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Abstract
Whole brain extraction is an important pre-processing step in neuro-image analysis. Manual or
semi-automated brain delineations are labour-intensive and thus not desirable in large studies,
meaning that automated techniques are preferable. The accuracy and robustness of automated
methods are crucial because human expertise may be required to correct any sub-optimal results,
which can be very time consuming. We compared the accuracy of four automated brain extraction
methods: Brain Extraction Tool (BET), Brain Surface Extractor (BSE), Hybrid Watershed
Algorithm (HWA) and a Multi-Atlas Propagation and Segmentation (MAPS) technique we have
previously developed for hippocampal segmentation. The four methods were applied to extract
whole brains from 682 1.5T and 157 3T T1-weighted MR baseline images from the Alzheimer’s
Disease Neuroimaging Initiative database. Semi-automated brain segmentations with manual
editing and checking were used as the gold-standard to compare with the results. The median
Jaccard index of MAPS was higher than HWA, BET and BSE in 1.5T and 3T scans (p < 0.05, all
tests), and the 1st-99th centile range of the Jaccard index of MAPS was smaller than HWA, BET
and BSE in 1.5T and 3T scans (p < 0.05, all tests). HWA and MAPS were found to be best at
including all brain tissues (median false negative rate ≤ 0.010% for 1.5T scans and ≤ 0.019% for
3T scans, both methods). The median Jaccard index of MAPS were similar in both 1.5T and 3T
scans, whereas those of BET, BSE and HWA were higher in 1.5T scans than 3T scans (p < 0.05,
all tests). We found that the diagnostic group had a small effect on the median Jaccard index of all
four methods. In conclusion, MAPS had relatively high accuracy and low variability compared to
HWA, BET and BSE in MR scans with and without atrophy.
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1. Introduction
Whole brain extraction (or skull-stripping) refers to the process of separating brain (grey
matter (GM), white matter (WM)) from non-brain (e.g. skull, scalp and dura) voxels in
neuro-image data. Depending on the application, cerebrospinal fluid (CSF) spaces
(ventricular and sulcal) may or may not be included in ‘brain’ segmentation. There is also
variability in the inferior extent of the ‘brain’ extraction, but typically this includes brain
stem and cerebellum and excludes cervical spinal cord. Accurate brain extraction is an
important initial step in many image processing algorithms such as image registration,
intensity normalisation, inhomogeneity correction, tissue classification, surgical planning,
cortical surface reconstruction, cortical thickness estimation and brain atrophy estimation.
For example, the inclusion of dura can result in an overestimation of cortical thickness (van
der Kouwe et al., 2008), or add errors to regional volumes and atrophy estimates. On the
other hand, missing brain tissue following brain extraction may lead to a spurious suggestion
of regional or cortical atrophy and these errors cannot easily be recovered in subsequent
processing steps. It should be noted that image processing algorithms may be more or less
sensitive to such errors but all are undesirable.

For large multi-site natural history studies such as the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) (Mueller et al., 2005) or therapeutic trials, where thousands of MRI scans
may require processing, segmentation algorithms which require large amounts of manual
intervention are unfeasible. Robustness as well as accuracy of an automated brain extraction
method are crucial to reduce the manual adjustment of method parameters or manual editing
of unsuccessful or suboptimal automated brain segmentations, as such interventions are time
consuming, and may decrease the reliability of the brain measures and potentially introduce
bias to the results. Numerous automated whole brain extraction and skull-striping methods
have been suggested (Smith, 2002; Lemieux et al., 1999; Ségonne et al., 2004; Hahn and
Peitgen, 2000; Shattuck et al., 2001; Zhuang et al., 2006; Dale et al., 1999; Ward, 1999;
Sandor and Leahy, 1997; Sadananthan et al., 2010). Studies comparing some of the most
widely used automated methods (Brain Extraction Tool (BET) (Smith, 2002), 3dIntracranial
(Ward, 1999), Hybrid Watershed algorithm (HWA) (Ségonne et al., 2004) and Brain
Surface Extractor (BSE) (Sandor and Leahy, 1997)) with manual segmentations show that
there is a range in accuracy of techniques. Similarity between the automated and manual
skull-stripped brains using these methods as measured using a Jaccard index (intersection /
union) ranged from 0.80 to 0.94 (Fennema-Notestine et al., 2006; Lee et al., 2003; Shattuck
et al., 2009). Common areas of missing brain tissue using automated segmentation methods
were found to be in the anterior frontal cortex, anterior temporal cortex, posterior occipital
cortex and cerebellar areas. In two comparison studies of HWA, BET and BSE, HWA was
found to be the best at including all the brain tissues, while BSE and BET were found to be
the best at removing non-brain tissues (Fennema-Notestine et al., 2006; Shattuck et al.,
2009).

It is important to test an image processing algorithm on as many different images as
possible, e.g. images from different patient groups, scanner strengths, MR sequences and
scanner manufacturers, in order to show that it can correctly segment images with different
morphology, artifacts and characteristics. A key issue with brain extraction tools is their
ability to perform adequately when there are varying amounts of cerebral atrophy present
such as in Alzheimer’s disease (AD). Table 1 gives an overview of brain extraction method
comparison studies including sample sizes, diagnostic groups, scanner strengths and
extraction algorithms used. The largest brain extraction method comparison study in the
literature to date was carried out by Hartley et al. (2006) who compared BET and BSE with
manual segmentations using the 1.5T proton-density (PD) weighted images of 296 elderly
subjects (22% with dementia). Other comparison studies predominantly used healthy
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subjects ranging from 20 1.5T T1-weighted images of normal controls (Shattuck et al., 2001)
to 68 1.5T and 3T T1-weighted images of normal controls (Sadananthan et al., 2010). ADNI,
which acquired MR images of hundreds of healthy subjects, AD subjects and subjects with
mild cognitive impairment (MCI)) using 1.5T and 3T scanners, therefore provides an ideal
dataset to test automated brain extraction methods on images with different morphology,
artifacts and characteristics, and to confirm the results of the relative few studies which have
compared the performance of brain extraction methods in healthy and dementia subjects.

Segmentation techniques based on multiple atlases have been applied to automatically and
accurately segment various structures in the brain (Heckemann et al., 2006; Aljabar et al.,
2009), including the caudate (Klein et al., 2008), hippocampus (Wolz et al., 2010; Leung et
al., 2010a; Collins and Pruessner, 2010) and amygdala (Collins and Pruessner, 2010). These
techniques select multiple atlases from a library of labeled images (referred to as ‘template
library’ in this paper), and propagate the labels from different atlases to the target image
after image registration. Decision or label fusion techniques are then applied to combine the
labels from different atlases to create an optimal segmentation, which has been shown to be
more accurate and robust than the individual segmentations (Heckemann et al., 2006;
Warfield et al., 2004; Rohlfing and Maurer, 2007). This is analogous to the combination of
the results from multiple classifiers in the pattern recognition field, which has been known to
produce a more accurate and robust result than a single classifier (Kittler et al., 1998). In this
paper, we compare the accuracy and variability of three established automated brain
extraction methods (BET, BSE and HWA) and a multi-atlas propagation and segmentation
(MAPS) technique we have previously developed for hippocampal segmentation (Leung et
al., 2010a), using 682 1.5T and 157 3T MRI scans from the ADNI database. To the best of
our knowledge, this is the largest comparison of automated brain extraction methods using
multi-site 1.5T and 3T T1-weighted MRI scans from healthy controls, mild cognitive
impairment (MCI) and AD subjects. The large number of scans from different patient
groups, scanner strengths, MR sequences and scanner manufacturers provided by ADNI
allows us to compare the performance of automated brain extraction methods on images
with very different morphology, artifacts and characteristics.

2. Methods and Materials
2.1. Method overview

In MAPS, the target image is first compared to all the atlases in a template library. Multiple
best-matched atlases are then selected, and the labels in the selected atlases are propagated
to the target image after image registration. Label fusion techniques are then applied to
combine the labels from different atlases to create an optimal segmentation in the target
image.

In the following methods sections, we describe the image data and the semi-automated
whole brain segmentations that we used in the template library and used as the gold-standard
for method comparison using cross-validation. Then, we provide details about MAPS, BET,
BSE and HWA, and describe the parameter selection procedure for each method. We
describe the approaches used to compare the accuracy and variability of the brain extraction
methods.

2.2. Image data
Our image data consisted of 682 1.5T (200 controls, 338 MCI and 144 AD) and 157 3T (53
controls, 74 MCI and 30 AD) MRI scans from the the baseline time point of the ADNI
database (www.loni.ucla.edu/ADNI). Table 2 shows the demographics of the subjects. Each
individual was scanned with a number of sequences but for this study we only used the
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baseline T1-weighted volumetric scans. For 1.5T scans, representative imaging parameters
were TR = 2300ms, TI = 1000ms, TE = 3.5ms, flip angle = 8°, field of view = 240 × 240mm
and 160 sagittal 1.2mm-thick-slices and a 192 × 192 matrix yielding a voxel resolution of
1.25 × 1.25 × 1.2mm, or 180 sagittal 1.2mm-thick-slices with a 256 × 256 matrix yielding a
voxel resolution of 0.94 × 0.94 × 1.2mm. For 3T scans, representative imaging parameters
were TR = 2300ms, TI = 900ms, minimum full TE, flip angle = 8°, field of view = 256 ×
240mm and 160 sagittal 1.2mm-thick-slices and a 256 × 256 matrix yielding a voxel
resolution of 1 × 1 × 1.2mm. The full details of the ADNI MR imaging protocol are
described in Jack et al. (2008), and are listed on the ADNI website (http://
www.loni.ucla.edu/ADNI/Research/Cores/). Each exam underwent a quality control
evaluation at the Mayo Clinic (Rochester, MN, USA). Quality control included inspection of
each incoming image file for protocol compliance, clinically significant medical
abnormalities, and image quality. The T1-weighted volumetric scans that passed the quality
control were processed using the standard ADNI image processing pipeline, which included
post-acquisition correction of gradient warping (Jovicich et al., 2006), B1 non-uniformity
correction (Narayana et al., 1988) depending on the scanner and coil type, intensity non-
uniformity correction (Sled et al., 1998) and phantom based scaling correction (Gunter et al.,
2006) with the geometric phantom scan having been acquired with each patient scan.

2.3. Semi-automated whole brain extraction
In this section, we describe the semi-automated whole brain extraction method that was used
to create both the gold-standard brain segmentations for method comparison and the atlases
in our template library in MAPS.

All the semi-automated whole brain segmentations were performed by trained expert
segmentors at the Dementia Research Centre using the ‘Medical Image Display and
Analysis Software’ (MIDAS) (Freeborough et al., 1997). The brain segmentation is
described in Freeborough et al. (1997), but in summary: to separate the brain (grey and
white matter) and non-brain voxels in the target image, a segmentor first selected two
intensity thresholds representing the range of brain voxel intensities and the most inferior
limits of the brain which excluded excess brainstem/spinal cord. Then, the segmentor used
the erosion operation and manual editing to disconnect the brain from the skull. In order to
recover eroded brain tissues, the segmentor applied the conditional dilation operation to
dilate the voxels with intensity within 60% and 160% of the mean intensity of the eroded
brain region. By dilating the voxels within an intensity window of the brain tissues, the
conditional dilation prevented the inclusion of low intensity CSF and high intensity scalp.
Furthermore, this helped to produce more consistent brain segmentations among different
segmentors because the dilated region was restricted by the intensity window of the brain
tissues. Lastly, the segmentor manually checked and edited the brain segmentation to
include missing brain tissues and exclude non-brain tissues. The whole process took about
30 minutes on average for each brain.

The intra-class correlation coefficient for inter-rater reliability (ICC) was greater than 0.99
calculated from 11 expert segmentors delineating five subjects’ MR data. The ICC values
for intra-rater reliability were all greater than 0.99 in all 11 expert segmentors, delineating
five MR examinations twice.

To further estimate the intra-rater variability of the semi-automated brain extraction method,
the same segmentor (S1) delineated the brains from a subset of 15 randomly chosen images
(5 AD, 5 MCI and 5 controls) twice. Similarly, to assess the inter-rater variability, a
different expert segmentor (S2) delineated the brains from the same subset of 15 images.
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2.3.1. Statistical analysis—To assess the intra-rater reliability, the Jaccard indices for
pairs of whole brain segmentations of the 15 randomly chosen images delineated by the
expert segmentor S1 were calculated. To assess the inter-rater reliability, the Jaccard indices
for pairs of whole brain segmentations of the 15 randomly chosen images delineated by the
expert segmentors S1 and S2 were calculated.

2.4. Automated whole brain extraction
2.4.1. MAPS—Our template library consisted of the 682 1.5T MRI scans and the
corresponding semi-automated brain segmentations obtained from Section 2.3. To facilitate
the matching of the target image to the atlases in the template library, all the atlases were put
into the same reference space by affinely registering to a subject (ADNI subject ID=021 S
0231, MCI male aged 60 with MMSE 29/30) with brain volume (1140 ml) near the mean
brain volume of the whole group (1043 ml). The affine registration algorithm used in all our
methods was based on maximising the normalised cross-correlation between the source and
target images (Lemieux et al., 1994) using a conjugate gradient descent optimization
scheme. Since the semi-automated brain segmentations in the template library were also
used as the gold-standard for the method comparison, all experiments were performed in a
leave-one-out fashion. We excluded the image being segmented from the template library,
meaning that the template library effectively consisted of 681 scans for the leave-one-out
experiments.

To extract the whole brain from the target image, we performed the following three steps
(also see Fig. 1):

1. Template selection: the target image was affinely registered to the subject to which
all the template library scans were registered. Best matches from the template
library were ranked as to their similarity using the cross-correlation (R2) between
the target image and the template library over the 2-voxel dilated whole brain
segmentations. Cross correlation has been shown to provide a good criterion for
template selection in multi-centre imaging data (Aljabar et al., 2009). Once a rank
of best to worst matches was established, a subset of the highest ranking matches
could be used to propagate the undilated whole brain segmentation onto the target
image.

2. Label propagation: the best-matched atlases were registered to the target image
using affine registration and non-rigid registration based on free form deformation
(Rueckert et al., 1999; Modat et al., 2010). Multiple control point spacings
(16mm→8mm→4mm) were used in the non-rigid registration to model
increasingly local deformations. The whole brain segmentations in the best-
matched atlases were then propagated to the target image using the results of the
registrations. The grey-level whole brain segmentation in the target image was
thresholded between 60% and 160% of the mean intensity of the segmentation,
followed by a 2-voxel conditional dilation within 60% and 160% of the mean
intensity of the segmentation. The same intensity thresholding and 2-voxel
conditional dilation was previously used to recover missing brain tissues in the
automated segmentation of whole brain regions in the repeat images using the
propagation of the semi-automated whole brain regions in the baseline images
(Evans et al., 2009; Leung et al., 2010b).

3. Label fusion: Multiple brain segmentations in the target image were combined
using label fusion. The fused segmentation was further unconditionally dilated by 2
voxels to recover any missing brain tissues because it was felt better to possibly
include more non-brain tissues, than to exclude real brain tissues, as described in
Ségonne et al. (2004). We referred to the dilated fused segmentation as the
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automated whole brain segmentation from MAPS and the undilated one as
‘undilated MAPS-brain’.

2.4.2. BET in FMRIB Software Library version 4.1.4 (http://www.fmrib.ox.ac.uk/
fsl/)—BET estimates the minimum and maximum intensity values of the brain image, and
evolves a deformable model to fit the brain surface based on smoothness criteria and a local
intensity threshold (Smith, 2002).

2.4.3. BSE in BrainSuite version 09e (http://brainsuite.usc.edu/)—BSE uses a 2D
Marr-Hildreth operator for brain edge detection after anisotropic diffusion filtering
(Shattuck et al., 2001). Mathematical morphology is then used to extract the brain from the
edge map.

2.4.4. HWA in FreeSurfer version 4.5 (http://surfer.nmr.mgh.harvard.edu/)—
Similar to Shattuck et al. (2009), HWA combines watershed algorithms and deformable
surface models (Ségonne et al., 2004). The watershed algorithm provides a robust initial
estimate of the brain volume for the deformable model to fit a smooth surface around the
brain. A statistical atlas is used to validate and correct the brain extraction.

2.5. Parameter selection
2.5.1. Training datasets—Our previous experiences with MAPS suggested that a
relatively small number of images were sufficient to choose the reasonable parameters for
the wider dataset. We randomly selected 10 1.5T scans as the training dataset for MAPS.
For BET, BSE and HWA, we randomly selected 18 scans by choosing one scan from each
diagnostic group (controls, MCI and AD) in each field strength (1.5T and 3T) from each
scanner manufacturer (GE, Philips and Siemens), in order to provide a variety of different
images in the training dataset. The best parameters were determined by comparing the
results with the semi-automated brain segmentations. The best parameters were then used
for our whole dataset. Note that we decided to use a larger and more evenly distributed
training dataset for BET, BSE and HWA than MAPS, in order to be able to get the best
possible results from them.

2.5.2. MAPS—We applied MAPS to the 10 randomly chosen 1.5T scans in order to
determine the number of best-matched atlases and the optimal label fusion technique
required to produce accurate ‘undilated MAPS-brains’ by comparing them to the semi-
automated brain segmentations. We combined segmentations from 3 to 29 best-matched
atlases using either voting (Heckemann et al., 2006), shape based averaging (SBA)
(Rohlfing and Maurer, 2007) or simultaneous truth and performance level estimation
(STAPLE) (Warfield et al., 2004). For SBA, we used the 50% trimmed mean (Rothenberg et
al., 1964) instead of the simple mean when calculating the average distance of a voxel to the
labels, in order to increase the robustness to outliers.

2.5.3. BET—We chose to investigate the fractional intensity threshold option ‘-
f‘ (default=0.5) and the following additional mutually exclusive options: ‘-R’ for robust
brain centre estimation, ‘-S’ for eye and optic nerve cleanup and ‘-B’ for bias field and neck
cleanup. We applied BET to the 18 randomly chosen scans using either with no option, ‘-R’,
‘-S’ or ’-B’ to determine the best mutually exclusive option. Our previous experiences with
BET showed that it had a tendency to exclude some brain voxels in the results. As the
documentation of BET states that a smaller fractional intensity threshold returns a larger
brain region, we varied the fractional intensity thresholds between 0.0 to 0.5 (increment of
0.1) after determining the best mutually exclusive options (‘-R’, ‘-S’ or ‘-B’).
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2.5.4. BSE—We chose to examine the following parameters: ‘-n’ for the number of
diffusion iterations, ‘-d’ for the diffusion constant and ‘-s’ for the edge constant. We applied
BSE to the same 18 randomly chosen scans (used for parameter selection in BET) using the
option ‘-p’ (for post-processing dilation of the final brain mask) and all the combinations of
the following parameters: ‘-n’=(4, 5, 6, 7, 8, 9, 10), ’-d’=(14, 15, 16, 17, 18, 19, 20, 21, 22),
‘-s’=(0.5, 0.6, 0.7, 0.8, 0.9).

2.5.5. HWA—We chose to investigate the following parameters as Shattuck et al. (2009): ‘-
atlas’: use the atlas information to correct the segmentation, ‘less’: shrink the surface and
‘more’: expand the surface. We applied HWA to the same 18 randomly chosen scans (used
for parameter selection in BET) using the following options: default, ‘-less’, ‘-more’, ‘-less -
atlas’ and ‘-more -atlas’.

2.6. Method comparison
2.6.1. Quantitative evaluation metrics—The automated whole brain segmentations
were compared to the semi-automated whole brain segmentations obtained (described in
Section 2.3) using the Jaccard index, false positive rate and false negative rate (Shattuck et
al., 2009; Sadananthan et al., 2010):

• Jaccard index was used to measure the overlap similarity of two segmentations and

is defined as , where A is the set of voxels in the automated region and B is
the set of voxels in the gold-standard region;

• False positive rate was used to measure the probability of false brain voxels in the

automated segmentation, and is defined as , where FP is the set of false
positive voxels and TN is the set of true negative voxels. It is related to the
specificity by: specificity = 1 − (false positive rate);

• False negative rate was used to measure the probability of missing brain voxels in

the automated segmentation, and is defined as , where FN is the set of false
negative voxels and TP is the set of true positive voxels. It is related to the
sensitivity by: sensitivity = 1 − (false negative rate).

Different automated brain extraction methods generated segmentations containing different
amounts of CSF voxels. In order to avoid the influence of different amounts of CSF voxels
included in the segmentations, we followed the comparison methods suggested by Boesen et
al. (2004) and Sadananthan et al. (2010) when calculating the Jaccard index and false
positive rate. Low intensity voxels were excluded from all the whole brain segmentations by
using a consistent threshold. We chose the threshold as 60% of the mean intensity of the
gold-standard semi-automated brain segmentation. The Jaccard index and false positive rate
were then calculated using the thresholded whole brain segmentations. The false negative
rate was calculated using the unthresholded whole brain segmentations.

Since the ‘undilated MAPS-brains’ were derived from the semi-automated whole brain
segmentations, we also performed a direct comparison between them using the Jaccard
index, false positive rate and false negative rate without excluding low intensity voxels. This
direct comparison was not performed for BET, BSE and HWA because of the different
amounts of CSF included in BET, BSE, HWA, and the ‘gold-standard’ semi-automated
segmentations, which would make the results less meaningful.
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2.6.2. Qualitative analysis using projection maps—In order to visualise the
locations of the segmentation errors in different automated whole brain extraction methods,
we generated projection maps of the false positive and negative voxels (Shattuck et al.,
2009). All the images in our dataset were non-rigidly registered to the subject (ADNI subject
ID=021 S 0231) to which all the template library scans were registered. Multiple control
point spacings (16mm→8mm→4mm) were used in the non-rigid registration to model
increasingly local deformations. We then affinely registered the subjects to the MNI 305
atlas (Mazziotta et al., 1995). Using the affine and non-rigid transformations, we mapped the
false positive and negative voxels of all the segmentations into the MNI 305 atlas using
nearest-neighbour interpolation. For each transformed false positive and negative map, we
computed 2D sagittal, coronal and axial projections by summing the counts of voxels along
the respective directions. Each pixel in these 2D projection maps denoted the number of
erroneous voxels along a projected ray in the particular direction. To summarise all the false
positive (or negative) projection maps of a brain extraction method, we calculated an
average projection map from the projection maps of all the segmentations by taking the
mean value of all the projection maps at each pixel.

2.6.3. Application of ‘undilated MAPS-brains’ in brain atrophy estimation—The
boundary shift integral (BSI) provides a precise measurement of brain atrophy from two
serial MR scans (Freeborough and Fox, 1997). The first step in BSI requires the extraction
of the brain regions that includes GM and WM and excludes internal and external CSF from
the two serial MR scans. KN-BSI was recently proposed to produce a more robust atrophy
estimation in multi-site data by incorporating better intensity normalisation and automatic
parameter selection (Leung et al., 2010b). We therefore compared the use of semi-automated
segmentations and ‘undilated MAPS-brains’ in brain atrophy estimation of the baseline and
12-month 1.5T scans of our ADNI dataset using KN-BSI.

We applied MAPS to obtain ‘undilated MAPS-brains’ of the baseline and 12-month 1.5T
scans, and used them to calculate KN-BSI (referred to as MAPS KN-BSI). We also
calculated a KN-BSI using the semi-automated segmentations in the baseline scans and
propagated brain segmentations in the 12-month scans as Leung et al. (2010b) and Evans et
al. (2009) (referred to as semi-automated MAPS KN-BSI). The propagated brain
segmentations in the 12-month scans were calculated by propagating the semi-automated
segmentation from the baseline scans to the 12-month scans of the same subject using affine
registration and nonrigid registration based on B-splines (Rueckert et al., 1999).

2.7. Statistical analysis
We compared the Jaccard index, false positive rate and false negative rate between the brain
extraction methods in 1.5T and 3T scans. Due to the highly skewed distribution of the
Jaccard index, false positive rate and false negative rate, the median was used to measure the
average accuracy of a method, and the 1st to 99th centile range (CR) was used to measure
the variability in accuracy of a method. Confidence intervals (CI) for the differences in the
median and CR were found using bias-corrected and accelerated (BCa) bootstrap CIs (Efron
and Tibshirani, 1993) (10,000 bootstrap samples), using STATA’s bootstrap command. This
procedure created 10,000 samples by sampling subjects (and their data) from the original
dataset (with replacement). Since the distribution of differences was non-normal, we report
whether p < 0.05 on the basis of whether the BCa bootstrap CI for the differences includes
the null value of 0. We also performed the same analysis to assess differences in the median
and CR of the Jaccard index, false positive rate and false negative rate between subject
diagnostic groups and between scanner field strength within each method, which are given
in the supplementary material.
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We refer to an automated whole brain segmentation as ‘failed’ when its Jaccard index was 0,
meaning that there was no overlap between the automated and semi-automated whole brain
segmentations.

A pairwise t-test was used to compare the differences between semi-automated KN-BSI and
MAPS KN-BSI in each diagnostic group. The agreement between the two KN-BSIs was
further examined using a Bland-Altman plot (Bland and Altman, 1986).

3. Results
3.1. Semi-automated whole brain extraction

The mean (SD) Jaccard index between the two different semi-automated segmentations by
the same segmentor S1 were 0.988 (0.005) (see Table 3(a)), and the mean (SD) Jaccard
index between the different semi-automated segmentations delineated by the expert
segmentors S1 and S2 were 0.989 (0.003) (see Table 3(b)). Furthermore, based on the 15
images (5 controls, 5 MCI and 5 AD), we found that the mean (SD) number of voxels
modified by the expert segmentor S1 after the thresholding procedure was 6403 (3964).

3.2. Parameter selection of MAPS, BET, BSE and HWA
Fig. 2 shows the accuracy of the ‘undilated MAPS-brain’ using different numbers of best-
matched atlases and label fusion techniques. SBA performed better than voting and
STAPLE, and the accuracy of SBA started to reach a plateau when combining more than 19
segmentations. As a trade-off between accuracy and running-time, we decided to choose 19
best-matched atlases and combined them using SBA, which gave an average Jaccard index
of 0.980 in the subset of 10 images. Fig. 3 demonstrates MAPS by showing the intermediate
and final results using the chosen parameters.

Table 4 shows the accuracy of BET, BSE and HWA using different parameters. For BET,
the best parameters were ‘-B -f 0.3’, which gave an average Jaccard index of 0.953. For
BSE, the best parameters were ‘-n 4 -d 20 -s 0.70 -p’, which gave an average Jaccard index
of 0.917. Furthermore, for HWA, the best parameters were ‘-less’, which gave an average
Jaccard index of 0.956.

3.3. Comparison of MAPS, BET, BSE and HWA
Typical performance of automated brain extraction methods in 1.5T and 3T scans in our
dataset are shown in Figs. 4 and 6. In addition, Figs. 5 and 7 show examples of thresholded
segmentations using 60% of the mean intensity of the semi-automated segmentation in 1.5T
and 3T scans. Tables 5 and 6 show the median and CR (1st-99th centile range) of the
Jaccard index, false positive rate and false negative rate of MAPS, BET, BSE and HWA
using the 1.5T and 3T scans respectively. MAPS had the highest median Jaccard index, and
BSE had the lowest median false positive rate. HWA, closely followed by MAPS, had the
lowest median false negative rate. Furthermore, MAPS had the smallest CR in the Jaccard
index, false positive rate and false negative rate. We found that while no MAPS and HWA
segmentations failed, 2 BET segmentations (2 1.5T images) and 3 BSE segmentations (2
1.5T and 1 3T images) failed (see Fig. S.1(a) and S.1(b) in the supplementary material for
two examples).

3.3.1. Qualitative analysis using projection maps—Non-brain tissue was included
in all automated segmentation algorithms (see Fig. 8). All algorithms erroneously added
dura surrounding the cerebellum (including tentorium) and cortex (including falx cerebri).
Inclusion of these extra tissues appeared relatively more pronounced and extensive using
HWA particularly in the tentorium and nervous tissue running medial to the temporal lobes
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including optic nerves. Neck and other non-brain tissues inferior to the brain area were
included in some segmentations of BET. Our false negative maps (see Fig. 9) show more
discrepancies across techniques compared with the false positive maps. It is important to
note the differences in scale bar when comparing across these techniques; the scale bar for
MAPS and HWA extend only to 0.6 whereas BET and BSE extend to 10. Very few areas
were erroneously excluded by MAPS and these areas appear to fall largely outside of the
brain (for example, tentorial tissue) and may therefore represent subtle manual
missegmentations (see Fig. 10). BET appeared to wrongly exclude cerebellar and occipital
lobe tissue as well as anterior temporal and frontal lobe areas in some cases. The fact that
the whole of the brain was visible using BET was due to complete failure of the technique in
a very small number of images as described above. BSE appeared to falsely exclude
cerebellar and inferior temporal lobe tissue on a number of scans. HWA, much like BSE,
had some problems correctly including cerebellar tissue on some images, and in a very small
number of cases (see scale bar) this extended to the remainder of the brain.

3.3.2. Between-method comparison—Tables 7 and 8 shows differences in median and
CR (1st-99th centile range) of the Jaccard index, false positive rate and false negative rate
between MAPS, BET, BSE and HWA.

• Accuracy

There was evidence of differences in the median Jaccard index among all the
automated brain extraction methods except between HWA and BET. In both
1.5T and 3T segmentations, the median Jaccard index of MAPS was higher
than HWA and BET, which in turn was higher than BSE.

There was evidence that the median false positive rates differed among all the
methods. The methods in ascending order of the median false positive rate
were BSE, MAPS, BET and HWA in 1.5T segmentations and BSE, BET,
MAPS and HWA in 3T segmentations.

There was evidence that all false negative rates differed among the methods
except in 1.5T segmentations between HWA and MAPS. In 1.5T
segmentations, the median false negative rates of MAPS and HWA were lower
than BET, which in turn was lower than BSE. In 3T segmentations, the
methods in ascending order of the median false negative rate were HWA,
MAPS, BET and BSE.

• Variability in accuracy

There was evidence of differences in the CRs of the Jaccard index among all
the automated brain extraction methods except in 3T segmentations between
BET, BSE and HWA. In 1.5T segmentations, the methods in the ascending
order of CR of the Jaccard index were MAPS, HWA, BSE and BET. In 3T
segmentations, the CR of the Jaccard index of MAPS was smaller than BET,
BSE and HWA.

There was evidence of differences in the CRs of the false positive rate among
all the automated brain extraction methods except in 3T between HWA and
BET. In 1.5T segmentations, the methods in ascending order of the CR of the
false positive rate were MAPS, HWA, BSE and BET. In 3T segmentations, the
CR of the false positive rate of BSE was smaller than MAPS, which in turn
was smaller than HWA and BET.

There was evidence of differences in the CRs of the false negative rate among
all the automated brain extraction methods except in 3T between HWA, BET
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and BSE. In 1.5T segmentations, the methods in ascending order of the CR of
the false negative rate were MAPS, HWA, BSE and BET. In 3T
segmentations, the CR of the false negative rate of MAPS was smaller than
BET, BSE and HWA.

3.4. Computation time
The computation time of BSE and HWA were about 1 minute per image running on a
personal computer with a Intel(R) Xeon(R) CPU (X5472 3.00GHz) and 4Gb of RAM,
whereas the computation time of BET was about 10 minutes per image. The computation
time of MAPS was about 19 hours because of the computationally expensive non-rigid
registrations.

3.5. Direct comparison of ‘undilated MAPS-brains’ with semi-automated segmentations
Table 9 shows the direct comparison between the ‘undilated MAPS-brains’ and semi-
automated segmentations. The median Jaccard index (CR) was 0.980 (0.053) and 0.974
(0.106) in 1.5T and 3T segmentations. Note that the median Jaccard index and false positive
rate of ‘undilated MAPS-brains’ are similar to thresholded MAPS segmentations in Table 5.
This was due to the fact that the thresholding removed most of the lower intensity voxels
(e.g. CSF) after the 2-voxel dilation. On the other hand, since the false negative rate was
calculated using the unthresholded MAPS segmentation, the false negative rate of the MAPS
segmentation was lower than the ‘undilated MAPS-brain’.

3.6. Application of ‘undilated MAPS-brains’ in brain atrophy estimation
We found excellent agreement between semi-automated KN-BSI and MAPS KN-BSI (see
Table 10 and Fig 11), although there were small statistically significant differences between
them (with semi-automated KN-BSI > MAPS KN-BSI).

3.7. Post-hoc analysis
Since our results showed that the median accuracy of MAPS was higher than BET, BSE and
HWA in the ADNI dataset when using our semi-automated brain segmentations as the gold-
standard, we used the Segmentation Validation Engine (SVE) website (http://
sve.loni.ucla.edu/archive/) to further test MAPS on a different dataset (40 healthy subjects;
mean (SD) age = 29.2 (6.3)), and compared the results with the gold-standard brain masks
delineated using a different manual segmentation protocol as described in Shattuck et al.
(2009). Since the brain masks provided by the SVE website included all the internal
ventricular CSF and some external sulcal CSF, we slightly modified the MAPS algorithm to
include them in the brain segmentation (see Appendix A for more details). The median (CR)
Jaccard index of MAPS was 0.955 (0.019) (ID=173, http://sve.loni.ucla.edu/archive/study/?
id=173), which was the highest amongst all the entries at the time of writing (other entries
included BSE, BET, HWA, statistical parametric mapping (SPM) (Ashburner and Friston,
2005) and various other algorithms). The median Jaccard index of MAPS was 0.002 (95%
CI (−0.001, 0.004), p > 0.05) higher than the second highest entry (which used the voxel-
based morphometry (VBM) toolbox (version 8, http://dbm.neuro.uni-jena.de/vbm8/VBM8-
Manual.pdf)), and the CR of the Jaccard index of MAPS was 0.009 (95% CI (−0.005,
0.013), p > 0.05) lower than VBM. The CIs suggested that both tests were close to statistical
significance.

4. Conclusions and Discussion
We wished to evaluate a template-based automated brain extraction method (MAPS) and a
number of well-established automated brain extraction methods relative to a conventional
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semi-automated method that involves time consuming manual editing. We applied the four
automated brain extraction methods (MAPS, BET, BSE and HWA) to over 800 scans from
the ADNI database. This set of images included scans with a range of anatomy and atrophy:
from healthy elderly subjects with little atrophy to MCI and AD subjects with very
significant atrophy.

All four methods showed reasonable overlap (Jaccard index) with the semi-automated ‘gold-
standard’ segmentation. Among the four methods, MAPS had higher median accuracy and
smaller variability in accuracy. Both MAPS and HWA had low false negative and false
positive rates, meaning that they were able to preserve nearly all the brain voxels and, at the
same time, removed most of the non-brain voxels. MAPS removed more non-brain voxels
than HWA and was less variable than HWA in terms of the CR of false positive rate and
false negative rate. Although the median accuracy of BET was higher than BSE, the
variability in accuracy of BSE was lower than BET. Of note, in the direct comparison,
‘undilated MAPS-brains’ were found to be very accurate, with a median Jaccard index of
0.980 in 1.5T segmentations. This is close to the mean Jaccard index of two different
segmentations produced by the same segmentor (0.988) and segmentations performed by
different segmentors (0.989). Furthermore, MAPS KN-BSI was in excellent agreement with
semi-automated KN-BSI, and the small mean (SD) difference of 0.02% (0.08%) between
them was less than the mean (SD) difference of 0.05% (0.47%) in BSI between same-day
scan pairs reported by Boyes et al. (2006) in a different study.

We compared the four automated brain extraction methods qualitatively using the false
positive and false negative projection maps (see Figures 8 and 9). While the false positive
projection maps appear quite similar with added dura surrounding the cerebellum, the false
negative projection maps show that different methods failed to include tissues in different
locations as represented by different ‘hot spots’. BET appeared to tend to exclude temporal
and frontal lobe tissues (consistent with the findings of Shattuck et al. (2009)) as well as
cerebellar tissue. Both BSE and HWA appeared to erroneously exclude cerebellar tissue.
However, Shattuck et al. (2009) did not find that HWA excluded much cerebellar tissue,
which was likely due to the difference in the range of morphology and characteristics of the
brain images in the datasets. The results of the quantitative comparison between BET, BSE
and HWA are similar to those reported by Fennema-Notestine et al. (2006), Shattuck et al.
(2009) and Sadananthan et al. (2010), with HWA being better at preserving brain voxels
than BET and BSE, and BET and BSE being better at removing non-brain voxels than
HWA.

Although the effect of scanner field strength on the accuracy of MAPS and HWA was
minimal, the effect on the robustness of HWA was large: the CR of the false negative rate in
3T segmentations is 39 percentage points higher than 1.5T segmentations. The median
Jaccard index and false negative rate of BET and BSE in 1.5T segmentations were better
than 3T segmentations. Although there was no evidence of a difference in the variability in
the Jaccard index of BET and BSE between 1.5T and 3T segmentations, the CR of the false
negative rate of BSE in 3T segmentations is 40 percentage points higher than 1.5T
segmentations. Sadananthan et al. (2010) also found that the performance of the methods
were different in their 1.5T and 3T datasets.

Despite the efforts put into trying to ensure that the characteristics of MR images in the
ADNI dataset were similar across different scanner manufacturers and field strengths, there
are inevitably significant differences and it is interesting that field strength significantly
affected the accuracy and robustness of the automated brain extraction methods.
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The effect of the diagnostic groups on the automated brain extraction methods was
complicated; the accuracy of MAPS in all the groups was similar, however, MAPS produced
slightly less robust results in controls. This is likely due to the 2-voxel dilation performed at
the end of the processing as the dilated brain region in controls is more likely included non-
brain tissues (e.g. dura) than MCI or AD subjects. BET produced more accurate results in
controls with higher median Jaccard index and lower median false negative rate. On the
other hand, there was little suggestion of the robustness of BET being different across
diagnostic groups except at 3T the segmentations of AD subjects were more robust than
control and MCI subjects. Although there was no evidence of a difference in the accuracy of
BSE between diagnostic groups, it was surprising that the robustness of BSE was
significantly better in MCI subjects in 1.5T segmentations. The accuracy of HWA in all the
diagnostic groups was similar. Although there was no evidence of a difference in the
robustness of HWA between diagnostic groups, the CR of the false positive rate of controls
tended to be smaller than AD and MCI subjects.

Although we did not find any significant difference in the median Jaccard index of BSE and
HWA between diagnostic groups, we found that BET produced significantly more accurate
results in controls than MCI and AD subjects in both 1.5T and 3T scans. This was similar to
the findings of Fennema-Notestine et al. (2006) that the average Jaccard index of BET in
young normal controls was higher than AD subjects (Figure 5 of (Fennema-Notestine et al.,
2006)).

We previously found that STAPLE was the best method to combine multiple hippocampal
segmentations in terms of the Jaccard index (Leung et al., 2010a). However, we found shape
based averaging to be better for whole brain segmentations. The best label fusion method is
likely to be problem specific, consistent with the findings of Artaechevarria et al. (2009); in
that depending on the characteristics of the images and regions, globally or locally weighted
voting produced substantially better results than simple majority voting. It is interesting to
note that the chosen parameters give similar results in the small subset and our whole
dataset, meaning that the 10 randomly chosen 1.5T images have provided a good sample for
parameter selection in MAPS. Given the excellent results in the 3T scans and the scans from
SVE, the chosen parameters may also be suitable for scans acquired using different MR
sequences and scanners - this potential generalisabilty (based on the range of anatomy
included in the template library) is a possible advantage over those methods that require
parameter selection based on a subset of scans. The oscillation in the accuracy of SBA in
Fig. 2 may appear concerning in terms of performance, however it is due to the discreteness
in 50% trimmed mean: the 50% trimmed mean discards equal or unequal numbers of
segmentations from either side depending on the number of segmentations.

For large studies and clinical trials, it is more important to minimise the human interaction
time and expertise required to correct any sub-optimal segmentation (e.g. parameter fine-
tuning or manual editing) than to minimise the computation time of the algorithm. Although
the computation time of MAPS is comparatively much longer than BET, BSE and HWA,
the robustness of MAPS was substantially higher than the other methods. Furthermore, the
processing time of MAPS can be improved by (1) running the software using a computer
cluster, (2) using fewer atlases in a trade off between accuracy and computation time, or (3)
running the non-rigid registration on a graphical processing unit (GPU) (Modat et al., 2010).

One of the strengths of this study is the large number of images of AD, MCI and control
subjects acquired from scanners of different field strength and manufacturers at multiple
sites. To the best of our knowledge, this is the largest comparison of automated brain
extraction methods in the literature. Another strength of this study is that all the data and
softwares will be openly available to the public on the world wide web. All the scans can be
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downloaded from the ADNI website (http://www.adni-info.org). The semi-automated brain
segmentations will be available on the ADNI website. BET, BSE and HWA are all available
on the web (see Section 2). The registration software and label fusion softwares used in
MAPS can be downloaded at http://sourceforge.net/projects/niftyreg/ and http://
www.itk.org/. We will make all the MAPS brain regions available on-line at the ADNI
website (http://adni.loni.ucla.edu/).3

One of the limitations of this study is the lack of ground-truth whole brain segmentations in
the method comparison. Instead, we used semi-automated segmentations which were then
manually edited by trained expert segmentors. The segmentors followed a pre-defined
segmentation protocol to ensure low intra- and inter-rater variability. Another limitation is
that the amount of brain stem labelled as brain may not be consistent between the semi-
automated and automated segmentations. Although the thresholding was designed to remove
CSF from the automated segmentations to allow the comparison with semi-automated
segmentations, it may remove some grey matter from the brains and lose some important
information at the boundary of the brain. We also did not try to use other label fusion
algorithms in MAPS (apart from vote, SBA and STAPLE), such as a local weighted voting
method (Artaechevarria et al., 2009) or a selective and iterative method (Langerak et al.,
2010). In addition, although we examined most of the parameters in BET, BSE and HWA
using a subset of scans from our dataset, an expert user may be able to fine-tune other
parameters or use a different subset to produce better results.

Despite the fact that all the MAPS experiments were carried out in a leave-one-out fashion,
MAPS may have an advantage over other methods in the comparison because the definition
of a brain region in the MAPS segmentations is likely to be more consistent with the semi-
automated segmentations. Partly our motivation for developing and assessing MAPS was to
replace the semi-automated segmentation - there is therefore some potential intrinsic
advantage to MAPS (relative to BET, BSE and HWA). As such we must be cautious about
the conclusions. Nonetheless the advantage is arguably minimal because of the following:

1. The post-hoc analysis (Section 3.7) showed that MAPS performed well both in
terms of accuracy and variability in accuracy on a different and independent dataset
with gold-standard brain masks delineated using a different manual segmentation
protocol (SVE). The comparison using SVE is not only independent but also
involves a wide range of algorithms with parameters that have been fine-tuned
either by the developers or Shattuck et al. (2009). Currently, SVE contains 118 sets
of results from several algorithms (e.g. VBM8, BSE and brainwash2). We found
that the evaluations using our semi-automated brain segmentations and the
independent gold-standard segmentations from SVE are consistent with each other;

2. The final step in MAPS involved a 2-voxel unconditional dilation. Although this
step was designed to recover missing brain tissues, it also substantially reduces the
similarity between the MAPS segmentations and the gold-standard segmentations.
For example, using a randomly chosen brain segmentation in our template library, a
2-voxel dilation reduces the Jaccard index from 1 to 0.741;

3. There is a substantially amount of manual intervention in the semi-automated
segmentation, which includes the selection of the initial intensity thresholds and the
editing of brain/non-brain tissues during various stages of the semi-automated
segmentation;

3Please contact the corresponding author if you cannot locate the MAPS brain regions on the ADNI website.
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4. In order to reduce the influence of the amount of CSF included in the automated
brain segmentations in the comparison, the Jaccard index and the false positive rate
were calculated using thresholded brain segmentations as in Sadananthan et al.
(2010) and Boesen et al. (2004). The thresholding values were given by 60% of the
mean brain intensity of the gold-standard segmentation. This thresholding step
ensures consistent cut-off points between CSF and GM interface in all the
automated segmentations;

5. The false positive rate and false negative rate maps of MAPS show errors near the
inferior brain stem. This suggests that there is still inconsistency between the
MAPS brain segmentations and gold-standard segmentations.

The outputs of different brain extraction algorithms include different amount of internal
ventricular and external sulcal CSF. Therefore, we chose to use a consistent threshold to
exclude low intensity voxels from all the brain segmentations, as suggested by Boesen et al.
(2004) and Sadananthan et al. (2010), to try to compare different algorithms in as unbiased
manner as possible. However, we acknowledge that brain extraction is rarely used in
isolation and that dependent on the subsequent processing steps and ultimate outcome
measure being assessed the quality of segmentation and possible errors included may or may
not be important. The requirement for accuracy in brain extraction therefore varies with
different uses of the masks. We also acknowledge that each of the other methods might well
be fine-tuned to particular scan types and applications. Although we showed that the semi-
automated KN-BSI and MAPS KN-BSI were very similar, future work should examine the
suitability of a particular brain extraction method for the specific processing pipeline or
application for which it is to be used.

In conclusion, our results suggest that a template library approach (MAPS) is a relatively
accurate and robust method of automated brain extraction. MAPS was similar to HWA in
the ability to preserve brain tissues, but removed significantly more non-brain tissues than
HWA. MAPS was shown to be more robust than HWA. We suggest that fully automated
brain extraction methods now approach the accuracy and reliability of time consuming
manual techniques and may be particularly valuable in large scale studies. Ultimately, the
development and evaluation of accurate and robust brain segmentation methods that are able
to equal or outperform more labour-intensive manual segmentation procedures will facilitate
more efficient research.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Appendix

A. Modified MAPS for the Segmentation Validation Engine
This section describes the modified MAPS algorithm that generated the brain regions for the
Segmentation Validation Engine (SVE) (ID=173, http://sve.loni.ucla.edu/archive/study/?
id=173). Since the manual brain segmentations provided by SVE include internal ventricular
CSF and some external sulcal CSF, we slightly modified MAPS in Section 2.4.1 to include
them in the brain segmentation. We used the same template library that consisted of 682
1.5T MRI scans. In addition to the semi-automated brain segmentations, we also used the
semi-automated ventricles segmentations delineated by the trained expert segmentors at the
Dementia Research Centre.

1. Intensity non-uniformity correction: the intensity non-uniformity in the target
image was corrected by applying N3 (Sled et al., 1998).

Template selection: there was no change to this step.

2. Label propagation: in order to include internal CSF, we propagated the semi-
automated ventricles segmentations from the atlases to the target image, and added
it to the conditionally dilated brain regions at the end of this step.

3. Label fusion: there was no change to this step. However, we used the ‘undilated
MAPS-brain’ as the input to the next step.

4. Hole filling: in order to fill in any internal cavities and gaps in the ‘undilated
MAPS-brain’, an iterative voting-based hole-filling image filter was applied to fill
in any voxels whose 5 × 5 × 5 (full width) neighbourhood had more than 64 brain
voxels. The number of iterations of the hole-filling image filter was set to 5. Any
remaining holes were filled by flood-filling the image background from the edge
and taking the unflooded voxels as the brain region. The brain region was further
dilated by 1-voxel to include some external CSF.
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Figure 1.
The flowchart of MAPS. Please refer section 2.4.1 for the description of each processing
step.
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Figure 2.
MAPS parameter section: the figure shows the average Jaccard index of ’undilated MAPS-
brains’ using different numbers of best-matched atlases and label fusion techniques in a
subset of 10 images.
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Figure 3.
Visual demonstration of MAPS. The sub-figures show the intermediate results of MAPS as
described in Section 2.4.1 and Fig. 1.
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Figure 4.
Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 1.5T scan
(ADNI subject ID: 126 S 0680). While all techniques had some errors in including non-brain
(e.g. dura) voxels in some areas – the amount varied between methods (arrows).
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Figure 5.
Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 1.5T scan
after thresholding using 60% of the mean intensity of the semi-automated whole brain
segmentation (ADNI subject ID: 126 S 0680).
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Figure 6.
Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 3T scan
(ADNI subject ID: 037 S 1225).
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Figure 7.
Examples of whole brain extraction results of MAPS, BET, BSE and HWA of a 3T scan
after thresholding using 60% of the mean intensity of the semi-automated whole brain
segmentation (ADNI subject ID: 037 S 1225).
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Figure 8.
Mean false positive maps of MAPS, BET, BSE and HWA from the segmentations of our
whole dataset (682 1.5T and 157 3T scans). The colour maps show the average number of
false positive counts (represented by the scales) in each projection plane.
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Figure 9.
Mean false negative maps of MAPS, BET, BSE and HWA from the segmentations of our
whole dataset (682 1.5T and 157 3T scans). The colour maps show the average number of
false negative counts (represented by the scales) in each projection plane. Note the
differences in scale bar when comparing across these techniques; the scale bar for MAPS
and HWA extend only to 0.6 whereas BET and BSE extend to 10.
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Figure 10.
Errors in a semi-automated segmentation. Extra dura and tentorial tissues were included in
the segmentation (pointed by the white arrows).

Leung et al. Page 29

Neuroimage. Author manuscript; available in PMC 2013 January 24.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 11.
Bland-Altman plot showing the agreement between brain atrophy measurement (as a
percentage of the baseline brain volume) using KN-BSI calculated from semi-automated
segmentations in baseline scans and propagated segmentations in 12-month follow-up scans
(automated KN-BSI), and from ‘undilated MAPS-brains’ in baseline and 12-month follow-
up scans (MAPS KN-BSI).
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Table 1

A summary of automated brain extraction method comparison studies in chronological order from the
literature.

Study Sample
size

Diagnostic group Image acquisition

Shattuck et al. (2001) 20 Healthy subjects T1-weighted images from 1.5T scanner

Smith (2002) 45 Healthy subjects 35 T1-, 6 T2- and 4 Proton-density (PD)-weighted
images from 1.5T and 3T scanners

Lee et al. (2003) 23 Healthy subjects T1-weighted images from 1.5T scanner

Boesen et al. (2004) 38 Healthy subjects T1-weighted images from 1.5T scanner

Ségonne et al. (2004) 43 Healthy subjects (14 young and 21
elderly) and subjects with dementia (2
AD and 6 with some form of dementia)

T1-weighted images from 1.5T scanner

Fennema-Notestine et al.
(2006)

32 Healthy subjects (8 young and 8 elderly),
8 unipolar depressed subjects and 8 AD
subjects

T1-weighted images from 1.5T scanner

Hartley et al. (2006) 296 Healthy subjects, 64 subjects with
dementia and 59 subjects with infarcts

PD-weighted images from 1.5T scanner

Park and Lee (2009) 56 Healthy subjects T1-weighted images from 1.5T scanner

Shattuck et al. (2009) 40 Healthy subjects T1-weighted images from 1.5T scanner

Sadananthan et al. (2010) 68 Healthy subjects T1-weighted images from 1.5T and 3T scanners
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Table 3

The table shows the mean (SD) Jaccard index, false positive rate and false negative rate (5 controls, 5 MCI
and 5 AD) between two different semi-automated brain segmentations by the same segmentor and by two
different segmentors.

(a) Segmentations by the same segmentor

Jaccard index

Control 0.990 (0.005)

MCI 0.985 (0.005)

AD 0.991 (0.005)

All 0.988 (0.005)

(b) Segmentations by the two different segmentors

Jaccard index

Control 0.990 (0.004)

MCI 0.987 (0.002)

AD 0.990 (0.003)

All 0.989 (0.003)

Neuroimage. Author manuscript; available in PMC 2013 January 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Leung et al. Page 34

Table 4

The mean (SD) Jaccard index of BET, BSE and HWA of the 18 randomly selected scans (one scan from each
diagnostic group (Controls, MCI and AD) in each field strength (1.5T and 3T) from each scanner
manufacturer (GE, Philips and Siemens)) from the parameter selection. The best parameters for each method
are in bold. Note that only the top 5 BSE results are shown in the table.

Method Parameters Jaccard index

BET default 0.634 (0.171)

-R -f 0.5 0.719 (0.328)

-S -f 0.5 0.643 (0.182)

-B -f 0.5 0.887 (0.224)

-B -f 0.4 0.910 (0.228)

-B -f 0.3 0.927 (0.187)

-B -f 0.2 0.921 (0.187)

-B -f 0.1 0.881 (0.180)

-B -f 0.0 0.761 (0.155)

BSE -n4 -d 20 -s 0.70 -p 0.917 (0.052)

-n 4 -d 19 -s 0.70 -p 0.914 (0.054)

-n 10 -d 20 -s 0.70 -p 0.910 (0.148)

-n5 -d 22 -s 0.70 -p 0.908 (0.139)

-n 10 -d 21 -s 0.70 -p 0.908 (0.154)

HWA default 0.961 (0.018)

-less 0.962 (0.018)

-more 0.960 (0.018)

-less -atlas 0.932 (0.024)

-more -atlas 0.228 (0.146)
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Table 5

Median (1st–99th centile range) Jaccard indices, false positive rates and false negative rates of the automated
whole brain segmentations of MAPS, BET, BSE and HWA using 1.5T scans of 200 controls, 338 MCI and
144 AD.

Jaccard index (using
thresholded segmenta-
tions)

False positive rate / %
(using thresholded seg-
mentations)

False negative rate / %

MAPS Control 0.981 (0.041) 0.196 (0.440) 0.015 (0.226)

MCI 0.981 (0.049) 0.177 (0.523) 0.011 (0.229)

AD 0.980 (0.059) 0.192 (0.661) 0.007 (0.346)

All 0.981 (0.049) 0.184 (0.509) 0.010 (0.242)

BET Control 0.972 (0.909) 0.214 (11.2) 0.616 (82.9)

MCI 0.969 (0.686) 0.193 (9.75) 0.967 (35.8)

AD 0.965 (0.796) 0.201 (9.74) 0.903 (60.1)

All 0.969 (0.826) 0.200 (10.3) 0.802 (60.3)

BSE Control 0.954 (0.989) 0.116 (7.91) 2.03 (99.1)

MCI 0.952 (0.172) 0.108 (0.945) 2.37 (16.2)

AD 0.946 (0.270) 0.126 (2.42) 1.56 (12.5)

All 0.953 (0.217) 0.116 (1.91) 2.17 (15.7)

HWA Control 0.970 (0.143) 0.308 (0.676) 0.010 (11.1)

MCI 0.971 (0.120) 0.289 (0.904) 0.009 (9.38)

AD 0.968 (0.286) 0.293 (4.39) 0.007 (10.2)

All 0.970 (0.126) 0.297 (0.894) 0.009 (7.22)
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Table 6

Median (1st–99th centile range) Jaccard indices, false positive rates and false negative rates of the automated
whole brain segmentations of MAPS, BET, BSE and HWA using 3T scans of 53 controls, 74 MCI and 30 AD.

Jaccard index (using
thresholded segmenta-
tions)

False positive rate / %
(using thresholded seg-
mentations)

False negative rate / %

MAPS Control 0.980 (0.035) 0.173 (0.304) 0.015 (0.262)

MCI 0.978 (0.048) 0.199 (0.514) 0.023 (0.213)

AD 0.983 (0.040) 0.136 (0.444) 0.033 (1.13)

All 0.980 (0.047) 0.177 (0.504) 0.019 (0.683)

BET Control 0.969 (0.745) 0.168 (4.74) 1.05 (61.7)

MCI 0.962 (0.721) 0.177 (6.68) 1.49 (44.6)

AD 0.959 (0.137) 0.117 (0.353) 2.24 (14.1)

All 0.965 (0.731) 0.161 (6.26) 1.30 (51.8)

BSE Control 0.897 (0.977) 0.064 (0.376) 9.37 (99.2)

MCI 0.899 (0.143) 0.089 (0.447) 9.18 (15.8)

AD 0.905 (0.166) 0.057 (0.215) 8.78 (18.5)

All 0.900 (0.550) 0.074 (0.420) 9.20 (56.1)

HWA Control 0.965 (0.592) 0.295 (5.57) 0.007 (34.1)

MCI 0.960 (0.849) 0.367 (9.68) 0.010 (49.2)

AD 0.965 (0.581) 0.264 (9.75) 0.015 (43.7)

All 0.962 (0.701) 0.321 (9.71) 0.010 (46.1)
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Table 7

The comparison of the accuracy of MAPS, BET, BSE and HWA. The table shows the differences in the
median (95% CI) of Jaccard index, false positive rate and false negative rate between the four automated brain
extraction methods.

Jaccard index (using
thresholded segmenta-
tions)

False positive rate / %
(using thresholded seg-
mentations)

False negative rate / %

1.5T

MAPS vs BET 0.012* (0.011, 0.013) −0.016* (−0.022, −0.009) −0.792* (−0.876, −0.724)

MAPS vs BSE 0.028* (0.021, 0.038) 0.068* (0.058, 0.078) −2.16* (−3.09, −1.57)

MAPS vs HWA 0.011* (0.009, 0.012) −0.113* (−0.122, −0.102) 0.002 (−0.001, 0.004)

HWA vs BET 0.001 (−0.000, 0.003) 0.097* (0.086, 0.105) −0.793* (−0.878, −0.726)

HWA vs BSE 0.018* (0.010, 0.028) 0.181* (0.169, 0.192) −2.16* (−3.09, −1.57)

BET vs BSE 0.016* (0.009, 0.026) 0.084* (0.075, 0.095) −1.37* (−2.34, −0.807)

3T

MAPS vs BET 0.015* (0.012, 0.018) 0.015* (0.000, 0.030) −1.28* (−1.52, −1.17)

MAPS vs BSE 0.079* (0.072, 0.086) 0.102* (0.086, 0.117) −9.18* (−10.0, −8.64)

MAPS vs HWA 0.018* (0.015, 0.021) −0.144* (−0.184, −0.114) 0.008* (0.003, 0.015)

HWA vs BET −0.003 (−0.007, 0.001) 0.159* (0.131, 0.199) −1.29* (−1.53, −1.18)

HWA vs BSE 0.062* (0.055, 0.068) 0.246* (0.220, 0.285) −9.19* (−10.0, −8.65)

BET vs BSE 0.065* (0.058, 0.072) 0.087* (0.072, 0.106) −7.90* (−8.77, −7.29)

*
denotes statistical significance at p < 0.05.
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Table 8

The comparison of the variability in accuracy of MAPS, BET, BSE and HWA. The table shows the
differences in the 1st to 99th centile range (95% CI) of Jaccard index, false positive rate and false negative rate
between the four automated brain extraction methods.

Jaccard index (using
thresholded segmenta-
tions)

False positive rate / %
(using thresholded seg-
mentations)

False negative rate / %

1.5T

MAPS vs BET −0.788* (−0.891, −0.600) −9.77* (−10.4, −8.50) −60.1* (−88.5, −32.0)

MAPS vs BSE −0.169* (−0.581, −0.111) −1.40* (−3.47, −0.583) −15.4* (−34.5, −12.8)

MAPS vs HWA −0.078* (−0.139, −0.035) −0.385* (−6.72, −0.255) −6.97* (−12.4, −4.08)

HWA vs BET −0.700* (−0.847, −0.523) −9.39* (−10.1, −8.04) −53.1* (−84.8, −24.1)

HWA vs BSE −0.091* (−0.226, −0.010) −1.02* (−3.10, −0.174) −8.45* (−23.5, −1.61)

BET vs BSE 0.609* (0.388, 0.771) 8.37* (6.19, 9.40) 44.7* (16.6, 75.3)

3T

MAPS vs BET −0.684* (−0.708, −0.421) −5.76* (−6.31, −4.23) −51.2* (−61.5, −31.5)

MAPS vs BSE −0.503* (−0.950, −0.130) 0.084* (0.037, 0.206) −45.4* (−49.0, −33.1)

MAPS vs HWA −0.654* (−0.813, −0.483) −9.20* (−9.36, −4.75) −45.4* (−49.0, −33.1)

HWA vs BET −0.031 (−0.264, 0.478) 3.44 (−0.995, 9.29) −5.78 (−28.2, 26.1)

HWA vs BSE 0.151 (−0.604, 0.612) 9.29* (4.97, 9.53) −10.0 (−83.0, 28.2)

BET vs BSE 0.182 (−0.808, 0.563) 5.84* (4.36, 6.49) −4.25 (−88.9, 37.5)

*
denotes statistical significance at p < 0.05.

Neuroimage. Author manuscript; available in PMC 2013 January 24.



$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text

Leung et al. Page 39

Table 9

Direct comparison of the ‘undilated MAPS-brains’ with semi-automated whole brain segmentations using
1.5T and 3T scans. The tables show the median (1st–99th centile range) Jaccard indices, false positive rates
and false negative rates of the ‘undilated MAPS-brains’.

(a) 1.5T scans of 200 controls, 338 MCI and 144 AD

Jaccard index False positive rate /% False negative rate / %

Control 0.981 (0.047) 0.137 (0.395) 0.225 (3.68)

MCI 0.980 (0.062) 0.152 (0.492) 0.223(6.27)

AD 0.978 (0.061) 0.177 (0.492) 0.198 (6.27)

All 0.980 (0.053) 0.153 (0.457) 0.211 (4.76)

(b) 3T scans of 53 controls, 74 MCI and 30 AD

Jaccard index False positive rate /% False negative rate / %

Control 0.977 (0.058) 0.127 (0.261) 0.424 (6.12)

MCI 0.974 (0.083) 0.158 (0.453) 0.418 (8.41)

AD 0.971 (0.127) 0.123 (0.425 0.447 (13.8)

All 0.974 (0.106) 0.135 (0.462) 0.438 (11.2)
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Table 10

Mean (SD) annualised brain atrophy measurement as a percentage of the baseline brain volume using KN-BSI
calculated from semi-automated segmentations in baseline scans and propagated segmentations in 12-month
follow-up scans (automated KN-BSI), and from ‘undilated MAPS-brains’ in baseline and 12-month follow-up
scans (MAPS KN-BSI).

Semi-automated KN-BSI MAPS KN-BSI Difference (Semi-automated KN-BSI - MAPS KN-BSI) (95% CI), p-
value

Control (N=200) 0.608 (0.587) 0.596 (0.585) 0.012 (0.003, 0.021), p = 0.008

MCI (N=338) 1.128 (0.857) 1.110 (0.850) 0.017 (0.010, 0.0251), p < 0.001

AD (N=144) 1.566 (0.854) 1.541 (0.828) 0.025 (0.009, 0.043), p = 0.005

Neuroimage. Author manuscript; available in PMC 2013 January 24.


