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Abstract
Effective and accurate diagnosis of Alzheimer’s disease (AD), as well as its prodromal stage (i.e.,
mild cognitive impairment (MCI)), has attracted more and more attentions recently. So far,
multiple biomarkers have been shown sensitive to the diagnosis of AD and MCI, i.e., structural
MR imaging (MRI) for brain atrophy measurement, functional imaging (e.g., FDG-PET) for
hypometabolism quantification, and cerebrospinal fluid (CSF) for quantification of specific
proteins. However, most existing research focuses on only a single modality of biomarkers for
diagnosis of AD and MCI, although recent studies have shown that different biomarkers may
provide complementary information for diagnosis of AD and MCI. In this paper, we propose to
combine three modalities of biomarkers, i.e., MRI, FDG-PET, and CSF biomarkers, to
discriminate between AD (or MCI) and healthy controls, using a kernel combination method.
Specifically, ADNI baseline MRI, FDG-PET, and CSF data from 51 AD patients, 99 MCI patients
(including 43 MCI converters who had converted to AD within 18 months and 56 MCI non-
converters who had not converted to AD within 18 months), and 52 healthy controls are used for
development and validation of our proposed multimodal classification method. In particular, for
each MR or FDG-PET image, 93 volumetric features are extracted from the 93 regions of interest
(ROIs), automatically labeled by an atlas warping algorithm. For CSF biomarkers, their original
values are directly used as features. Then, a linear support vector machine (SVM) is adopted to
evaluate the classification accuracy, using a 10-fold cross-validation. As a result, for classifying
AD from healthy controls, we achieve a classification accuracy of 93.2% (with a sensitivity of
93% and a specificity of 93.3%) when combining all three modalities of biomarkers, and only
86.5% when using even the best individual modality of biomarkers. Similarly, for classifying MCI
from healthy controls, we achieve a classification accuracy of 76.4% (with a sensitivity of 81.8%
and a specificity of 66%) for our combined method, and only 72% even using the best individual
modality of biomarkers. Further analysis on MCI sensitivity of our combined method indicates
that 91.5% of MCI converters and 73.4% of MCI non-converters are correctly classified.
Moreover, we also evaluate the classification performance when employing a feature selection
method to select the most discriminative MR and FDG-PET features. Again, our combined
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method shows considerably better performance, compared to the case of using an individual
modality of biomarkers.
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Introduction
Alzheimer’s disease (AD) is the most common form of dementia in elderly people
worldwide. It is reported that the number of affected people is expected to double in the next
20 years, and 1 in 85 people will be affected by 2050 (Ron et al., 2007). Thus, accurate
diagnosis of AD, especially for its early stage also known as amnestic mild cognitive
impairment (MCI), is very important. It is known that AD is related to the structural atrophy,
pathological amyloid depositions, and metabolic alterations in the brain (Jack et al., 2010;
Nestor et al., 2004). At present, several modalities of biomarkers have been proved to be
sensitive to AD and MCI, including the brain atrophy measured in magnetic resonance (MR)
imaging (de Leon et al., 2007; Du et al., 2007; Fjell et al., 2010; McEvoy et al., 2009),
hypometabolism measured by functional imaging (De Santi et al., 2001; Morris et al., 2001),
and quantification of specific proteins measured through CSF (Bouwman et al., 2007b; Fjell
et al., 2010; Mattsson et al., 2009; Shaw et al., 2009).

However, most existing pattern classification methods just use one individual modality of
biomarkers for diagnosis of AD or MCI, which may affect the overall classification
performance. For example, many high-dimensional classification methods use only the
structural MRI brain images for classification between AD (or MCI) and healthy controls
(Cuingnet et al., 2010; Fan et al., 2008a; Fan et al., 2007; Gerardin et al., 2009; Kloppel et
al., 2008; Lao et al., 2004; Magnin et al., 2009; Misra et al., 2009; Oliveira et al., 2010;
Westman et al., 2010). Also, according to the features being extracted from the structural
MRI, the existing classification methods can be roughly divided into three categories, using
1) voxel-wise tissue probability (Fan et al., 2007; Kloppel et al., 2008; Lao et al., 2004;
Magnin et al., 2009), 2) cortical thickness (Desikan et al., 2009; Lerch et al., 2008; Oliveira
et al., 2010; Querbes et al., 2009), and 3) hippocampal volumes (Gerardin et al., 2009; West
et al., 2004). It was found that most effective features for AD or MCI classification are
actually extracted from the atrophic regions, i.e., hippocampus, entorhinal cortex,
parahippocampal gyrus, and cingulated, which are consistent with previous findings using
group comparison methods (Chetelat et al., 2002; Convit et al., 2000; Fox and Schott, 2004;
Jack et al., 1999; Misra et al., 2009). In addition to structural MRI, another important
modality of biomarkers for AD or MCI detection is fluorodeoxyglucose positron emission
tomography (FDG-PET) (Chetelat et al., 2003; Foster et al., 2007; Higdon et al., 2004).
With FDG-PET, some recent studies have reported the reduction of glucose metabolism in
parietal, posterior cingulated, and temporal brain regions for AD patients (Diehl et al., 2004;
Drzezga et al., 2003). Besides these neuroimaging techniques, there are also some biological
or genetic biomarkers developed for diagnosis of AD or MCI. For example, researchers have
found 1) the increased CSF total tau (t-tau) and tau hyperphosphorylated at threonine 181
(p-tau) are related to the neurofibrillary tangle pathology, 2) the decreased amyloid β (Aβ42)
indicates amyloid plaque pathology, and 3) the presence of the apolipoprotein E (APOE) ε4
allele can predict cognitive decline or conversion to AD (Bouwman et al., 2007b; de Leon et
al., 2007; Fjell et al., 2010; Ji et al., 2001).

Actually, different biomarkers provide complementary information, which may be useful for
diagnosis of AD or MCI when used together (Apostolova et al., 2010; de Leon et al., 2007;
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Fjell et al., 2010; Foster et al., 2007; Landau et al., 2010; Walhovd et al., 2010b). It was
reported that FDG-PET and MRI measures are differentially sensitive to memory in health
and disease (Walhovd et al., 2010b). A recent study also shows that the morphometric
changes in AD and MCI are related to CSF biomarkers, but can also provide complementary
information to CSF biomarkers (Fjell et al., 2010). A more recent study has compared the
respective prognostic ability of genetic, CSF, neuroimaging, and cognitive measures
obtained in the same participants, indicating that there exists complementary information
among these biomarkers which may aid in the future diagnosis of AD and MCI (Landau et
al., 2010). Inspired by these findings, a few studies have used two or more biomarkers
simultaneously for detection of AD and MCI, i.e., using MRI and CSF in (Bouwman et al.,
2007a; Vemuri et al., 2009), MRI and cognitive testing in (Geroldi et al., 2006; Visser et al.,
2002), FDG-PET and CSF in (Fellgiebel et al., 2007), FDG-PET and cognitive testing in
(Chetelat et al., 2005), and MRI, CSF, and FDG-PET in (Walhovd et al., 2010a).

Although the use of multiple biomarkers yields promising results, the above methods may
be limited. First, only a few manually selected brain regions are generally considered for
MRI and PET based classification of AD or MCI. However, the structural and functional
features measured from a limited set of pre-defined regions may be not able to reflect the
spatial-temporal pattern of structural and physiological abnormalities in their entirety (Fan et
al., 2008b). Second, most above methods are primarily designed to characterize group
differences, not for individual classification. Although there exist some methods combining
two modalities of biomarkers for individual classification, i.e., using both MRI and PET
(Fan et al., 2008b; Hinrichs et al., 2009a; Hinrichs et al., 2009b; Ye et al., 2008), both MRI
and CSF (Davatzikos et al., 2010), or both MRI and APOE biomarkers (Ye et al., 2008),
there is still few method that combines all three modalities of biomarkers (MRI, PET, and
CSF) for classification, which we will show the benefit of combining all three biomarkers
for AD or MCI diagnosis in this paper.

Specifically, we will combine the measurements from all three biomarkers, i.e., MRI, PET,
and CSF, to discriminate between AD and healthy controls, or between MCI and healthy
controls. To effectively combine three different biomarkers for classification, we use a
simple-while-effective multiple-kernel combination method. This method can be naturally
embedded into the conventional SVM classifier without extra steps. Our experimental
results show that the combination of different measurements from MRI, PET, and CSF
demonstrates much better performance in AD or MCI classification, compared to the case of
using even the best individual modality of biomarkers.

Methods
The data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (www.loni.ucla.edu/ADNI). The ADNI was
launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration
(FDA), private pharmaceutical companies and non-profit organizations, as a $60 million, 5-
year public-private partnership. The primary goal of ADNI has been to test whether serial
MRI, PET, other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD. Determination of sensitive and
specific markers of very early AD progression is intended to aid researchers and clinicians
to develop new treatments and monitor their effectiveness, as well as lessen the time and
cost of clinical trials.

ADNI is the result of efforts of many coinvestigators from a broad range of academic
institutions and private corporations, and subjects have been recruited from over 50 sites
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across the U.S. and Canada. The initial goal of ADNI was to recruit 800 adults, ages 55 to
90, to participate in the research – approximately 200 cognitively normal older individuals
to be followed for 3 years, 400 people with MCI to be followed for 3 years, and 200 people
with early AD to be followed for 2 years (see www.adni-info.org for up-to-date
information). The research protocol was approved by each local institutional review board
and written informed consent is obtained from each participant.

Subjects
The ADNI general eligibility criteria are described at www.adni-info.org. Briefly, subjects
are between 55-90 years of age, having a study partner able to provide an independent
evaluation of functioning. Specific psychoactive medications will be excluded. General
inclusion/exclusion criteria are as follows: 1) healthy subjects: Mini-Mental State
Examination (MMSE) scores between 24-30, a Clinical Dementia Rating (CDR) of 0, non-
depressed, non MCI, and nondemented; 2) MCI subjects: MMSE scores between 24-30, a
memory complaint, having objective memory loss measured by education adjusted scores on
Wechsler Memory Scale Logical Memory II, a CDR of 0.5, absence of significant levels of
impairment in other cognitive domains, essentially preserved activities of daily living, and
an absence of dementia; and 3) Mild AD: MMSE scores between 20-26, CDR of 0.5 or 1.0,
and meets the National Institute of Neurological and Communicative Disorders and Stroke
and the Alzheimer’s Disease and Related Disorders Association (NINCDS/ADRDA) criteria
for probable AD.

In this paper, only ADNI subjects with all corresponding MRI, CSF and PET baseline data
are included. This yields a total of 202 subjects including 51 AD patients, 99 MCI patients
(43 MCI converters who had converted to AD within 18 months and 56 MCI non-converters
who had not converted to AD within 18 months), and 52 healthy controls. Table 1 lists the
demographics of all these subjects. Subject IDs are given in Supplemental Table 5.

MRI
All structural MR scans used in this paper were acquired from 1.5T scanners. Data were
collected across a variety of scanners with protocols individualized for each scanner, as
defined at www.loni.ucla.edu/ADNI/Research/Cores/index.shtml. Briefly, raw Digital
Imaging and Communications in Medicine (DICOM) MRI scans were downloaded from the
public ADNI site (www.loni.ucla.edu/ADNI), reviewed for quality, and automatically
corrected for spatial distortion caused by gradient nonlinearity and B1 field inhomogeneity.

PET
We downloaded the baseline PET data from the ADNI web site (www.loni.ucla.edu/ADNI)
in December 2009. A detailed description of PET protocols and acquisition can be found at
www.adni-info.org. Briefly, PET images were acquired 30-60 minutes post-injection,
averaged, spatially aligned, interpolated to a standard voxel size, intensity normalized, and
smoothed to a common resolution of 8-mm full width at half maximum.

CSF
We downloaded the baseline CSF Aβ42, t-tau and p-tau data from the ADNI web site
(www.loni.ucla.edu/ADNI) in December 2009. The CSF collection and transportation
protocols are provided in the ADNI procedural manual on www.adni-info.org. Briefly, CSF
was collected in the morning after an overnight fast using a 20- or 24-gauge spinal needle,
frozen within 1 hour of collection, and transported on dry ice to the ADNI Biomarker Core
laboratory at the University of Pennsylvania Medical Center. In this study, CSF Aβ42, CSF
t-tau and CSF p-tau are used as the features.
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Image analysis
Image pre-processing is performed for all MR and PET images. First, we do anterior
commissure (AC) – posterior commissure (PC) correction on all images, and use the N3
algorithm (Sled et al., 1998) to correct the intensity inhomogeneity. Next, we do skull-
stripping on structural MR images using both brain surface extractor (BSE) (Shattuck et al.,
2001) and brain extraction tool (BET) (Smith, 2002), followed by manual edition and
intensity inhomogeneity correction. After removal of cerebellum, FAST in the FSL package
(Zhang et al., 2001) is used to segment structural MR images into three different tissues:
grey matter (GM), white matter (WM), and cerebrospinal fluid (CSF). After registration
using HAMMER (Shen and Davatzikos, 2002), we obtain the subject-labeled image based
on a template with 93 manually labeled ROIs (Kabani et al., 1998). For each of the 93 ROI
regions in the labeled MR image, we compute the volume of GM tissue in that ROI region
as a feature. For PET image, we first align it to its respective MR image of the same subject
using a rigid transformation, and then compute the average intensity of each ROI region in
the PET image as a feature. Therefore, for each subject, we totally obtain 93 features from
MRI image, other 93 features from PET image, and 3 features from CSF biomarkers.

Multimodal data fusion and classification
A general framework based on kernel methods (Scholkopf and Smola, 2002) is presented
here to combine multiple biomarkers (MRI, PET, and CSF) for discriminating between AD
(or MCI) and healthy controls. This kernel-based method can be easily embedded into the
conventional SVM classifier for high-dimensional pattern classification, without extra steps.
Moreover, unlike other combining methods which can only process one type of data, i.e.,
numeric data type, our method can combine multiple types of data such as numeric data,
string, and graph.

Before introducing the kernel combination method, we first briefly review the standard
single-kernel SVM algorithm. The main idea of SVM is summarized as follows. First, the
linearly nonseparable samples are mapped from their original space to a higher or even
infinite dimensional feature space, where they are more likely to be linearly separable than
in the original lower-dimensional space, through a kernel-induced implicit mapping
function. Then, a maximum margin hyperplane is sought in the higher-dimensional space.

Now we will present the multiple-kernel SVM which can be used to integrate multiple
modalities of biomarkers (i.e., MRI, PET and CSF) for individual classification of AD (or
MCI) from healthy controls. Suppose that we are given n training samples and each of them

is of M modalities. Let  denote a feature vector of the m-th modality of the i-th sample,
and its corresponding class label be yi ∈ {1, −1}. Multiple-kernel based SVM solves the
following primal problem:

Where w(m), ϕ(m) and βm ≥ 0 denote the normal vector of hyperplane, the kernel-induced
mapping function, and the combining weight on the m-th modality, respectively.

Similarly as in the conventional SVM, the dual form of multiple-kernel SVM can be
represented as below:
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Where  is the kernel function for the two training
samples on the m-th modality. The symbol n is the number of training samples.

For a new test sample x = {x(1) ,x(2) ,…,x(M)} , we first denote

 as the kernel between the new test sample and each
training sample on the m-th modality. Then, the decision function for the predicted label can
be obtained as below:

It’s easy to know that the multiple-kernel based SVM can be naturally embedded into the

conventional single-kernel SVM if we interpret  as a mixed
kernel between the multimodal training samples xi and xj, and

 as a mixed kernel between the multimodal training sample xi
and the test sample x. In fact, our method can be viewed as a way for kernel combination
which combines multiple kernels into one kernel.

It is worth noting that our formulation of multiple-kernel SVM is similar, but different from,
the existing multi-kernel learning methods (Hinrichs et al., 2009b; Lanckriet et al., 2004;
Wang et al., 2008). One key difference is that we do not jointly optimize the weights βm s
together with other SVM parameters (e.g., α) in an iterative way. Instead, we constrain
Σmβm = 1 and use a coarse-grid search through cross-validation on the training samples to
find the optimal values. After we obtain the values of βm s, we use them to combine multiple
kernels into a mixed kernel, and then perform the standard SVM using the mixed kernel.
The main advantage of our method is that it can be conveniently solved using the
conventional SVM solvers, e.g., LIBSVM (Chang and Lin, 2001).

As explained above, this kernel combination method can provide a convenient and effective
way for fusing various data from different modalities. In our case, we focus on multimodal
classification using three modalities, i.e., MRI, PET, and CSF biomarkers. Figure 1 gives a
schematic illustration of our multimodal data fusion and classification pipeline.

Validation
To evaluate the performance of different classification methods, we use 10-fold cross-
validation strategy to compute the classification accuracy (for measuring the proportion of
subjects correctly classified among the whole population), as well as the sensitivity (i.e., the
proportion of AD or MCI patients correctly classified) and the specificity (i.e., the
proportion of healthy controls correctly classified). Specifically, the whole set of subject
samples are equally partitioned into 10 subsets, and each time the subject samples within
one subset are successively selected as the testing samples and all remaining subject samples
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in the other 9 subsets are used for training the multiple-kernel classifier. This process is
repeated for 10 times independently to avoid any bias introduced by randomly partitioning
dataset in the cross-validation. The SVM classifier is implemented using LIBSVM toolbox
(Chang and Lin, 2001), with a linear kernel and a default value for the parameter C (i.e.,
C=1). The weights in the multiple-kernel classification method are learned based on the
training samples, through a grid search using the range from 0 to 1 at a step size of 0.1.
Specifically, in each fold of the 10-fold cross-validation, we perform another 10-fold cross-
validation on the training samples to determine the optimal values for the weights. Also, for
each feature fi in the training samples, a common feature normalization scheme is adopted,

i.e., , where  and σi are respectively the mean and standard deviation of the

i-th feature across all training samples. The estimated  and σi will be used to normalize the
corresponding feature of each test sample.

Results
Multimodal classification based on MRI, PET, and CSF

We first test the performance of our multimodal classification method in identification of
AD (or MCI) from healthy controls, based on MRI, PET, and CSF biomarkers of 202
baseline subjects in ADNI. Table 2 shows the classification rate of our multimodal
classification method, compared with the methods using each individual modality only. Note
that Table 2 shows only the averaged results of 10 independent experiments, along with the
minimal and maximal values given in brackets; and the detailed results can be found in the
supplemental Figs. 8-9 for each experiment. Besides, Fig. 2 further plots the corresponding
ROC curves of different classification methods for AD or MCI, respectively. As we can see
from Table 2 and Fig. 2, the combined measurements of MRI, PET, and CSF consistently
achieve more accurate discrimination between AD (or MCI) patients and healthy controls.
Specifically, for classifying AD from healthy controls, our multimodal classification method
can achieve a classification accuracy of 93.2%, a sensitivity of 93%, and a specificity of
93.3%, while the best accuracy on individual modality is only 86.5% (when using PET). On
the other hand, for classifying MCI from healthy controls, our multimodal classification
method achieve a classification accuracy of 76.4%, a sensitivity of 81.8%, and a specificity
of 66%, while the best accuracy on individual modality is only 72% (when using MRI). In
addition, the area under the ROC curve (AUC) is 0.976 and 0.809 for AD classification and
MCI classification respectively with our multimodal classification method (see Fig. 2),
while the best AUC on individual modality is 0.938 (when using PET) for AD classification,
and 0.762 (when using PET) for MCI classification.

Table 2 also indicates that, for AD classification, there are little differences among accuracy,
sensitivity, and specificity of each classification method (totally 5 methods examined), while
for MCI classification the differences are relatively large, e.g., relatively large sensitivity,
but low specificity, for each method. This characteristic of possessing high sensitivity may
be advantageous for diagnosis purpose, because the cost is different for misclassifying an
MCI patient into a healthy control (with sensitivity reduced in this case) and misclassifying
a healthy control into an MCI patient (with specificity reduced in this case), and the former
cost is much higher than the latter. Inspired from this observation, we further divide the MCI
cohort into MCI converters who converted to AD within 18 months and the MCI non-
converters who had not convert to AD within 18 months, and then compute how many MCI
converters and MCI non-converters are correctly classified as MCI. The results with our
multimodal classification method reveal that the 91.5% MCI converters and 73.4% MCI
non-converters are correctly classified. It’s worth noting that in practice the cost of
misclassifying MCI converters is usually much higher than that of misclassifying MCI non-

Zhang et al. Page 7

Neuroimage. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



converters. Thus, this characteristic of possessing a higher classification rate for the MCI
converters by our method is potentially very useful.

For comparison with other multimodal classification methods, we also perform the use of
direct feature concatenation as a baseline method for multimodal AD (or MCI)
classification. Specifically, for each subject, we first concatenate 93 features from MRI, 93
features from PET, and 3 features from CSF, into a 189 dimensional vector. Remember that
each feature has been normalized to have zero mean and unit standard deviation. Then, we
perform SVM-based classification on all samples with a 10-fold cross-validation strategy as
described above, and obtain the classification results in the bottom row of Table 2. As we
can observe from Table 2, our kernel combination method consistently outperforms the
baseline method on each performance measure.

Furthermore, in Table 3 we compared the proposed method with a recent method proposed
in (Hinrichs et al., 2010). The latter used 114 ADNI subjects (48AD+66HC) for AD
classification, and it reported both results of using only imaging modalities (MRI+PET) and
all modalities (MRI+PET+CSF+APOE+ Cognitive scores), as included in Table 3. The
proposed method uses a similar number of ADNI subjects, i.e., 103 subjects (51AD+52HC),
with results given in Table 2. For comparison, we also include the proposed method’s results
in Table 3. As we can observe from Table 3, the proposed method is superior to Hinrichs et
al.’s method in case of using only imaging modality (MRI+PET) or all modalities (MRI
+PET+CSF). It’s worth noting that, in (Hinrichs et al., 2010), both baseline and longitudinal
data are used for MRI and PET modalities, while the proposed method uses only the
baseline data. In the second case, even the additional APOE and cognitive scores were used
in Hinrichs et al.’s method, our result is still better. These results further validate the
efficacy of the proposed method for multimodal classification.

Comparison of different combination schemes
To investigate the effect of different combining weights, i.e., βMRI, βCSF, and βPET, on the
performance of our multimodal classification method, we test all of their possible values,
ranging from 0 to 1 at a step size of 0.1, under the constraint of βMRI+βCSF+βPET=1. Figures
3 and 4 show the classification results, including accuracy (top row), sensitivity (bottom
left), and specificity (bottom right), with respect to different combining weights of MRI,
PET, and CSF. Note that, in each subplot, only the squares in the upper triangular part have
valid values because of the constraint βPET+βCSF+βMRI=1. For each plot, the three vertices
of the upper triangle, i.e., the top left, top right, and bottom left squares, denote individual-
modality based classification results using only PET (βPET=1), CSF (βCSF=1), and MRI
(βMRI=1), respectively.

As we can observe from Figs. 3 and 4, nearly all inner squares of the upper triangle have
larger values (better classification) than the three vertices, which demonstrates the
effectiveness of combining three modalities in AD (or MCI) classification. Moreover, for
most plots, there are substantially a large set of squares owning higher classification
accuracy. Further observation indicates that the squares with higher accuracy mainly appear
in the inner of each triangle, instead of the boundary, implying that each modality is
indispensable for achieving good classification. Similar to what we have observed from
Table 2, Figs. 3 and 4 also show that, for AD classification, the differences among accuracy,
sensitivity, and specificity are small, while, for MCI classification, it tends to have a higher
sensitivity but lower specificity.
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Classification performance with respect to the number of selected ROI features
We have shown the effectiveness of our multiple-kernel combination method on using
whole-brain ROI features (without feature selection) for AD or MCI classification. Here, we
investigate how the performance of our multiple-kernel combination method changes with
respect to the number of the selected ROI features. To this end, we first use a paired t-test,
respectively, on MRI and PET data of training samples to choose the most discriminative
brain regions or features for guiding AD or MCI classification (Gerardin et al., 2009). It’s
worth noting that the feature selection is performed using only the training samples, instead
of all samples. Specifically, in each fold of the 10-fold cross-validations, we perform a t-test
only on the training samples to select the most discriminative feature subset. Table 4 lists the
top brain regions (or ROIs) detected from both MRI and PET data in MCI classification, and
Figs. 5-6 show these top brain regions in the template space. Totally, 11 top brain regions,
with corresponding p-values less than 0.002, are determined in MRI images. Notice that the
top regions selected for AD classification are not listed, since the number is too large. As
shown in Table 4 and Figs. 5-6, most of the selected top regions, e.g., hippocampal,
amygdale, entorhinal cortex, uncus, temporal pole and parahippocampal regions, are known
to be related to the AD by many studies using group comparison methods (Chetelat et al.,
2002; Convit et al., 2000; Fox and Schott, 2004; Jack et al., 1999; Misra et al., 2009). For
example, hippocampus is a structure highly related to the memory, which is always affected
in the AD.

Then, we test the classification performances of different methods with respect to the
different number of brain regions selected for AD (or MCI) classification, with results
shown in Fig. 7. As we can see from Fig. 7, for both AD classification and MCI
classification, our multimodal classification method (using all MRI, PET, and CSF) achieves
consistent improvement over those using only one individual modality, for any number of
brain regions selected. Moreover, compared with individual-modality based methods, our
multimodal classification method is more robust to the number of brain regions used for
classification. For example, Fig. 7 shows that, even only one brain region is selected for
MRI and PET images, our multimodal classification method can still achieve a reasonable
classification accuracy, compared to the individual-modality based classification methods.
Another interesting observation from Fig. 7 is that more brain regions are needed for
achieving higher accuracy for MCI classification than AD classification. This indicates that,
with the progress of disease, more atrophies are produced in AD, thus a small number of
brain regions with relatively large atrophies is sufficient for successful classification of AD.

Discussion
In this paper, we have proposed a new multimodal data fusion and classification method to
automatically discriminate patients with AD (or MCI) from healthy controls, using a kernel
combination method. This kernel combination method can be naturally embedded into the
conventional SVM and solved efficiently. The results on 202 baseline subjects from ADNI
show that our multimodal classification method can consistently and substantially improve
the classification performance of the individual-modality based classification methods.
Specifically, our method can achieve a high accuracy (93.2%) for AD classification, a
relatively high sensitivity (81.8%) for MCI classification, and especially a high sensitivity
(91.5%) for classification of MCI converters.

Multimodal data fusion and classification
A lot of studies have shown that biomarkers from different modalities may contain
complementary information for diagnosis of AD (Apostolova et al., 2010; de Leon et al.,
2007; Fjell et al., 2010; Foster et al., 2007; Landau et al., 2010; Walhovd et al., 2010b).
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Recently, several works on combining different modalities of biomarkers have been reported
(Bouwman et al., 2007a; Chetelat et al., 2005; Fan et al., 2008b; Fellgiebel et al., 2007;
Geroldi et al., 2006; Vemuri et al., 2009; Visser et al., 2002; Walhovd et al., 2010a). A
common practice in these works is the concatenation of all features (from different
modalities) into a longer feature vector. However, this may be not enough for effective
combination of features from different modalities. In this paper, we provide an alternative
way by using kernel combination to integrate different biomarkers. Compared with the
direct feature concatenation method, the kernel combination method has the following
advantages: 1) it provides a unified way to combine heterogeneous data when different type
of data cannot be directly concatenated; 2) it offers more flexibility by using different
weights on biomarkers of different modalities. For instance, we cannot directly concatenate
data represented by strings or graphs with numeric data while we can possibly construct
separate kernels for string, graphs and numeric data respectively and then fuse them by
kernel combination. In our case, since MRI, PET, and CSF are different types of features,
the kernel combination provides us a better way to integrate them for guiding the
classification.

It’s worth noting that the kernel combination method has been successfully applied to many
other fields, i.e., protein function prediction (Lanckriet et al., 2004), cancer diagnosis (Yu et
al., 2010), and gene prioritization (De Bie et al., 2007). Recently, several researches have
started to use this powerful kernel combination method for AD study (Hinrichs et al., 2009b;
Ye et al., 2008). Specifically, in (Ye et al., 2008), MRI and APOE data as well as the age
and sex information were combined using the existing multiple-kernel learning method. In
(Hinrichs et al., 2009b), MRI and PET data were combined also using the same multiple-
kernel learning method. However, both studies aimed only for AD classification, while in
this paper we studied for both AD classification and MCI classification. The latter is actually
more important than the former for early detection and treatment of AD. More importantly,
we combine not only MRI and PET, but also CSF, which was rarely investigated before in
the multiple-kernel combination study. Our experimental result shows that each modality
(MRI, PET, and CSF) is indispensable for achieving good combination and classification.
Also, we use more advanced feature extraction method with atlas warping, compared to
those in (Hinrichs et al., 2009b; Ye et al., 2008). Thus, we can achieve much better
performance compared to those reported in (Hinrichs et al., 2009b; Ye et al., 2008). Even for
their new method using baseline MRI, PET, CSF, and additional longitudinal MRI and PET
data, biological measures, and cognitive scores (Hinrichs et al., 2010), its performance is
still inferior to our method using only baseline MRI, PET and CSF, as shown in Table 3.

Diversity of individual modalities in classification
As mentioned earlier, a lot of studies have indicated that different modalities contain
complementary information for discrimination. Here, we quantitatively measure the
discrimination similarity and diversity between any two different modalities, i.e., MRI vs
CSF, MRI vs PET, and CSF vs PET, by comparing their individual classification results.
Both Jaccard similarity coefficient and Kappa index are used to measure the similarities and
diversities, respectively. Small values on both indexes imply a low similarity and a high
diversity on the two modalities. For AD classification, the averaged similarities (diversities)
over 10-fold cross-validation are 0.75 (0.53), 0.80 (0.62), and 0.74 (0.49) for MRI vs CSF,
MRI vs PET, and CSF vs PET, respectively. On the other hand, for MCI classification, the
averaged similarities (diversities) are 0.65 (0.33), 0.67 (0.38), and 0.63 (0.28), respectively.
These results indicate that CSF and PET have the highest complementary information, while
MRI and PET have the highest similar information for classification.
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Data fusion vs ensemble
In this paper, we combine data from different modalities using kernel combination, which
first combines multiple kernel matrices from different modalities into a single kernel matrix
and then trains a single SVM model from the combined kernel matrix. Interestingly, we can
also combine results from multiple modalities at classification stage. That is, we first train
multiple SVM models on multiple kernel matrices from different modalities. Then, for a
new testing sample, each of these models will have a predication on it, and finally we
aggregate all predictions to get the final decision on the new testing sample. This technique
is also called ensemble learning, which has been a very popular learning method for decades
in the machine learning community (Tan and Gilbert, 2003).

We have compared our kernel combination method with the ensemble learning method for
AD (or MCI) classification. Specifically, the ensemble learning method trains 3 SVM
classifiers from MRI, PET, and CSF, respectively; and then the majority voting is used to
get the final class labels for each new testing sample. The ensemble learning method obtains
a classification accuracy of 91.8% for AD classification, and an accuracy of 75.6% for MCI
classification, which are slightly inferior to the corresponding classification numbers
achieved by our kernel combination method. These results indicate the effectiveness of the
ensemble learning method as a useful and general way in improving classification accuracy
of individual modalities. It may be even more interesting to investigate adding the mixed
kernel from kernel combination into the ensemble or just ensembling different mixed
kernels with different weights. However, the full investigation on this topic is beyond the
focus of this paper. On the other hand, it is worth noting the disadvantage of the ensemble
learning, i.e., the difficulty in interpreting the model since multiple models are used in the
ensemble learning. This issue may limit its use in some medical applications where in
addition to the accuracy, interpretability is also concerned and important.

Effect of feature selection
We test the kernel combination method on two cases, i.e. without and with feature selection.
It is worth noting that the main concern of using feature selection in the current study is to
validate the effectiveness of the kernel combination on the selected brain regions. Therefore,
we adopt a simple feature selection method based on t-test statistics, which has been widely
used in the neuroimaging analysis. Figure 7 shows that even a simple feature selection
method can potentially select effective features (or regions) for achieving higher
classification accuracy than the original methods using all features. We expect that the use
of more advanced feature selection methods in the future can lead to further improvement
for our multimodal classification.

On the other hand, in the current study we adopt a linear SVM as the classifier, which
intrinsically uses a feature weighting mechanism, i.e., the absolute values of components in
the normal vector of SVM’s hyperplane can be regarded as weights on features (Kloppel et
al., 2008). In this way, we can rank the features according to their averaged SVM weights.
We find that the top-ranked features are partially identical with those top features obtained
from a separate feature selection method we used. For example, among the top-ranked
eleven features selected (according to SVM weights) for MCI classification on MRI
modality, six features, namely, ‘amygdala right’, ‘hippocampal formation left’,
‘hippocampal formation right’, ‘entorhinal cortex left’, ‘temporal pole left’, and
‘parahippocampal gyrus left’, are identical to those selected by the t-test statistics as shown
in Table 4. Notice that these six brain regions are known to be related to AD and MCI by
many studies in the literature (Chetelat et al., 2002; Convit et al., 2000; Fox and Schott,
2004; Jack et al., 1999; Misra et al., 2009).
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Limitations
While aiming to develop a multimodal diagnostic tool, the current study is limited by at least
two factors. First, besides MRI, PET, and CSF, there are also other modalities of data, i.e.,
APOE. However, since not every subject has data on all modalities and the number of
subjects with all modalities available is too small for reasonable classification, the current
study does not consider APOE for multimodal classification. Second, in the current study,
we investigate only the classification between one stage of dementia (either MCI or AD) and
healthy controls, and do not test the ability of the classifier to simultaneously discriminate
multiple stages of dementia, i.e., multi-class classification of AD, MCI, and healthy controls.
Although the conversion from binary-class classification to multi-class classification seems
straightforward, with many multi-class classification methods available (Duda et al., 2001),
there may be some problem and this will be our future work.

Conclusion
This study proposes a new multimodal data fusion and classification method based on kernel
combination for AD and MCI. Compared with the conventional direct feature concatenation
method, our method provides a unified way to combine heterogeneous data, particularly for
the case where different types of data cannot be directly concatenated. Moreover, our
method offers more flexibility by using different weights for different data modalities. The
results on 202 baseline subjects of ADNI show that our multimodal classification method
achieves a high accuracy for AD classification and an encouraging accuracy for MCI
classification.

The current study only considers the baseline data of the subjects in ADNI. In the future, we
will use both baseline and longitudinal data to predict the conversion from MCI to AD by
finding the spatiotemporal pattern of brain atrophy in multiple modalities. Moreover, we
will involve using more modalities of data (i.e., APOE) into our current multimodal
classification method. To overcome the limitation of the possible small number of subjects
available for training and testing classifier as discussed earlier, we will seek more advanced
methods in machine learning which can use missing data for classification, i.e., semi-
supervised classification. We expect that, by using more samples (with both complete and
missing modality information), the semi-supervised method will improve the classification
performance further.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Schematic illustration of multimodal data fusion and classification pipeline.
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Fig. 2.
ROC curves of different methods, for AD classification (top) and for MCI classification
(bottom).

Zhang et al. Page 18

Neuroimage. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
AD Classification results with respect to different combining weights of MRI, PET and
CSF. Only the squares in the upper triangular part have valid values, due to the constraint:
βPET+βCSF+βMRI=1. Note that for each plot, the top left, top right, and bottom left squares
denote the individual-modality based classification results using PET (βPET=1), CSF
(βCSF=1), and MRI (βMRI=1), respectively.
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Fig. 4.
MCI Classification with respect to different combining weights of MRI, PET and CSF. Only
the squares in the upper triangular part have valid values, due to the constraint:
βPET+βCSF+βMRI=1. Note that for each plot, the top left, top right, and bottom left squares
denote the individual-modality based classification results using PET (βPET=1), CSF
(βCSF=1) and MRI (βMRI=1), respectively.
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Fig. 5.
Top 11 brain regions selected for MCI classification detected from MRI. Brain regions are
overlaid on the template image, and images are displayed in radiological convention.
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Fig. 6.
Top 11 brain regions selected for MCI classification detected from PET. Brain regions are
overlaid on the template image, and images are displayed in radiological convention.
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Fig. 7.
Classification accuracy of four different methods, with respect to different number of
regions selected for AD classification (top) and MCI classification (bottom).
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Table 4

Top 11 brain regions detected from MRI and PET modalities for MCI classification (ranked according to the
p-values in the brackets)

MRI PET

1 amygdala right
(p<0.0001)

angular gyrus left
(p=0.0003)

2 hippocampal formation left
(p<0.0001)

precuneus left
(p=0.0005)

3 hippocampal formation right
(p<0.0001)

precuneus right
(p=0.0021)

4 uncus left
(p<0.0001)

inferior temporal gyrus left
(p=0.0146)

5 entorhinal cortex left
(p=0.0001)

anterior limb of internal capsule right
(p=0.0154)

6 amygdala left
(p=0.0001)

angular gyrus right
(p=0.0189)

7 middle temporal gyrus left
(p=0.0001)

anterior limb of internal capsule left
(p=0.0204)

8 temporal pole left
(p=0.0004)

globus palladus left
(p=0.021)

9 perirhinal cortex left
(p=0.0004)

globus palladus right
(p=0.0259)

10 uncus right
(p=0.0006)

posterior limb of internal capsule right
(p=0.0272)

11 parahippocampal gyrus left
(p=0.0009)

entorhinal cortex left
(p=0.0286)
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