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Abstract
The common neurodegenerative pathologies underlying dementia are Alzheimer’s disease (AD),
Lewy body disease (LBD) and Frontotemporal lobar degeneration (FTLD). Our aim was to
identify patterns of atrophy unique to each of these diseases using antemortem structural-MRI
scans of pathologically-confirmed dementia cases and build an MRI-based differential diagnosis
system. Our approach of creating atrophy maps using structural-MRI and applying them for
classification of new incoming patients is labeled Differential-STAND (Differential-diagnosis
based on STructural Abnormality in NeuroDegeneration). Pathologically-confirmed subjects with
a single dementing pathologic diagnosis who had an MRI at the time of clinical diagnosis of
dementia were identified: 48 AD, 20 LBD, 47 FTLD-TDP (pathology-confirmed FTLD with
TDP-43). Gray matter density in 91 regions-of-interest was measured in each subject and adjusted
for head-size and age using a database of 120 cognitively normal elderly. The atrophy patterns in
each dementia type when compared to pathologically-confirmed controls mirrored known disease-
specific anatomic patterns: AD-temporoparietal association cortices and medial temporal lobe;
FTLD-TDP-frontal and temporal lobes and LBD-bilateral amygdalae, dorsal midbrain and inferior
temporal lobes. Differential-STAND based classification of each case was done based on a
mixture model generated using bisecting k-means clustering of the information from the MRI
scans. Leave-one-out classification showed reasonable performance compared to the autopsy gold-
standard and clinical diagnosis: AD (sensitivity:90.7%; specificity:84 %), LBD (sensitivity:78.6%;
specificity:98.8%) and FTLD-TDP (sensitivity:84.4%; specificity:93.8%). The proposed approach
establishes a direct a priori relationship between specific topographic patterns on MRI and “gold
standard” of pathology which can then be used to predict underlying dementia pathology in new
incoming patients.
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INTRODUCTION
Neurodegenerative dementias are characterized immunohistochemically by the deposition of
specific abnormal proteins. Clinical dementia syndromes are also characterized
macroscopically by unique topographic patterns of cerebral atrophy. Presently, there can be
considerable uncertainty in the clinical diagnosis of these syndromes antemortem because of
clinical heterogeneity, subtle symptoms early in the disease process, and the frequent
occurrence of mixed dementias. Much of the imaging literature devoted to developing
automated methods to improve diagnosis in dementia has been devoted to the task of
differentiating a single specific dementia from healthy elderly controls (Alexander and
Moeller, 1994; Csernansky et al., 2005; Davatzikos et al., 2005; Fan et al., 2005;
Freeborough and Fox, 1998; Kloppel et al., 2008b; Lao et al., 2004; Vemuri et al., 2008a).
Relatively little effort has been directed at differentiating among different dementing
disorders.

In this paper, we focus on the development of a diagnostic system for differentiating among
the pathologies underlying the three most common causes of neurodegenerative dementia:
Alzheimer disease (AD), Lewy body disease (LBD) and Frontotemporal lobar degeneration
(FTLD). Since pathology is heterogeneous in FTLD, we focused exclusively on subjects
with TDP-43 immunoreactive inclusions (FTLD-TDP) (Mackenzie et al., 2010) which is the
most common pathology underlying the frontotemporal dementias (Josephs et al., 2004).
Structural MRI measures macroscopic brain anatomy by capturing the regional variations in
gray matter (GM) atrophy that is typically related to loss of neurons, synapses, and dendritic
dearborization that occurs on a microscopic level in neurodegenerative diseases (Bobinski et
al., 2000; Zarow et al., 2005). Our underlying assumption is that if each of these
neurodegenerative dementias is examined independently in pathologically confirmed “pure”
dementia cases, they will be associated with a unique pattern of atrophy in their MRI scans
specific to the dementia disease process. Therefore, regional GM content in the brains of
pathologically confirmed “pure” dementia subjects can be used as a library of ground truth
for developing the differential diagnosis system.

We label the proposed approach where atrophy patterns estimated using structural MRI are
applied for classifying new incoming patients as Differential-STAND (Differential diagnosis
based on STructural Abnormality due to NeuroDegeneration). We label the 3D intracranial
volume (TIV) and age adjusted regional GM Z-score information estimated using individual
subject’s MRI scans relative to a bank of MRI scans from 120 cognitively normal subjects
used for classification as Differential-STAND Maps. Therefore if we are able to measure the
regional GM changes in the brain i.e. obtain each subject’s Differential-STAND Map, then
we can use these maps to provide differential diagnosis information in new incoming MRI
scans of individual patients. The differential diagnosis approach we employed in this study
was based on the fact that within each dementia type, multiple clusters of different dementia
sub-types exist. The broad goals of this study were two-fold:

1. To create an autopsy-based Differential-STAND database that encodes the patterns
of atrophy unique to each of the three most common causes of neurodegenerative
dementia.

2. To build a differential diagnosis system that separates each dementia pattern from
the rest using Differential-STAND maps.

Vemuri et al. Page 2

Neuroimage. Author manuscript; available in PMC 2012 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



An illustration of the proposed differential diagnosis system can be seen in Fig. 1A. Using
Differential-STAND maps of pathologically confirmed “pure” dementia cases as a library of
scans, we can classify the scan of an incoming patient on the basis of the similarity of their
structural MRI scans to some of the dementia (sub-) types present in the library (AD, LBD
or FTLD-TDP).

MATERIALS AND METHODS
Subjects

All our subjects had been prospectively recruited into the Mayo Clinic Alzheimer’s Disease
Research Center (ADRC), Alzheimer’s disease Patient Registry (ADPR) or Mayo Clinic
behavioral neurology practice. These longitudinal studies include independent nursing,
neurological, and psychometric evaluations. Each participant’s information is reviewed by a
panel of neurologists, neuropsychologists, and research nurses to assign a consensus clinical
diagnosis. Informed consent was obtained from all subjects for participation in the studies,
which were approved by the Mayo Institutional Review Board.

Cognitively Normal subjects used to create a reference MRI data base for Age-adjustment
One hundred and twenty cognitively normal (CN) subjects were chosen for age-adjustment
of regional gray matter density i.e. to create a reference MRI database. The selection
criterion was as follows: Inclusion Criteria: The subjects maintained a clinical diagnosis of
normal throughout their recorded medical history with a minimum follow-up time from the
MRI scan of two years. Exclusion Criteria: Subjects were excluded: 1) if the patient had
any possible diagnosis of dementia; any conversion to mild cognitive impairment or
dementia or other neurodegenerative disease in the course of the entire follow-up; 2) if the
patient had a secondary diagnosis other than depression; 3) if the patient’s last ADRC/
ADPR visit had a CDR sum of boxes score greater than 0, an MMSE score of less than 28 or
a short-test score less than 33 (these scores represent approximately the 25th percentile of all
CN patients); 4) or if patients have an average cognitive decline of 1.0 or more points (of
MMSE or short-test) per year. We selected these subjects in a manner that achieved a fairly
uniform distribution of age across our clinical control group. We obtained roughly the same
number of subjects in each age bin beginning at: 55–65, subsequent bins encompassed 3
year intervals 66–68, 69–71 etc, through the last bin which included ages 87+. The 120
clinically identified CN subjects were used for age-adjustment while a separate group of 21
pathologically identified CN subjects were used for identifying anatomic pattern differences
between dementia cases and these pathological controls. These pathologically CN were
identified by excluding all autopsy cases for the presence of any dementia pathology.

Pathologically Confirmed Dementia Cases
Subjects that met the pathological diagnosis of AD, lewy body disease (LBD) and FTLD-
TDP and had received a 3D volumetric T1-weighted structural MRI scan at the time of
clinical diagnosis of dementia were identified. The first available MRI scan at the time of
dementia diagnosis was used in order to identify the most specific anatomic signature for
each pathological entity. All subjects were required to have had a clinical diagnosis of
dementia at the time of the MRI. The diagnosis was made based on the Diagnostic and
Statistical Manual of Mental Disorders, Fourth Edition (American Psychiatric Association,
1994) and is also well-documented in (Knopman et al., 2003). Specific clinical diagnoses
were made according to established criteria for AD (McKhann et al., 1984), dementia with
Lewy bodies (DLB) (McKeith et al., 2005), behavioral variant frontotemporal dementia
(bvFTD), semantic dementia, progressive non-fluent aphasia (Neary et al., 1998)or
corticobasal syndrome (Boeve et al., 2003). We included subjects diagnosed with only
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single dementia pathology from the neuropathology files of the Mayo Clinic, Rochester, MN
using the following neuropathological criteria:

Alzheimer Disease—Subjects were included if they fulfilled high probability of AD
according to the National Institute on Aging and Reagan Institute Working Group on
Diagnostic Criteria for the Neuropathological Assessment of Alzheimer’s disease (NIA-
Reagan, 1997). Subjects were excluded if they had pathological evidence of hippocampal
sclerosis, vascular dementia, or a non-AD neurodegenerative disorder.

FTLD-TDP—The FTLD group consisted of subjects with a pathological diagnosis of
FTLD-TDP (Mackenzie et al., 2010). The pathological diagnosis of FTLD-TDP was based
on the presence of inclusions that stained positive for TDP-43 and ubiquitin, yet stained
negative for tau, neurofilament, and α-synuclein, in frontal or temporal cortex, and the
hippocampus dentate granular cells (Whitwell et al., 2009b). Subtyping based on the
morphological appearances and distribution of TDP-43 immunoreactive inclusions was
performed using a published classification scheme (Mackenzie et al., 2006). Of the 47
subjects in the study, two were FTLD-TDP type 0, 22 were FTLD-TDP type 1, nine were
FTLD-TDP type 2, 11 were FTLD-TDP type 3, and the type was unknown in three cases.

Lewy Body Disease—Subjects who fulfilled pathologically high likelihood of LBD
according to the third consortium of DLB and had evidence of widespread α-synuclein
positive Lewy bodies in limbic or neocortex that meet published criteria for neocortical or
limbic variant of LBD (McKeith et al., 2005) were considered for these study. Subjects must
have no histological evidence of probable or definite AD based on the CERAD criteria
(Mirra et al., 1991).

We identified a “pure” pathology group of 48 AD, 20 LBD and 47 FTLD-TDP, using the
criteria described above. A group of 21 pathologically normal cases with a clinical diagnosis
of cognitively normal were identified in order to obtain group differences between the
Differential-STAND Maps of CN and each dementia. All pathologically identified CN
subjects had low NIA-Reagan and the only other pathology found was argyrophilic grains, a
common pathological feature of aging (Josephs et al., 2006b). The characteristics of all
subjects used in this study are shown in Table 1.

MRI Acquisition
MRI studies were performed on 1.5 Tesla GE-SIGNA MRI scanners (GE Medical Systems,
Waukesha, WI) using a standard transmit-receive volume head coil. All Mayo scanners
undergo a standardized quality control calibration procedure every morning which monitors
geometric fidelity over a 200 mm volume along all three cardinal axes, signal to noise ratio,
and transmit gain. Subject images were obtained using a standardized imaging protocol that
included a coronal T1-weighted 3-dimensional volumetric spoiled gradient echo (SPGR)
sequence.

Computation of Differential-STAND Map for each subject
In order to estimate the gray matter density in different regions-of-interest (ROI) of the
brain, an anatomic atlas from (Tzourio-Mazoyer et al., 2002) was modified in-house to fit a
custom MRI template of elderly population (Vemuri et al., 2008a). This atlas includes a
dorsal midbrain ROI because a recent study from our group found that there was a reduction
in the dorsal mesopontine GM density in DLB (Whitwell et al., 2007) which is associated
with significant loss of cholinergic neurons. SPM5 was used for tissue segmentation and
normalization. First, all structural T1-weighted MR images were normalized to the custom
template and segmented into gray matter (GM), white matter (WM) and cerebrospinal fluid
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(CSF), using the unified segmentation routine in SPM5 (Ashburner and Friston, 2005), with
the customized tissue probability maps corresponding to the custom template described
above. Next, the inverse spatial normalization parameters were applied to the atlas, to
produce a subject specific atlas, with the 118 ROIs labeled on the subjects MRI scan, and
the GM of each patient was parcellated into ROIs. The total GM density in each ROI was
obtained by multiplying the mean per-ROI GM probability by the number of GM voxels in
the ROI and the voxel volume of the image. For the analysis in this study, we excluded
regions in the cerebellum and pons leaving us with 91 ROIs from each subject scan. Total
GM density in each ROI was scaled by the subject’s total intracranial volume (TIV) to
adjust for head size differences. The TIV was also estimated using atlas normalization
method described above. The 120 clinically defined CN subjects were used to compute age-
adjusted Z-scores for the mean volume per ROI as follows: First, a linear regression model
(GM in an ROI = m*DeltaAge + c) for each ROI was build using the 120 CN patients where
DeltaAge is difference in age of the subject from the mean age of the 120 CN (mean age=75
years). Then, the parameters m and c from the model were applied to remove age related
bias in each of the ROIs in the test dataset which included the Path CN, LBD, FTLD-TDP
and AD. For each individual scan, the final Differential-STAND map represents age and
TIV adjusted Z-scores of regional GM information (in 91 regions). Differential-STAND
map was constructed for each of the patients used in this study.

Differential-STAND Maps specific to each Neurodegenerative Dementia
To determine the key differences between the patterns of atrophy in different
neurodegenerative dementias, we performed a t-test between Differential-STAND Maps of
pathology confirmed cases in each dementia group and the Differential-STAND Maps of the
pathology confirmed CN group (n= 21).

Differential Classifiers
Our preliminary data analysis suggested that within each dementia type, multiple clusters of
dementia sub-types exist. The subtypes or clusters we observe were not necessarily clinical
subtypes but are discovered computationally through clustering of the patients solely based
on their MRI features. We also found that there is considerable overlap among the three
dementia pathologies. The approach we took in this work is to utilize clusters within each
dementia type to reduce the overlap between the dementia types and separate them better.
For diagnosing a new incoming patient, we only use the closest clusters rather than all the
clusters in each dementia type. A simplistic two dimensional illustration of our approach is
shown in Fig 1B. An incoming patient, depicted as the square in the figure, is diagnosed
unambiguously with FTLD-TDP because he/she falls into the patient cluster #3 which is a
cluster of FTLD-TDP. On the other hand, some pathology confirmed FTLD-TDP cases or
LBD cases have medial temporal atrophy associated with memory problems. These cases
are illustrated by clusters 1 and 2 in Fig. 1B.

As we discussed above, classification is carried out on the basis of dementia type in the
closest clusters, which are discovered computationally via clustering. The diagnosis for a
patient is the prevalent disease type in the patient cluster that the patient in question is most
likely to fall into. Mathematically, this approach corresponds to a simplified mixture model
(Bishop, 2006), which we will describe below. The single biggest challenge in this data set
lies in its high dimensionality of the MRI data (high number of ROIs) compared to the small
number of patients. Therefore we took the following approach: The dimensionality of the
MR image is reduced by embedding the data into a new, lower-dimensional space that
preserves the differences between the dementia types. This was accomplished using
regularized discriminant analysis and we refer to the resulting dimensionality-reduced space
as the discriminant space. Next, we identify the dementia clusters using the bisecting k-
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means algorithm in the discriminant space. Finally, we model the dementia types using our
simplified mixture model. Upon classifying a patient, we map their MR image into the
dimensionality-reduced discriminant space, determine the cluster that the patient falls into
(the cluster whose centroid is closest to the point representing the patient in discriminant
space) and apply the mixture model. We elaborate on each of these steps below:

1. Dimensionality reduction: We compute an appropriate dimensionality reduced
space using all the subjects. Linear discriminant analysis (LDA) (Johnson and
Wichern, 2002) is a popular technique for computing a projection of a data set into
a set of discriminant dimensions where the separation among the classes is
maximal.

Let X be an n × p observation matrix for n patients in C different classes and p
ROIs. Let matrix B denote the between-class variance and S denote the within-class
variance defined as follows.

with X̄c denoting the mean observation for class c, nc being the number of patients
in class c and Xi representing the observation vector for patient i. LDA aims to find
a direction, denoted by w, in which the between-class variance is maximal relative
to the within-class variance. Mathematically, LDA maximizes .

LDA in its original form is not suitable for high-dimensional problems, but
regularizing LDA offers a remedy (Guo et al., 2007). In the regularized

formulation, the criterion to maximize becomes . This modification
allows for preventing over-fitting by assigning 0 or very minimal weights to less
relevant ROIs. We used regularized LDA to compute a discriminant space of three
dimensions, where each dimension is a regularized LDA direction discriminating
one dementia type from the rest. Regularization parameters were selected using
cross-validation.

2. Clustering Approach: We use the bisecting k-means algorithm for clustering of
the patients. Most algorithms in the k-means family require the user to supply the
number of clusters –i.e. the number of dementia types in our application. This
number is not known a priori. Bisecting k-means is a hierarchical version of the k-
means clustering (Steinbach et al., 2000), where clusters are recursively bisected as
long as the resulting clusters are not too small (the only constraint being that each
cluster must have at least five patients). This setup allows us to discover the
number of clusters automatically. Repeated applications of k-means can lead to
different clusterings; among the different clusterings, some clusters will contain
exactly the same set of patients, while other clusters will contain different sets of
patients. We refer to the first type of clusters as stable clusters and to the latter type
as arbitrary clusters. Stable clusters indicate the presence of clear cluster structure
while arbitrary clusters indicate the lack of clear cluster structure in the
corresponding region of the discriminant space. In practice we determine the stable
clusters by running the bisecting k-means clustering twice and retaining only those
clusters that have 100% overlap across the two clustering and the rest of the
clusters are labeled arbitrary clusters. We focus on stable clusters because they
provide reliable classification. Bisecting k-means does not take the dementia types
into consideration; it merely groups patients into clusters based on the similarity of
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their gray matter atrophy. Since the similarity is measured in discriminant space, it
is related to dementia types; the assumption is that a patient is more similar to
patients with the same dementia type than to patients with different dementia types.
A stable patient cluster will be comprised of patients who are pathologically similar
to each other but distinctly different from patients in other clusters, hence they
represent a unique dementia cluster. Conversely, patients in the arbitrary clusters
are either insufficiently similar to each other or they fail to be distinctly different
from others. Therefore arbitrary clusters may not represent unique dementia
clusters and were not be utilized for building the mixture model. The clustering
step was done based on the data set and information regarding the different
pathological classes was not used for clustering.

3. Classification: Finally, we use a simplified mixture model to classify patients
based on the true pathological classes available. Assume we have T dementia types
and we discovered Cstable patient clusters. Let x denote a point in the discriminant
space that corresponds to the patient to be diagnosed. The diagnosis is the most

likely dementia type  where Pr denotes the probability function. The
dementia type is determined based on the cluster c that the patient is most likely to

fall into . To simplify computation, we use
crisp assignment i.e. each patient is assigned to a single cluster, namely to the one
whose centroid is closest to x in the discriminant space. Formally,

where ||a,b|| is the Euclidean distance between points a and b and centroid(Cj)
denotes the centroid of the j-th cluster. Pr [t|c] is the portion of patients in cluster c
with dementia type t. The probabilistic approach of mixture models allows us to
assess our confidence in the classification. If the cluster indeed represents a
dementia type, then the distribution of dementia types that the constituent patients
suffer from are strongly skewed towards a single specific type; i.e. for each
dementia type t, Pr [t|c] is either close to 0 or close to 1. If Pr [t|c] is neither close to
0 nor 1, then the cluster is either not representative of a specific dementia type, or
the cluster is inherently a mixture of multiple dementia types.

RESULTS
Differential-STAND Maps specific to each Neurodegenerative Dementia

The t-statistics of the significant neurodegenerative ROIs (p<0.01) in the group composite
Differential-STAND Maps of the AD, FTLD-TDP and LBD groups are shown in Fig. 2. The
primary regions of neurodegeneration in the AD group were throughout the medial and
lateral temporal lobes, inferior parietal lobe and insula. The other less significant regions
involved were in superior and medial parietal, left frontal and occipital lobes. The FTLD-
TDP group had significant atrophy throughout the frontal lobes except the precentral gyrus
bilaterally. The other regions involved were insula, anterior cingulate, anteromedial
temporal lobes, temporal pole, middle and inferior temporal gyri, caudate nucleus and
inferior parietal lobe. In the LBD group, there were only six significant regions at p<0.01
level: bilateral amygdala, dorsal midbrain ROI, bilateral inferior temporal lobes and left
middle temporal lobe.
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Differential-STAND Maps of individual subjects typical for AD, FTLD-TDP and LBD are
shown in Fig. 3 with highlighted regions representing Z-scores less than −1. The AD subject
shown is a 90 year old male with a clinical diagnosis of probable AD (CDR-SB=4.0) who
had significant atrophy in the left and right hippocampus and bilateral mid and posterior-
cingulum. The FTLD-TDP subject shown is a 67 year old male with clinical diagnosis of
bvFTD with CDR-SB=1.5 who had significant atrophy throughout the frontal and temporal
lobes bilaterally; but notably (and unlike the AD subject) had sparing of the posterior
cingulate. The LBD subject shown is a 59 year old female with clinical diagnosis of DLB
(CDR-SB=8.0) and had low GM Z-scores in bilateral amygdalae and dorsal midbrain ROI
with additional low Z-scores in the right inferior parietal as well as left mid-occipital lobes.

Clustering and Classification of Patients
After dimensionality reduction, the patients are clustered using bisected k-means. After
clustering the patients into multiple clusters, new incoming subjects are classified based on
their closeness to each of these clusters. The mean sensitivity, specificity and their standard
deviations was estimated using leave one out cross-validation in 100 independent runs and
are tabulated in the top part of Table 2. Sensitivity and specificity were computed within all
the dementia groups (AD, LBD, FTLD-TDP). As an example, sensitivity of AD was
computed as the number of AD cases that were correctly classified as AD divided by the
total number of AD cases and specificity was computed as the number of non-AD cases that
were correctly classified as non-AD divided by the total number of non-AD cases. Accuracy
was computed by estimating the true positive and true negative for each dementia subtype
divided by the total number of samples. The clinical sensitivity and specificity are tabulated
at the bottom of Table 2. The criteria used to estimate the sensitivity and specificity of the
clinical diagnosis assuming pathology as the gold standard was as follows: clinically
identified AD cases must have been classified as pathological AD, clinically identified DLB
must have been classified as LBD. Patients with FTLD-TDP must have been diagnosed
clinically with one of the FTLD spectrum disorders, including behavioral variant
frontotemporal degeneration, progressive non-fluent aphasia, semantic dementia, or
corticobasal degeneration.

As mentioned earlier, repeated applications of k-means can lead to different clusterings.
While some clusters will contain exactly the same set of patients (Stable clusters), other
clusters will contain different sets of patients (Arbitrary clusters). A two dimensional
representation of clustering of all the patients is shown in Fig. 4. We can observe that there
are some clusters of different dementia pathologies that are close in these two dimensions
showing the overlap of the features.

DISCUSSION
A differential diagnosis system for classifying demented patients based on their MRI scans
is presented in this paper. The main findings of the paper are: 1) Patterns identified in the
Differential STAND maps in each neurodegenerative dementia (AD, FTLD-TDP and LBD)
are unique and mirror anatomic patterns of pathological neurodegeneration established in
autopsy studies. 2) Differential classification based on structural MRI scan provides
reasonable differential diagnostic accuracy of dementia in subjects antemortem with
accuracy of differentially diagnosing AD 87%, LBD 95% and FTLD 90%. Importantly we
describe a proof-of-concept differential diagnostic system based on structural MRI that
considers the three common neurodegenerative dementias simultaneously as opposed to the
more typical approach of systems that distinguish a single dementing disorder from
cognitively normal elderly subjects.
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An important feature of the proposed system is the use of “pure” autopsy confirmed cases
for building the differential diagnosis system. This addresses two potentially significant
confounding issues; situations where clinical presentation does not predict the correct
underlying pathology, and patients with mixed pathologies which would obfuscate the
desired objective of mapping MRI patterns onto specific neurodegenerative pathologies.
Other studies have established regions of atrophy based on MRI for differential diagnosis
between AD and FTD (Davatzikos et al., 2008; Foster et al., 2007; Horn et al., 2009;
Kloppel et al., 2008a; Rabinovici et al., 2007). Likewise, (IMP) SPECT (Ishii et al., 2009)
and (11C-DTBZ and 18F-FDG) PET studies (Koeppe et al., 2005) have addressed
differential diagnosis of FTD, AD and DLB in clinical subjects. All of these studies have
focused on pair wise differential diagnosis (i.e. AD vs. FTD, AD vs. DLB etc) but none have
addressed the simultaneous differential diagnosis of all three common neurodegenerative
causes of dementia using patterns of neurodegeneration from antemortem scans of pathology
confirmed dementia cases.

In AD, the topographic distribution of neurofibrillary tangles (NFT) follows a fairly
stereotypical pattern of progression (Braak and Braak, 1991) and it has been shown that
atrophy seen on MRI correlates well with pathological Braak NFT stages (Gosche et al.,
2002; Jack et al., 2002; Vemuri et al., 2008b; Whitwell et al., 2008) and with NFT density
(Csernansky et al., 2004; Silbert et al., 2003). The neurodegenerative patterns we found in
pathologically confirmed AD, as illustrated in Fig. 2, are concordant with the Braak NFT
pattern.

Pathologically, FTLD is very heterogeneous (Forman et al., 2006; Hodges et al., 2004;
Josephs et al., 2006a) and can be characterized by the deposition of both TDP-43 and tau. In
this paper we considered only subjects with FTLD-TDP, the most common pathology
underlying the frontotemporal dementias, because we wanted to develop a differential
diagnosis system for diagnosis of pathology rather than diagnosis of clinical dementia type.
Our results concur with previous pathological and imaging studies that have demonstrated
progressive degeneration of the frontal and temporal lobes, with relative sparing of the
parietal and occipital lobes, in frontotemporal dementia (Broe et al., 2003; Kril et al., 2005;
Seeley et al., 2008; Whitwell et al., 2009b). Patterns of atrophy typically vary according to
the specific clinical syndrome (Rosen et al., 2002), although we have allowed for this
variability by applying a cluster-based approach to classification.

In LBD, the major pathological findings are Lewy bodies and Lewy neurites with
degeneration of several neurotransmitter systems, most notably dopaminergic and
cholinergic. The concentration of LB pathology is high in the amygdalae and various brain
stem locations with low densities in the neocortical regions (Dickson, 2002; Klucken et al.,
2003). A recent pathology study demonstrated that LBD is associated with depletion of
cholinergic neurons in the pedunculopontine tegmental and laterodorsal tegmental nuclei
present in the dorsal midbrain (Schmeichel et al., 2008) which agrees with the findings of a
recent voxel based morphometry (VBM) study of DLB patients (Whitwell et al., 2007). The
most severe supratentorial LB pathology is observed in the amygdale, often early in the
disease (Marui et al., 2002). Also dysfunction of the visuo-amygdaloid pathway has been
implicated in visual misidentification and visual hallucinations (Yamamoto et al., 2006).
LBs and degeneration of amygdala might be one of the underlying causes of visual
misidentification in LBD patients (Harding et al., 2002; Iseki et al., 2001; Yamamoto et al.,
2006). The inferior temporal lobe is a unimodal visual association cortex related to the
visual recognition network (Benarroch, 2006) and the structural abnormality of inferior
longitudinal fasciculus has also been observed in diffusion tensor studies in DLB (Kantarci
et al., 2010; Ota et al., 2009)., Thus, the regions of GM loss we found in LBD patients (Fig.
2) are consistent with the imaging and pathology literature in LBD.
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One of the key problems in the field of dementia diagnosis is the antemortem separation of
LBD subjects from AD. LBD subjects are often misclassified as AD and the sensitivity of
DLB diagnosis in different studies varies between 0–100 percent (McKeith et al., 2004). AD
and LBD pathology both increase in prevalence dramatically with age. The pathological
hallmarks of AD (NFTs and neuritic plaques) and LBD (LBs) often coexist and there is
evidence that the same neuronal circuits are disturbed within the hippocampal formation in
both diseases (Klucken et al., 2003). For this reason there is a high probability of including
mixed AD and LBD cases in MRI studies that are based on clinical diagnosis, which often
leads to the conclusion that the patterns of atrophy overlap in AD and LBD. A unique
feature of this study was that we included only pathologically confirmed LBD cases which
helped us identify the following distinctive features that differentiate LBD from AD: 1)
significant gray matter loss is confined to the amygdalae and middle temporal lobe in LBD
whereas in AD it is throughout the entire medial temporal lobe (Gomez-Isla et al., 1999;
Hashimoto et al., 1998; Lippa et al., 1998) and 2) decreased GM is present in the dorsal
ponto-mesencepalic junction area in LBD (Schmeichel et al., 2008). Even though the
sensitivity of LBD diagnosis was only 79%, the high specificity of 99 % indicates that it can
be used to detect “pure” LBD cases with a relatively small number of false positives. In the
specific example shown in Figure 2, MRI features were able to classify all ten patients in
cluster #4 correctly as LBD where as three out of the ten LBD subjects were misclassified as
AD clinically. This cluster consists of mild LBD cases which might be difficult to separate
clinically from AD early in the disease process in the absence of all the LBD symptoms.
Another interesting observation was cluster #3 where mild AD and LBD patients were
clustered together due to similarity of features.

An MRI based automated differential diagnosis technique such as the one proposed here
could be a very useful adjunct tool to clinical evaluation because it requires minimal human
intervention, adjusts for aging related changes and may be able to extract subtle changes in
brain structures that are difficult to assess by visually examining MRI scans. The proposed
classification approach based on clustering has several advantages: Diagnosis is only made
on stable clusters which may either be “pure” clusters (only a single dementia type) or
“mixed” clusters (clusters that are a mixture of two or more dementia types) as shown in
Figure 4. The arbitrary clusters are excluded from the decision making process due to the
lack of a clear cluster structure based on the features from MRI. In the cases of “pure”
clusters, Differential-STAND based pathology diagnosis has the highest chance of being
correct while diagnosis on clinical information could possibly be misleading in a few cases.
In the “mixed” clusters, the confidence of the MRI diagnosis is lower than that of the
clinical diagnosis due to the considerable overlap in the MRI features. Theoretically the end
user could be cautioned if the new incoming patient falls in a mixed cluster in order to
facilitate an informed decision.

Additionally, Differential-STAND Maps provide a visual assessment of the ROIs that
appear to be abnormal when compared to a normal database and when evaluated by the
differential diagnosis system, provide information about the likely type of dementia
pathology in demented patients. The construction of the algorithm using multi-ROI level
GM volume rather than voxel-level GM volume addresses two issues: 1) smaller number of
features containing GM sampled from across the entire brain rather than a very high
dimensional feature set of GM voxels which will not provide good differential diagnosis due
to the limited number of training samples and 2) reduces the number of false positives of
voxel level differences that arise due to registration and segmentation errors.

Even though there are several two-class classification frameworks that are typically applied
in the neuroimaging literature, the approach presented in this paper provides a conceptually
elegant solution for the multi-class problem. The main reasons being 1) moving forward, the

Vemuri et al. Page 10

Neuroimage. Author manuscript; available in PMC 2012 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



clustering of subjects into dementia sub-types might provide useful clinical or pathological
subtype information regarding the disease; 2) the proposed approach is extremely useful in
determining the pathology underlying mixed dementias which constitute of more than 40 %
of all dementia cases. If we wanted to use a two-class SVM based framework like we used
in our previous papers, then we would have to make a decision of applying either a pair-wise
SVM or one-against-all SVM which is not conducive while attempting to visualize the
distance of a specific patient from the different dementia sub-types. In contrast, the proposed
approach naturally lends itself to simultaneously determining where the subject falls with
respect to various dementia sub-types.

Value of Differential STAND approach to clinical diagnosis
There can be considerable mismatch between the antemortem clinical diagnosis and the gold
standard postmortem pathology, specifically in FTLD-TDP and LBD. Autopsy confirmed
studies have found that most FTD patients also fulfill the diagnostic criteria of AD (Varma
et al., 1999) and LBD subjects are often misclassified as AD (McKeith et al., 2004). There
can be low inter-rater reliability for differential diagnosis of neurodegenerative dementias,
with the lowest generalized kappa of 0.37 for DLB diagnosis in (Lopez et al., 1999).
Additionally, there can be considerable syndromic heterogeneity, e.g. some pathology
confirmed FTLD-TDP cases have prominent anterograde amnesia while some pathology
confirmed AD cases have mainly aphasia (Alladi et al., 2007; Josephs et al., 2008). There
were some pathological confirmed cases which highlight this syndromic heterogeneity
where both clinical as well as differential STAND classification were incorrect and both
methods made similar mistakes possibly due to atypical patterns of atrophy presenting
atypical clinical symptoms. Given that proteinopathy does not map exactly onto the clinical
expression of the disease, we believe that complementary measures, such as the output of
this system, can add great value to clinical diagnosis in conjunction with established clinical
evaluation methods.

We acknowledge that the diagnostic accuracy of the Differential-STAND system is very
similar to the accuracy based on clinical classification. However, we envision the added
value of Differential-STAND system to clinical diagnosis will occur in subjects who have
dementia that is difficult to classify (which the Differential-STAND approach was able to
make correct pathological classification in all the cases), mixed dementia pathologies,
mildly symptomatic subjects early in the disease process who have not yet presented
symptoms clinically (e.g. mild LBDs in cluster #9), and clinically atypical cases. It has in
fact been previously shown at the group-level that patterns of atrophy on MRI can help
identify the presence of AD pathology in subjects with atypical clinical syndromes (Josephs
et al., 2010; Whitwell et al., 2009a), suggesting that an individual-level differential-STAND
approach could be very useful. Finally we note that while the diagnostic performance of
Differential-STAND was similar to that of clinicians, the clinicians who proved the
diagnoses in our study were highly skilled behavioral Neurology specialists practicing in a
large tertiary referral medical center (Mayo Clinic). We expect that diagnostic performance
of clinicians who do not see large numbers of neurodegenerative dementia patients would be
worse. Diagnostic performance data support this assumption, for example the sensitivity of
DLB diagnosis varies between 0–100 percent (McKeith et al., 2004) depending on the
expertise of the clinician. In contrast, Differential-STAND is not based on clinical expertise
but simply on a subject’s MRI scan which is independent of site to site variation in clinical
expertise. We therefore expect that a major clinical utility of the Differential-STAND
system would be in situations where highly skilled clinical experts are not available. Similar
findings have been reported in the FDG PET literature indicating that the use of imaging
(PET scans) can add valuable information to clinical evaluation particularly in situations
where highly skilled specialists are not available (Silverman et al., 2002).
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Limitations of this study
1. A scheme for pathological staging of disease severity that maps to cortical atrophy

exists for AD (Braak staging) but analogous pathological schemes for staging
severity and atrophy do not exist for FTLD-TDP or LBD. If accepted pathological
severity staging schemes existed for FTLD-TDP and LBD, it would allow the
development and validation of a system that could assign the relative contribution
of each pathology subtype. However at the present time, the proposed system
would deal with the problem of mixed pathologies by assigning the subjects with
mixed pathologies to the atrophy pattern matching the Differential-STAND Maps
of the dominant neurodegenerative pathology (underlying the dementia).

2. Strength of this study is the use of autopsy diagnoses as the gold standard. This is at
the same time a weakness, because to our knowledge, no center world wide
including our own is in possession of a large enough sample of subjects with
antemortem protocol MRIs and autopsy diagnoses in all three diseases to permit
splitting the sample into independent training and test samples. Due to the small
number of autopsy confirmed pure dementia cases, we do not have an independent
test dataset where new subjects would be input into the Differential-STAND Map
based system that had not been used to construct the classifier..

3. It is inevitable that the identified pathologically confirmed CN subjects are older
than the dementia cases specifically in the FTLD-TDP group. However the
application of the age-adjustment of GM based on a uniform distribution of a large
cohort of CN subjects ensures that this age effect is minimized.

4. Vascular pathology has not been considered in this work at the present time and
will be part of our future training databases.
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Fig 1.
A) Schematic of the Differential-STAND system: atrophy in the new incoming scan is
compared to the library of scans of pathologically confirmed cases and classified as AD,
LBD or FTLD-TDP. B) Illustration of the clustering and classification approach. The
dementia subtypes (or equivalently, patient clusters) are represented by ovals: white for AD,
red for LBD and green for FTLD-TDP. An incoming patient, depicted as the square is
diagnosed unambiguously as suffering from FTLD-TDP because he falls into the patient
cluster #3 which is a subtype of FTLD-TDP. However an incoming patient depicted as a
triangle will be diagnosed as belonging to cluster #2 which is a mixture of AD and LBD
cases with similar atrophy patterns. Some inevitable overlap remains, mostly due to
similarities in atrophy patterns between the dementia subtypes such as clusters 1 and 2.
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Fig. 2.
Differential-STAND Map patterns of gray matter loss that are specific to each dementia
(AD, LBD, FTLD-TDP) identified when compared to pathology confirmed CN. Colorbar
represents the t-statistic (p<0.01 uncorrected).
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Fig. 3.
Typical Differential-STAND Maps of three different patients: AD, LBD and FTLD-TDP (Z-
scores<−1). Colorbar represents the atrophy level relative to the CN reference image
database and absolute value of the Z-score is shown.
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Fig. 4.
The multi-dimensional scaled dimensions 1 and 2 of a specific instance of the estimated
stable clusters and their corresponding labels using the proposed differential STAND
approach. The multi-dimensional scaled dimensions represent a transformation of the high
dimensional Z-score GM densities and the transformation preserves the distances between
the cluster centers and the cluster radii.
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Table 2

Estimated performance of the proposed Differential-STAND system and clinical diagnosis.

A. Performance of the Proposed Differential-STAND system

Underlying Dementia Pathology Sensitivity (mean ± sd) Specificity (mean ± sd)

AD 90.7 ± 6.5 % 84 ± 4.5 %

LBD 78.6± 5.2 % 98.8 ± 1.8 %

FTLD-TDP 84.4 ± 5.8 % 93.8 ± 3.6 %

B. Classification based on Clinical Diagnosis

Underlying Dementia Pathology Sensitivity Specificity

AD 89.5 % 82.1 %

LBD 70 % 100 %

FTLD-TDP 83.0% 95.6%
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