. With linear models this “brain mapping”
step is straightforward and considerably easier, if comparedwith non-
linearmodels, leading to a clearer interpretation of the ongoing neural
processes. For these reasons we considered only linear models for the
analyses of the PBAIC competition.

A standard linear model has the following form:

t = y x;wð Þ + ε ð1Þ

where y(x, w) is the deterministic input-output mapping part and ε
accounts for the noise in the measurements. The deterministic
mapping can be modeled as (Bishop, 2006):

y x;wð Þ = w0 + w1x1 + … + wDxD = wT x̃ ð2Þ

where x=(x1,…,xD)T denotes the training dataset (defined in a
D-dimensional space), x ̃=(1,xT)T and the D+1-dimensional weight
vectorw indicates the weights of the linear model (with w0 being the
bias term). The deterministic mapping in Eq. (2) can be regarded as a
linear combination of the fMRI time-series of different voxels, each
with a different weight. A feature space mapping is usually employed
by many learning algorithms:

ϕ xð Þ = ϕ0 xð Þ;ϕ1 xð Þ;…;ϕM−1 xð Þð ÞT ð3Þ

where ϕ : RD→RM , maps the original D-dimensional feature space x
into an M-dimensional one. ϕ can be for instance a linear polynomial,
or radial basis function. After this transformation, Eq. (2) can be
written as:

y x;wð Þ = wTϕ x̃ð Þ = ∑
M−1

j=0
wjϕj xð Þ ð4Þ

where this time w is an M-dimensional vector of parameters.
The training of the model aims at finding a set of optimal weights

w, such that the error on the unseen dataset is minimized. A solution
to this problem is to look for themodelweights thatminimize an error
measure on the training dataset.

One common error function is the sum of squares:

ED wð Þ = 1
2
∑
N

n=1
tn−wTϕ xnð Þ

n o2 ð5Þ
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The minimization of this function leads to the estimate of the
model parameters:

w̃ = ΦTΦ
� �−1

ΦT t ð6Þ

with Ф=(ϕ(x1),…,ϕ(xN))T. It can be shown that the least-squares
solution corresponds to the projection of the target t onto the
subspace generated by the columns of Ф (Bishop, 2006).

A perfect fit on the training dataset, however, may not be optimal
for generalization purposes. In fact, with a small sample size
(compared to the dimensions of the feature space) there is a high
risk of fitting also the noise term as part of the model. A way to reduce
the effects of overfitting is to have a smooth estimate by means of an
additional regularization term.

The regularized error function can be expressed as a weighted sum
of two terms:

E wð Þ = ED wð Þ + λEW wð Þ ð7Þ

where ED is the same as in Eq. (5) and EW is the regularization term. A
simple form of regularizing term (L2-norm regularization) is the
following (Bishop, 2006):

EW wð Þ = 1
2
wTw ð8Þ

that leads to the solution:

w̃ = ΦTΦ + λΙ
� �−1

ΦT t ð9Þ

that is also called ridge regression solution. Regularization is
particularly effective while training on small datasets (as it reduces
the model complexity and accordingly the risk of overfitting). The
weighting coefficient λ is usually set in cross-validation over the
training dataset.

Kernel methods
All the models presented so far are based on linear combination of

the features (or of their mapped transform ϕ). In some situations,
however, it is more convenient to use a different representation for
data, using a kernel function.

Considering the mapping in Eq. (3), a kernel function is defined as:

k x;x′
� �

= ϕ xð ÞTϕ x′
� � ð10Þ

Considering the identity mapping (i.e. ϕ(x)=x), Eq. (10)
becomes:

k x;x′
� �

= xTx′ ð11Þ

The models seen in the previous section can be reformulated in a
dual form in the kernel representation (Bishop, 2006). A linear model
in the kernel space can be described as:

y x;wð Þ = ∑
N

j=1
wjk x;xj

� �
+ b = K x;xð Þw + b ð12Þ

where the last part is a vector reformulation of the equation.
The advantageof using thedual representation is quite evident in the

fMRI data analysis. In fact, in this case w is an N-dimensional vector,
while in Eq. (2) it was a D-dimensional one. Recalling that N represents
the number of available samples (typically few hundreds) and D the
number of features (voxels, typically tens of thousands), the kernel
representation is farmore compact and it allowshandling largedatasets.
Support Vector Machines (SVM, Vapnik, 1995), Relevance Vector
Machine (RVM, Tipping, 2001) and Gaussian Processes (GP, Rasmussen
andWillams, 2006) are commonly employed kernel-based approaches.

Once the model in Eq. (12) has been estimated on the training
dataset D, the prediction is performed by considering a new kernel
that accounts for the prediction dataset D’:

t′ = K x′;x
� �

w + b ð13Þ

Therefore, to perform a prediction, all the samples of the training
set are generally used. Sparse kernel machines (like SVM or RVM),
instead, make use of a subset of the training set, selecting the most
“important” samples according to different criteria.

Predictive mapping
An important aspect of Machine Learning techniques applied to

fMRI data analysis is the possibility to assess the relative importance
of the features (i.e. voxels) in generating the final prediction. Linear
models allow extracting this information in a straightforward way.

Consider the linear model presented in Eq. (2). Once the model
weights w have been estimated, it is possible to map the relative
importance of feature j by simply considering the absolute amplitude
of weight wj. The sign of wj denotes then a positive or negative
contribution to the prediction.

Similar considerations can be done for the dual representation, in
the linear case (Eq. (11)). Eqs. (12) and (13) can be rewritten as:

y x;wð Þ = xTxw + b = xTm + b ð14Þ

and

t′ = x′Txw + b = x′Tm + b ð15Þ

where m=xw is a D-dimensional vector that represents the weights
in the feature space (while w in this case refers to the sample space).

Relevance Vector Machine

Relevance Vector Machine is a probabilistic kernel method. Least
square and L2-norm regularized solutions to multivariate regression
problems can be also framed in the context of probabilistic models.

Consider Eq. (1), and assume that the noise term ε follows an
independent, identically distributedGaussiandistributionwith zeromean
andprecision(inverseof thevariance)equal toβ, that isp(ε)=N(0,β-1). It
follows that:

p t jx;wð Þ = N y x;wð Þ;β−1
� �

ð16Þ

and, considering the i.i.d. assumption, it holds that

p t jx;w;βð Þ = ∏
N

n=1
N wTϕ xnð Þ;β−1
� �

ð17Þ

where t denotes the vector of all the N targets.
It can be shown (Bishop (2006)) that the ML estimation, in the

case of i.i.d. Gaussian noise term, is equivalent to the least-squares
solution (7) (and, as discussed previously, more prone to overfit the
data). This aspect is an inconvenient of ML methods. Bayesian
methods, on the other hand, are designed in such a way to reduce
or avoid overfitting, by considering the posterior distribution of the
parameters. Using Bayes' rule it holds:

p w jt;x;βð Þ = p t jw; x;βð Þp wð Þ
p t jx;βð Þ ð18Þ



Fig. 2. A schematic description of the approach used by Maastricht University for PBAIC
2007 competition. Filter settings were optimized for each rating and each subject
separately.

Fig. 3. Scheme of the post-processing strategy for the rating Instructions. Using this strategy i
correlation between the “raw” prediction and the rating is approximately 0.8). This post-pr
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where the prior term p(w) contains all the information one has on the
model parameters. A full Bayesian perspective on the problem does
not require the use of point estimate on the model. In fact the
prediction is not performed by considering the most probable model
parameter (wMAP) and using that point estimate on the new data, but
rather averaging across all the possible models with their probabil-
ities. In other words, considering a new data point x⁎ then the
predicted value t⁎ will be distributed according to the following:

p t* jx*;x; tð Þ = ∫p t* jx*;wð Þp w jx; tð Þdw ð19Þ

that, in the case of Gaussian prior, is still a Gaussian (Rasmussen and
Williams, 2006; Bishop, 2006). For a review of Bayesianmethods refer
to (Duda et al., 2001; Bishop, 2006).

Compared to SVM, the RVM typically leads to much sparser models
and does not require that the kernel is positive definite. In the RVM
formulation, N+1 parameters have to be estimated. Under the
assumption of Gaussian noise, Eq. (17) is used also for this algorithm.
t is possible to achieve a 0.99 correlation between the real and the predicted rating (the
ocessing step is particularly effective due to Fisher z-transform of the correlation.

image of Fig.�2
image of Fig.�3
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The key point of RVM is the prior on themodelweightsw. Each of them
is assumed tohave aGaussiandistributionwith zeromeanandprecision
(inverse of the variance) αi:

p w jαð Þ = ∏
N+1

i=1
N 0;α−1

i

� �
ð20Þ

The parameters αi are called hyperparameters and it can be shown
that posterior distribution of the weights is again Gaussian (Tipping,
2001), with mean and covariance given by:

m = βΣΦT t ð21Þ

Σ = A + βΦTΦ
� �−1 ð22Þ

denoting with Ф the design matrix as in Eq. (6) and A=diag(αi). A
common choice is to use a log-uniform hyperprior over α, that in
combination with Eq. (20) implements the Automatic Relevance
Determination (ARD) (MacKay, 1994; Neal, 1996). In fact, during the
estimation of the model, many hyperparameters αi will grow to
infinity, so that the corresponding model weight wi will have a
posterior distribution concentrated around zero. In other words, only
the model weights (and therefore the basis functions associated with
these parameters) that are “relevant” given the training data will
remain, pruning out the unnecessary ones and leading to a sparse
model. Relevance vectors can be interpreted similarly to support
vectors in the SVM formulation, where the support vectors represent
the most “difficult” cases, while the relevance vectors represent the
most “archetypical” ones.

The values of α and β are determined using type-II Maximum
Likelihood (known also as evidence approximation) (Bishop, 2006).
Once these parameters have been estimated, the prediction over a
new data point x⁎ can be estimated using Eq. (19), having a predictive
Fig. 4. Results of the training on the first two runs for subject #14. Correlation val
distribution that is still Gaussian, with mean and variance given by
(Tipping, 2001):

m x*ð Þ = mTϕ x*ð Þ ð23Þ

σ2 x*ð Þ = βð Þ−1 + ϕ x*ð ÞTΣϕ x*ð Þ ð24Þ

Compared to SVM, relevance vector machine provides in many
applications a much sparser model, typically an order of magnitude
more compact, with little or no reduction of generalization error
(Tipping, 2001). Furthermore, no parameter has to be estimated in
cross-validation (like C and ε in SVM). RVM suffers from having high
confidence in making predictions in regions far from the training data.
Other Bayesian regression techniques, like Gaussian Processes
(Rasmussen and Williams, 2006), do not suffer from this drawback,
at the expenses of an increased computational time.

PBAIC 2007 competition: Maastricht group approach

The approach employed by MBIC group is summarized in Fig. 2. We
performed the analyses for each subject separately. This choice was
motivated by computational complexity (training simultaneously on
multiple subjects increases considerably memory requirements in
manipulating the kernel (Eq. (11)). Also, training simultaneously on
multiple subjects without properly accounting for inter-subject variabil-
ity in the spatial patternsmay reduce theperformance of trainedmodels.

Furthermore, we decided to predict each rating separately from the
others. This was due to the need of achieving a high score and
investigating the neural activation patterns that reliably predict a specific
rating.

We pre-processed the raw data provided by the PBAIC organiza-
tion using BrainVoyager QX (Brain Innovation, Maastricht, The
Netherlands). In the training phase different pre-processing and
ues for different pre-processing strategies and feature selection are reported.
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feature selection schemes were explored, and the final predictions
and predictive maps were obtained from the two concatenated runs.

Preprocessing

Weperformed a standard fMRI pre-processing, including slice scan
time correction (with sinc interpolation) and 3-D motion correction
(with trilinear/sinc interpolation). To minimize the effects of subjects'
head movements between two runs, we realigned both runs 2 and 3
to the first functional run. Due to the presence of some spiking
artifacts in subject #1 and subject #13, we performed mean intensity
adjustment on those functional runs. Tomitigate the effects of drifts in
the measurements, we removed linear trends in all time series. As the
evaluation metric of the competition was based on Pearson
correlation, no information on the mean of the prediction is
Fig. 5. Example of prediction andmapping for the rating Faces of subject 14. First two top pan
predicted rating for run 3. Bottom panel: individual predictive map obtained training on th
considered, and therefore, we removed the temporal mean of each
run.

Functional volumes were interpolated to 3 mm×3 mm×3 mm
resolution, co-registered to the anatomical images, and both anatom-
ical and functional data were normalized to Talairach space (Talairach
and Tournoux, 1998). We subsequently removed the voxels of spatial
locations outside the brain by means of a volume mask, which lead to
approximately 45000 voxels per subject.

Training

We performed assessment of parameters (filtering and feature
selection) and training of a linear RVM model (see above) on the first
two runs. We employed a 2-fold (split half) cross-validation strategy:
training was performed on run 1 (training set) and accuracy was
els: comparison between predicted and real rating on the two training runs. Third panel:
e first two runs.
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assessed on run 2 (validation set) and vice versa. We did not divide
further the available datasets into a higher number of folds to have a
realistic estimate of performance degradation due to inter-run
variability of BOLD signal.

Within the training, we considered additional, rating-specific spatial
and temporal filtering of fMRI datasets. Temporal filtering aims at
reducing the spectrum of the time series to the one of the ratings.
However, due to non-stationarity of the signal, both low and high pass
filter may remove informative content. We therefore performed
different filtering approaches and evaluated the average prediction
performance of the pre-processed dataset. Spatial smoothing was also
considered, to mitigate the effects of spatial isotropic noise. The three
filtering steps can be summarized as follows:

Temporal low-pass filtering: each time series was filtered using a
box-car having a width of 3 samples. Temporal high-pass filtering:
this step removed up to 3 cycles per time-series. Spatial low-pass
filtering: each voxel time course was averaged with the ones of the
neighbor voxels within a cube comprising 27 voxels.

We also explored the use of more intense filtering, but it did not
give significant and consistent benefit on the training, therefore we
did not consider it for the final prediction.

The feature selection strategywe employedwas based on univariate
ranking of the features.We ranked all the voxels on the training dataset
by means of linear correlation (absolute value). Subsequently we
considered the n voxels ranked first, with n ranging from a hundred of
voxels to the whole set, and tested the model on the validation dataset.

The RVM training was performed by first constructing the kernel
(as described in Eq. (11)), and then estimating themodel (see Eqs. (21)
and (22)). Once the model had been estimated, the prediction was
carriedoutaccording toEqs. (13), (15). The average accuracy for the two
predictions was then considered.

Once the “optimal” pre-processing had been estimated on the
training data, the final predictionwas carried out by concatenating the
two training runs and each rating was predicted separately.

Post-processing of ratings

Due to the competition evaluation metric, the post-processing of
selected ratings, for which the prediction was expected to be highly
Fig. 6. Group maps related to the different ratings of PBAIC 2007 competiti
accurate, might have affected relevantly the final score (in fact, the
Fisher z-transform of the scores magnifies the weighting of accuracies
close to one). Based on results from the training, we performed - for
the rating Instructions - additional post-processing (see Fig. 3) Each
predicted rating was linearly scaled between 0 and 1. We subse-
quently used a threshold and binarized the prediction according to
this threshold. This binary predictor was then convolved with the
standard estimate of the HRF (Friston et al., 1998), and shifted back of
4-5 TRs. Threshold value and shift were estimated on the training
dataset. Moreover, since this rating was the same for the three
subjects, an averaging of the prediction among the three subjects
prior to the post-processing appeared as the most robust choice.

For the other ratings, we did not employ other post-processing
strategies and did not exploit any dependency among predictors,
although it was possible (as in the “search” ratings).

Results and predictions

On training data, our approach with RVM regression predicted
accurately and robustly (with respect to different pre-processing
options) many of the target ratings. Fig. 4 shows for subject #14 the
correlation coefficients between predictions and provided ratings,
obtained for different types of filtering and feature selection, after
training on run 1 and testing on run 2 (top panel) and vice versa (low
panel). It is noticeable that for several of the ratings the correlation
values were above 0.6 for most of the tested approaches. These results
were consistent with those obtained in the other two subjects (#1 and
#13), even though the overall correlation values for these latter were
lower. This was likely due to the presence of larger movements and of
spiking artifacts in some runs.

Results of the predictions on run 3 confirmed the expectations
from the training and the first two submission scores reflected
expected scores from the training, thus suggesting that our approach
did not overfit the training data. Individual ratings’ correlations for
subject #14 are reported in Fig. 4. Our final submission ranked second
in the PBAIC 2007 competition.

Overall the best-predicted rating was Instructions, whose accuracy
was 0.99—after the described post-processing. However, prediction
accuracy on the training data, without any post-processing, was around
on. Ratings were grouped in four categories according to their content.
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0.8 (see Fig. 4). Other ratings that were predicted with high accuracy
were “visual” ratings, such as Faces, Body and Velocity. The scores were
significantly lower for the prediction of the two subjective ratings
(Arousal and Valence). The accuracy for these scores, however, was
considerablyhigher on subject#14 then in theother subjects. The scores
for the three Search ratings were also considerably lower than the
average (even with some negative values). As the Search ratings were
identical across subjects, we used–for the final submission–the best
among the three subjects' predictions.

The analysis on feature selection showed that limiting the training
to a subset of all voxels may have led to improvement in the total
score (Fig. 4). However, results on the third dataset submission did
not confirm this suggestion. Indeed, using this approach we obtained
a final score=0.495 (no filtering, second submission), which is lower
than the score obtained without feature selection (no filtering, first
submission, score=0.512). This might be due to several reasons. The
principal problem of the implemented feature selection scheme is that
the selection process is univariate. This may be too simple for the
Fig. 7. (a) Predictivemaps for visual features: Faces, Body and Gender. The positive values of th
visual features: Faces, Body and Gender. The predictive map of each rating is considered in
problem considered, leading to an overconfidence on single voxel
relevance. Multivariate feature selection schemes (De Martino et al.,
2008; Yamashita et al., 2008) may offer a valid alternative to this
problem. Computational requirements, however, limit the use of
these more complex feature selection schemes with datasets of such
large dimensions.

The analysis on spatio-temporal filtering (Fig. 4) indicated that the
pre-processing strategy affected the results in a way that was
dependent of rating (and subject), and therefore the final predictions
of run 3 ratings were based on subject- and rating-specific settings.
The filtering approaches used for the final submission are reported in
the Supplementary Material.

Although the filtering had some influence on the final score,
spatially and temporally filtering of the data did not appear to have a
systematic effect on the quality of the predictions. This may be related
to using all voxels' time courses for the prediction. As many time
series are considered together, the averaging effect makes low-pass
filtering less relevant.
emaps are in light color, while the negative in dark color. (b) Predictive maps related to
its absolute value and superimposed to those of the others.
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Predictive mapping

To investigate the role of different brain regions in ratings’ prediction
we generated maps indicating the weighted contribution of each voxel.
For each subject and each rating, we computed the corresponding
predictivemapusing Eqs. (14) and (15) andnormalized it to the standard
deviation. As functional and anatomical data were co-registered,
predictive maps could be displayed on the folded, inflated or flattened
representation of cortical surface, obtained from the anatomical data set
(Goebel et al., 2006). An example is illustrated in Fig. 5, where we
considered the rating “Faces” for subject #14. In the top panel the
intermediate and final prediction are plotted, while in the bottom panel
we illustrate the spatial map associated with this prediction.

We also considered ‘group’ predictive maps obtained by averaging
(in Talairach space) the three single-subject maps after a spatial
smoothingwith a Gaussian kernel (FWHM=4mm). Fig. 6 shows these
“group” maps projected on the reconstructed and flattened cortical
surface of an individual brain. Maps are grouped in four categories:
Action (Velocity, Hits and the three Search ratings), Vision (Body, Faces,
Weapons & Tools, Interior & Exterior, Gender and Fruits & Vegetables),
Audition (Dog and Instructions) and Emotion (Arousal and Valence).

For visual ratings, regions of the occipito-temporal cortex
contributed most consistently to the predictions (red box in Fig. 6,
see also Fig. 7). As expected, obtained maps included (but were not
limited to) ‘specialized’ regions which conventional neuroimaging
studies report to be maximally active during the perception of certain
features (e.g. fusiform face area for faces (Kanwisher et al., 1997) or
lateral occipital complex for objects (Malach et al., 1995). The three
maps of Faces, Body and Gender show considerable overlap in the
occipito-temporal cortex (OTC), in the superior temporal sulcus and
gyrus (STS/STG) and the middle occipital gyrus (MOG, see Fig. 7b).
While OTC and MOG seem to be involved in predicting Faces, Body
and the Gender, STS/STG does not seem to be used to infer the gender
while watching a person.

Interestingly, for each of these features, predictive maps also included
additional regions in the frontal or temporal cortex which seem to
contribute in generalizing the predictions to newdata. Future analyses on
Fig. 8. Top panel: predictive maps for auditory features: Instructions, Dog (top panel; bott
auditory cues (Instructions) while being positively predictive for faces.
a larger number of subjects are needed to assess the consistency of these
additional regions.

Maps corresponding to auditory ratings are illustrated in Fig. 8. In
particular, predictive maps for Instructions included a large expanse of
bilateral superior temporal cortex (STG/STS), extending toward the
temporal pole. Maps for Dog included a subset of the auditory regions
also present for Instructions. Maps for Instructions also included a
negative contribution from regions in MOG, which overlap with
regions that positively predict Faces. It may be speculated, that this
overlap reflects the inhibition of the attention to relevant visual
targets (faces) while listening to the auditory instructions.
Conclusions

In this work we have described the approach employed by the
Maastricht Brain Imaging Center in the PBAIC 2007 brain reading
competition. The use of Relevance Vector Machine models trained on
the whole brain proved reliable in predicting the final ratings. Spatio-
temporal filtering was optimized for each rating and subject, since the
results obtained on the training data indicated that the filtering
strategies had no systematic effect on all the predictions.

Results on the training dataset indicated that some ratings (e.g.
Instruction, Faces, Hits, Velocity) could be accurately and consistently
predicted after training on one run and predicting on the other. On the
other hand, for other ratings (Arousal, Valence, Search) the prediction
accuracy was considerably lower. The results of the final prediction
were in agreement with the results obtained on the training data,
suggesting that the learned model, based on the use of Automatic
Relevance Determination, did not overfit the training dataset.

Using a linear model, we could address the problem of assessing the
relevance of individual voxels in the final prediction. Therefore a
predictive map was associated with each prediction. The areas involved
in the prediction included butwere not limited to the ‘specialized’ regions
highlighted by conventional neuroimaging studies. These results suggest
that predictivemaps are a valuable tool to disclose multivoxel patterns of
brain activity that predict perceptual and behavioral experience and to
om panel: auditory features compared with Faces. Regions in MOG negatively predict
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reveal candidate regions hitherto not implicated in the processing of
specific categories.

Supplementarymaterials related to this article can be found online
at doi:10.1016/j.neuroimage.2010.09.062.
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