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Abstract
Groupwise registration has become more and more popular due to its attractiveness for unbiased
analysis of population data. One of the most popular approaches for groupwise registration is to
iteratively calculate the group mean image and then register all subject images towards the latest
estimated group mean image. However, its performance might be undermined by the fuzzy mean
image estimated in the very beginning of groupwise registration procedure, because all subject
images are far from being well-aligned at that moment. In this paper, we first point out the
significance of always keeping the group mean image sharp and clear throughout the entire
groupwise registration procedure, which is intuitively important but has not been explored in the
literature yet. To achieve this, we resort to developing the robust mean-image estimator by the
adaptive weighting strategy, where the weights are adaptive across not only the individual subject
images but also all spatial locations in the image domain. On the other hand, we notice that some
subjects might have large anatomical variations from the group mean image, which challenges
most of the state-of-the-art registration algorithms. To ensure good registration results in each
iteration, we explore the manifold of subject images and build a minimal spanning tree (MST)
with the group mean image as the root of the MST. Therefore, each subject image is only
registered to its parent node often with similar shapes, and its overall transformation to the group
mean image space is obtained by concatenating all deformations along the paths connecting itself
to the root of the MST (the group mean image). As a result, all the subjects will be well aligned to
the group mean image adaptively. Our method has been evaluated in both real and simulated
datasets. In all experiments, our method outperforms the conventional algorithm which generally
produces a fuzzy group mean image throughout the entire groupwise registration.

Keywords
Groupwise registration; sharp mean; tree-based registration

1. Introduction
Groupwise registration has become more and more popular in recent years due to its
attractiveness for unbiased analysis of population data (Crum et al., 2004; Maintz and

© 2011 Elsevier Inc. All rights reserved.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neuroimage. Author manuscript; available in PMC 2012 June 15.

Published in final edited form as:
Neuroimage. 2011 June 15; 56(4): 1968–1981. doi:10.1016/j.neuroimage.2011.03.050.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Viergever, 1998; Zitová and Flusser, 2003). Compared to the pairwise registration,
groupwise registration can simultaneously estimate the transformation fields for all subjects
without explicitly specifying an individual subject as a template, thus avoiding any possible
bias (introduced by template selection) in the subsequent data analysis.

One of the most popular groupwise registrations was proposed by Joshi et al. (Joshi et al.,
2004) in 2004. In their method, the groupwise registration is implemented by iteratively
constructing the group mean image and estimating the transformation fields of all subjects
towards the estimated tentative group mean image. However, this method has several
limitations. One major drawback of this method is that it equally treats all subjects during
the construction of the group mean image, which can be very fuzzy especially in the
beginning of groupwise registration, since all subjects at that moment are not well aligned.
As a result, the fuzzy group mean image fails to provide clear guidance to the subsequent
pairwise registrations and leads to 1) the loss of anatomical details which can be hardly
recovered from the initial fuzzy group mean image; 2) the degradation of the alignment in
each round of groupwise registration due to the difficulty of establishing reliable
correspondences between sharp subject images and the fuzzy group mean image during the
iterative registration procedure; and 3) the slow convergence of the groupwise registration
due to the lack of clear and consistent information from the fuzzy group mean image to
guide the registration.

Several follow-up papers (Fletcher et al., 2009; Ma et al., 2008) have been published
recently. To be robust with the outlier subjects, Fletcher et al. (Fletcher et al., 2009)
extended Joshi’s method to the Riemannian manifold and proposed to use the geometric
median of the group to handle the possible outliers that may deviate the Fréchet mean far
away from the real population center. Rather than averaging on image intensity, Ma et al.
(Ma et al., 2008) proposed a Bayesian-based approach to estimate the atlas by iteratively
deforming an initial guess to the center of the population. In this way, the final atlas is sharp
but at the expense of the bias in choosing an individual subject as the start point. Generally,
these methods still used an equal weight for all subjects to build the group mean image.
Also, their goal is the robust estimation of the group mean image, not the groupwise
registration. However, the importance of keeping the sharpness of the group mean image
during the groupwise registration is still not addressed.

Another limitation of the conventional groupwise registration method lies in the pairwise
registrations used in each round of groupwise registration, used to align each subject to the
latest estimated group mean image. As well known, good pairwise registration helps
estimate the clear group mean image which can be used to better guide the next round of
groupwise registration. However, in case of large inter-subject variations, it is difficult to
register two faraway subjects with different anatomical structures (Hamm et al., 2009; Tang
et al., 2009). In light of this, several methods have been proposed to improve the
registration. For example, Tang et al. (Kim et al., 2010; Tang et al., 2009) proposed to
generate an intermediate template sufficiently similar to each subject for improving the
registration. Since the deformation from the template to any intermediate template is pre-
known in the training stage, the final registration can be completed by compositing the
deformation from the template to the intermediate template with the deformation from the
intermediate template to the subject under registration.

In addition, Hamm (Hamm et al., 2009) presented the tree-based method for groupwise
registration. In their method, the pseudo-geodesic median image is selected as the root
template after learning the intrinsic manifold of the whole data set. Since a fixed image (i.e.,
the root image) is used as the final template to register all other subjects, the bias is
inevitably introduced in this scenario due to the possible discrepancy between the selected
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template and the real population center. However, this method benefits from the tree-based
organization of images for registration. Specifically, since the subjects are organized in the
tree-based hierarchy by considering each subject image as the node, any pair of neighboring
images in the tree is similar to each other. Therefore, even for the subject having large
anatomical differences from the root subject, it can be still well-aligned through the
registration path from its node to the root.

The goal of this paper is to outline the limitations of the conventional groupwise registration
(Joshi et al., 2004) and then propose solutions to improve its performance. Specifically, we
will first point out the importance of always keeping a sharp group mean image during the
groupwise registration. To achieve the sharp group mean image without introducing bias, we
generalize the conventional groupwise registration method by defining a new objective
function. Specifically, we treat each subject adaptively throughout the registration. Only the
registered subjects that are close enough to the tentatively-estimated group mean image will
be involved in updating the group mean image, since equally treating the subjects in the
early stage will lead to the irreversible loss of structural details especially when most
subjects are not well aligned in the beginning. As the registration progresses, subjects are
more likely to agglomerate to the population center. Then, more subjects will be allowed to
participate into the construction of the group mean image and their contributions will
gradually become similar to others. Working under this scenario, the group mean image in
our method will gradually approach to the population center, as will be shown by our
experimental results on simulated dataset.

The other contribution of this paper is that we improve the registration accuracy of each
subject to the group mean image by a tree-based registration. In our method, we do not
assume small anatomical differences between individual brain images. As mentioned above,
registering two subjects with large differences usually challenges the state-of-the-art
registration algorithms, and the bad registration results will undermine the sharpness of the
group mean image. We resort to employing a tree-based hierarchical registration method
(Hamm et al., 2009; Jia et al., 2010b) to register each subject to the latest estimated group
mean image. Specifically, considering each subject as a node in the tree, we can set the
sharp group mean image, instead of any individual subject, as the root of the minimal
spanning tree (built upon the image distances of each possible pair of subjects). The benefit
of using the tree-based registration is that the registration accuracy can be greatly improved,
since each subject will be registered only to its nearby subject (with similar anatomy) and its
complete registration to the group mean image can be estimated by compositing all
deformation fields along its path to the group mean image (the root of tree).

In our previous work, we proposed a robust groupwise registration method, called
ABSORB, in (Jia et al., 2010a). To overcome the limitation of fuzzy group mean in the
conventional method (Joshi et al., 2004), ABSORB perform the registration in the
conservative way: each subject will only deform w.r.t. its neighboring subjects within a
learned image manifold. The advantage is that the global structure, or the distribution of
subject images in their intrinsic high-dimensional space, is always preserved during the
groupwise registration procedure. However, the computation time is much longer than the
conventional method. In this paper, we attack the problem of fuzzy mean image in a
different way where we replace the fuzzy group mean image with the sharp one to
deterministically guide the registration. Therefore, we are able to achieve much faster
groupwise registration than ABSORB and even with better registration performance as will
be shown in the experimental results.

In experiments, we demonstrate the advantage of our method by integrating with the
Diffeomorphic Demons registration algorithm (Vercauteren et al., 2009), and also compare
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its performance with the tree-based registration method (Hamm et al., 2009), the
conventional groupwise registration method, and ABSORB (Jia et al., 2010a). Extensive
experiments on 16 NIREP Data (Christensen et al., 2006) and 40 LONI LPBA40 data
(Shattuck et al., 2008) show that our proposed method outperforms the tree-based method,
the conventional groupwise registration method, and ABSORB in terms of both registration
accuracy and consistency.

In the following, we will present our improved method for groupwise registration in Section
2. After that, our proposed method will be intensively evaluated and further compared with
other three groupwise registration methods in Section 3. We conclude in Section 4.

2. Method
In the framework of unbiased groupwise registration (Joshi et al., 2004), the deformation
fields are estimated by iteratively registering N subjects to the latest estimated group mean
image. In the t-th round of registration (t=1,…,T), the group mean image Mt is generated by
averaging upon the intensity of the current warped subjects

 w.r.t. the current estimated
transformation fields . Each  is calculated by considering
Mt−1 as the template and  (affine aligned subject) as the moving images. It is worth noting
that G0 are only the initial affine transformations.

Fig. 1 illustrates the framework of the conventional unbiased groupwise registration (Joshi et
al., 2004). The dashed arrows denote the pairwise registrations in each round of registration,
which are used to deform each subject to the common space of the current group mean
image. The solid arrows indicate the evolution of the group mean image with the progress of
registration, where the group mean image gradually marches from a gray rectangle (in the
first round of groupwise registration) to a final pink circle (in the later round of groupwise
registration), as shown in Fig. 1. Here, the red star denotes the real population center. The
convergence of this groupwise registration is guaranteed according to the convexity of the
distance function (Joshi et al., 2004). However, this algorithm is not robust to the outlier
subjects (i.e., less registered subjects, especially in the beginning of groupwise registration),
although its finally estimated group mean image (the pink circle) might be close to the real
population center. We will explain this clearly in the following.

In the conventional groupwise registration (Joshi et al., 2004), the problem of estimating the
group mean image M is formulated as a statistical estimation problem:

(1)

where the term  is the distance between the identity transformation e and 
(Avants and Gee, 2004; Miller, 2004; Miller et al., 2002; Vercauteren et al., 2009). By
fixing the transformation field , the estimation of the group mean image is obtained as

, which is the simple average of the warped images according to the
current-estimated deformations. It is obvious that this kind of method assumes only one
center in the population. The work dealing with multiple centers can be found in (Blezek
and Miller, 2007; Sabuncu et al., 2009; Wang et al., 2010).
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As pointed in (Fletcher et al., 2009), the major drawback of this method is the poor
robustness to the outliers because the contributions (or the weights) are the same for not only
all subjects in the population, but also all voxels in each subject. Therefore, even single
outlier image will dramatically mislead the estimation and lead to the fuzzy group mean
image. In the following, we will first point out in Section 2.1 the importance of always
keeping the sharpness of the group mean image throughout the entire groupwise registration
procedure. Then, we will propose an improved objective function in Section 2.2, and
optimize it in Section 2.3. Finally, we will summarize our proposed groupwise registration
method in Section 2.4.

2.1 Importance of Always Keeping Sharpness of the Group Mean Image during
Registration

Unbiased groupwise registration method (Joshi et al., 2004) seeks to iteratively estimate the
group mean image and register each subject to the tentative group mean image. However,

the initial group mean image , generated right after the linear alignment, is
generally very fuzzy, since the subjects  are not well aligned in the beginning of
registration. According to our knowledge, few articles have addressed the importance of
keeping the sharpness of the group mean image during the registration. Indeed, the fuzzy
group mean image would undermine the groupwise registration performance in two ways: 1)
it is difficult to register an individual subject with clear anatomical structures to the group
mean image with fuzzy structures; 2) a fuzzy group mean image will challenge the
convergence of optimization since it might not provide sufficient anatomical information to
guide the registration. The importance of the sharp group mean image in groupwise
registration is demonstrated in Fig. 2 by 61 toy images, which are distributed in three
branches. Each branch (with 20 images) is generated from the same base image with a red
box in Fig. 2(a), to represent one type of cortical folding. For clarity, only three images (i.e.,
1st, 10th, and 20th) in each branch are shown as examples. Before registration, the group
mean image is very blurry (as shown in Fig. 2(b)). If the groupwise registration starts from
this fuzzy group mean image, it will result in an unsatisfactory group mean image (as shown
in Fig. 2(b)), since the fuzzy group mean image is not able to informatively guide the
groupwise registration of individual images.

This toy example shows the importance of always keeping the sharpness of the group mean
image during the groupwise registration. The fundamental reason why the conventional
method fails is illustrated in Fig. 3. For easy explanation, we project all 61 images in Fig.
2(a) onto a two-dimensional (2D) space with PCA, as shown by blue circles in Fig. 3, where
each branch represents one type of folding pattern. In the conventional method (Joshi et al.,
2004), all subjects are equally treated in building the group mean image, regardless of their
anatomical differences. This equal weighing strategy, throughout the whole registration, is
shown as flat green meshes in Fig. 3(a)–(c). As a result, the group mean image obtained in
the first round of registration (shown in Fig. 2(b)) is not only fuzzy but also located far away
from the real population center (shown in Fig. 3(b) and (c)), where the red triangles denote
for the warped results of all subjects w.r.t. this fuzzy group mean image after projecting
them onto the same 2D PCA space. Since the detailed anatomical information has already
been lost in the first round of registration, it can be hardly recovered and moved back to the
real population center. Fig. 3(c) shows the final groupwise registration result by the
conventional method, where the warped subjects are not close to each other and also far
away from the real population center.

Instead of equally weighting all subjects, we propose to adaptively weight subjects based on
their distances to the latest estimated group mean image. In the above example (Fig. 3), the
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distance metric between two images is the sum of squared differences on image intensity.
Our idea has been demonstrated through Fig. 3(d)–(f). Specifically, given an estimated
group mean image Mt−1 from the previous round of registration, the contribution of each
subject in constructing a new group mean image Mt should be dynamically determined
according to its tentative warping result . For each warped subject , the closer of its
distance to Mt−1 is, the larger weight it should have to contribute in the construction of Mt.
To estimate Mt, adaptive weightings for all subjects can be determined based on the
distances of those warped subjects to the previous group mean image Mt−1. However, the
way on how to obtain M0 in the first round of registration is still unclear. Since we do not
have much knowledge on the population center in the beginning, we first select the median
image Ic among I0 as the M0 by performing the following operations:

(2)

where d is the distance measurement between two images. Although the advanced geodesic
distance can be used here, we turn to use the Euclidian distance due to its simplicity. It is
clear that Ic has the minimum sum of distances to all other subjects. Setting M0 as the
median image Ic has the advantage of closeness to the population center. Therefore, we use
Ic as the reference image to calculate the weight for each  in the first round of groupwise
registration according to . Fig. 3(d) shows the reference image Ic for 61 toy images in
Fig. 2(a), which is very close to the baseline image that we used to generate three branches
of images with different cortical foldings. As shown in Fig. 3(d), only the subjects close to Ic
will have high weights in constructing M1, while the faraway subjects have very low
weights. The weights used in our method are displayed by the red meshes in Fig. 3(d)–(f),
where the shapes of these meshes changes from very sharp in the beginning to very flat in
the end of registration. As displayed in Fig. 2(c), the performance of groupwise registration
has been significantly improved with our adaptively weighted M1, compared to that by the
conventional method in Fig. 2(b). Similarly, we project the warped results in the first and the
final rounds of registration onto the same 2D PCA space, as shown in Fig. 3(e) and (f),
respectively. Obviously, our group mean image is more reasonable and much clearer than
that by the conventional method, and importantly all subjects have agglomerated very
closely to the real population center. In the following section, we will detail our algorithm
for achieving the sharp group mean image and improving the overall registration
performance.

2.2 Objective Function of Our Groupwise Registration
As demonstrated in Section 2.1, different subjects should have different dynamic weights,
instead of equal and fixed weights, during the groupwise registration. On the other hand,
each anatomical region in each subject may have its own difference from the respective
region in the group mean image. Therefore, applying the same weight (generally obtained
from the entire subject) to all anatomical regions of the same subject may lead to different
fuzziness across different regions of the group mean image. To mathematically formulate
these problems and solve them together, we propose two strategies below.

First, we propose a distance measurement for each voxel x w.r.t. the current group mean
image Mt and the warped subject image  as:
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(3)

where  denotes a local image patch centered at voxel x, with the neighborhood size b. The
term D measures the overall intensity difference between the corresponding local image
patches (centered at x) in the images  and Mt, by visiting all voxels y in the neighborhood
Pb(x). Although other advanced geodesic distance (defined in the manifold) can be
employed, the simple intensity difference is used here for easy computation. On the other
hand, recall that , thus the distance measurement in our method is also the
function of transformation field , albeit implicit. It is worth noting that D approaches to the
image distance between two entire images when b is large enough, while D becomes voxel-
wise difference in Eq. 3 when b converges to 1. Since the registration results are usually
refined from global shape to local shape, the value of b is large in the initial round of
registration and then gradually decreases with the progress of registration. We will describe
the way to dynamically change the size of b in Eq. 8 of Section 2.3.

Second, to treat each subject differently, we introduce a hidden variable

 to indicate the contribution of each warped subject  in
the construction of the group mean image at a particular voxel x. In the initial rounds of
registration, all subjects are not well aligned (especially right after affine registration). If we
equally weight all subjects (i.e., the entropy of the weighting set { } is
high), it will lead to a fuzzy mean image as demonstrated in Fig. 2. To keep the sharp group
mean image throughout registration, only those warped subjects  that are close enough to
the currently estimated group mean image Mt−1 are qualified to have large weights ,
while other subjects are penalized with small weights . With the progress of
registration, all subjects will likely agglomerate to the population center. At that moment, all

s, as long as they are close enough to the group mean image, will contribute almost equally
to the construction of the group mean image, thus providing opportunity to estimate an
unbiased group mean image. Since all subjects are already well aligned, very little fuzziness
will be introduced to the group mean image. In this paper, the dynamic changes of weights
{ } from strictly binary to loosely uniform are controlled by requiring the
entropy of the weighting set { } to increase with the progress of
registration.

By replacing the distance measurement with Eq. 3 and adding the dynamic control of
weights of subjects to the objective function, we arrive at a new objective function for
groupwise registration as:

(4)

where the scalar r controls the penalty of large distance from  to Mt. σg is used to balance
the strength of regularization in the objective function. Compared with the objective
function in the conventional method (Eq. 1), our formulation generalizes the objective
function in (Joshi et al., 2004) by introducing the adaptive weights ω for not only each
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subject but also each spatial location in the common space. We will show its important role
when explaining the solution to Eq. 4 in Section 2.3.

2.3 Optimization Scheme
It is non-trivial to simultaneously optimize F in Eq. 4 with many parameters. Instead, we
resort to decoupling it with two sub-problems, i.e., alternatively (Sub-Problem 1, SP1)
estimate the group mean image and (Sub-Problem 2, SP2) estimate the transformation fields
for all subjects. First, given the warping results It−1 (w.r.t. Gt−1) in the last round of
registration, compute the optimal ωt. Then the mean image Mt in the current round can be
estimated according to ωt. Second, using Gt−1 as the initialization, we employ the pairwise
registration algorithm (e.g., Diffeomorphic Demons (Vercauteren et al., 2009)) to calculate
the transformation field Gt for each subject  towards Mt. As a result, new warped results It

are ready for the next round of registration. Therefore, with the progress of groupwise
registration, all  become closer and closer to the group mean image Mt gradually.

SP1: Estimate the Adaptively Weighted Group Mean Image—After registering
each I0 with Mt−1 in the previous round of registration, we are able to obtain the
transformation field Gt−1 as well as the warped subjects It−1. Discarding all variables
irrelevant with ωt and Mt, the objective function F turns out to be:

(5)

The optimal solution to  in Eq. 5 can be immediately calculated by setting
. After removing the constant, the estimation of weight  on each voxel x

is given as:

(6)

where  at location x is highly related with two parameters: the temperature r and the
neighborhood size b. Here the parameter r is used to control the fuzzyness of the mean
image, acting as the inverse temperature in the annealing system based on our observations
in Section 2.1. Initially, the degree of r is low, i.e., the contribution of particular subject in
constructing the group mean image will decrease in the exponential way unless it is very
close to the current group mean image. This strategy is used to keep the group mean image
sharp. With the progress of groupwise registration, all subjects become closer to the
population center; at that time, the temperature r will be increased to encourage equal
weighting of all warped subjects . Given the overall number of iterations T, the
temperature in the t-th round is determined as:

(7)

where r0 is the initial temperature and Δr denotes the step length of temperature increase. In
all of our experiments, we set r0 = 1 and , where Ic is the median image
among I0.
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To cater for the possible misalignment, especially in the initial rounds of groupwise
registration, we use the neighborhood size b to adaptively control the scale, i.e., from global
to local, in measuring the image similarity. Therefore, the weight  used for averaging
warped images is different across not only the subjects but also spatial locations in the group
mean image space. The value of b in the t-th round of registration is given as:

(8)

where b0 is the whole image size. When the iteration t increases to T, b(T) = 1 and D in Eq.
3 becomes the voxelwise intensity difference.

After determining the weight  for each subject Is at each location x by Eq. 6, the
calculation of the group mean image Mt(x) at each location x is straightforward by setting
∂F1/∂Mt(x) = 0 (with the derivation given in the Appendix I):

(9)

where |Pb(x)| is the total number of pixels in the local image patch Pb(x). It is clear that (1)
the group mean image is the weighted average of all currently registered subjects in the
common space; (2) the weight  is adaptive to each subject according to its contribution 
calculated in Eq. 6; (3) the weight  is also locally adaptive since the  is computed from
the local patch discrepancy.

It is worth noting that M1 in the first round of registration is the equally weighted average of
affine aligned subjects in the conventional groupwise registration (Joshi et al., 2004), which
could be very fuzzy (see Fig. 2(b)). In our method, however, M1 is the weighed mean image
of all warped subjects, where the weights are calculated by taking the median image Ic as the
reference. Moreover, no bias is introduced to our method for the following reasons: 1) Ic is
only used as the reference to calculate the contribution of each subject, instead of using it as
a direct template for registration; 2) we gradually increase the temperature r to ensure that
all warped subjects have the opportunity to equally contribute to the construction of the
group mean image as long as they are well registered. This argument will be further
supported by the experimental results below.

SP2: Estimate the Transformation Field—By fixing  and M ̂t obtained in SP1, the
objective function in this step becomes (with the derivation given in Appendix II):

(10)

where . Here we assume each  is independent. Therefore, the
solution to each  is a well-known optimization problem of quadratic objective function as
discussed in many gradient-based registration algorithms (Vercauteren et al., 2008, 2009).
The regularization term  is related with the pairwise registration algorithm used in
our method. For example,  denotes the geodesic distance in LDDMM method (Beg
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et al., 2005) whose velocity is the function of time starting from template to subject. In this
paper, we use Diffeomorphic Demons (Vercauteren et al., 2009) as the pairwise registration
component. Therefore, the regularization term on each transformation field  is defined as
the geodesic distance but with constant velocity.

Usually the transformation field  is independently solved by taking Mt as the template in
registration. By taking those 61 toy images in Fig. 2 as examples, the procedure of
registering each  to Mtis shown in Fig. 4(a). However, there might exist large anatomical
variations among the subjects. Assuming all subjects reside on the manifold, it is relatively
easy for the pairwise registration algorithm to align two nearby subjects than two faraway
subjects. In light of this, we employ a tree-based registration method (Fig. 4(b)), where each
subject will only register to its nearby subject on the manifold. To achieve it, we first define
the measurement of distance between two subjects IA and IB as:

(11)

where D(.) is defined in Eq. 3 with the neighborhood size b. Let  as a set of
images under registration in Step 2 (SP2) of the t-th round of groupwise registration. The
distance between any two subjects in Q can be calculated by Eq. 11. Then, a fully connected
graph can be built by considering each subject as the node and the manifold distance as the
edge weight. Next, the minimal spanning tree (MST) is extracted from the graph, using
Kruskal’s algorithm (Kruskal, 1956), where Mt is set as the root node since the goal of step 2
(SP2) is to calculate the transformation field from each subject  to Mt. In this way, all
images can be organized into a tree structure where only similar images are connected. The
advantage of using the tree-based registration is obvious: It allows the subjects to be aligned
more robustly and accurately to the current group mean image, especially for the subjects
faraway from the population center.

Fig. 4(b) demonstrates the procedure of MST-based registration in our method. In
registering each subject  with Mt, the pairwise registration algorithm will be employed
between  and Mt if  is directly connected with Mt (root node). Otherwise, the
registration is performed sequentially along the path determined during the construction of
the MST. For clearly describing SP2 in our method, we briefly summarize it as follows:

1. Calculate the distance between any pair of images in the set Q according to Eq. 11;

2. Construct the fully connected graph;

3. Extract the MST by setting Mt as the root node;

4. For each subject , s = 1,.., N:

a. If the transformation field from  to Mt is already computed, then exit;

b. Otherwise, transverse from node  to Mt by composing all
transformation fields from the current node to its parent node and then the
next level of parent node until reaching the root node Mt.

c. Obtain the overall transformation field for  by composing all
transformation fields along the path from  to Mt. This overall
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transformation field will be used as a good initialization to estimate more
accurate transformation field between  and Mt.

2.4 Summary
Compared to the conversional method, the advantages of our method are: 1) the group mean
image is a weighted average of aligned subjects (Eq. 9), instead of a simple arithmetic
average. Weights are adaptively determined not only for each aligned subject , but also for
each image location x; 2) the contribution of each subject is dynamically adjusted
throughout the groupwise registration in the annealing scenario; 3) the sharpness of the
group mean image is always preserved throughout the registration; 4) the registration
accuracy in each round of groupwise registration has been improved by using the MST-
based hierarchical registration framework.

For comparison, we first summarize the conventional method as follows:

Assume I0 is the set of affine aligned subjects.

1. Compute the group mean image M1 in the first round of registration by averaging
all s with equal weight;

2. Set t = 1;

3. Register each subject  to the currently estimated Mt by diffeomorphic demons
(Vercauteren et al., 2009) and get the registration result ;

4. Compute the group mean image Mt+1 by averaging all s with equal weight;

5. Set t ← t + 1

6. Loop from step 3 to step 5 until convergence or reaching the abortion criterion (t =
T).

Our new groupwise registration method is summarized as follows:

1. Calculate the median image Ic among the population by Eq. 2;

2. Set t = 1, r0 = 1, , and b0 the whole image size;

3. Initialize each  with only affine transformation to the median image Ic;

4. Set M0 = Ic and calculate the weight of each  by Eq. 6;

5. Compute the group mean image M1 in the first round of registration by Eq. 9;

6. Build the MST on the image set ;

7. Register each subject  to the currently estimated Mt by the MST-tree-based
registration (diffeomorphic demons (Vercauteren et al., 2009) is used here as the
pairwise registration component);

8. Warp the original subject  to the group-mean-image space by , thus obtaining 
for the next round of registration;

9. Calculate the weight of each current-warped subject  by Eq. 6;

10. Compute the group mean image Mt+1 by Eq. 9;

11. Set t ← t + 1
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12. Loop from step 6 to step 11 until convergence or reaching the abortion criterion (t =
T).

The diagrams of the conventional method and our groupwise registration method are shown
in Fig. 5(a) and (b), respectively. As summarized in the conventional method, the
construction of group mean image and the registration of each subject to the group mean
image are integrated to help each other for reaching the goal of groupwise registration. Our
method improves each of these two steps, i.e., building the sharp mean image by dynamic
and adaptive weighting of warped subjects and also performing registration of each subject
to the group mean image by the tree-based method. Thus, our method can produce better
results as detailed below.

3. Experiments
In our experiments, we have extensively evaluated the performance of our groupwise
registration method in atlas construction and ROI labeling. For comparison, we set the tree-
based registration method (Hamm et al., 2009), the conventional groupwise registration
method (Joshi et al., 2004), and the ABSORB (Jia et al., 2010a) as the baseline methods. It
is worth noting that the tree-based method is not the groupwise registration method, since it
needs to first set an individual image as the root and then register all other subjects to the
root image. The latter two methods are both groupwise registration methods. To be fair,
Diffeomorphic Demons algorithm (Vercauteren et al., 2009) is used as the pairwise
registration component in all these four methods (including our method). Also, we use the
same iteration number T for both the conventional method and our method.

We first evaluate the group mean image and the overlap ratios on WM, GM, and ventricle
(VN) for 18 elderly subjects. Then, we compare the overlap ratios of aligned ROIs using
NIREP dataset (http://www.nirep.org/) and LPBA40 dataset
(http://www.loni.ucla.edu/Atlases/LPBA40), which have 32 and 54 manually delineated
labels for each brain image, respectively.

The overlap ratio of ROIs is an important criterion to judge the registration performance.
Here we use the Jaccard Coefficient metric (Jaccard, 1912) to measure the alignment of two
regions with same label. For the two registered regions A and B, the Jaccard Coefficient is
defined as:

(12)

where |·| denotes the volume of the underlying region. Since there is no template with
labeling information in the groupwise registration, we need to vote a reference image before
calculating the overlap ratio on each ROI. Here, we vote the tissue assignment of each voxel
with the majority of all tissue labels at the same location from all the aligned subjects. Then,
the Jaccard Coefficient between each registered subject image and the voted reference will
be calculated. It is worth noting that we use this procedure to evaluate the overlap ratio for
all four registration methods. In the following experiments, we report the average score of
Jaccard Coefficients as the overlap ratio for each tissue label and ROI.

3.1. Experiment on 18 Elderly Brains
Fig. 6 shows a group of 18 elderly brain images. Each image has the size of 256 × 256 × 124
and the resolution of 0.9375 × 0.9375 × 1.5mm3. It can be observed that the anatomical
structures vary a lot across different subjects, especially for the ventricle and cortex.
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Conventional groupwise registration method starts from a very fuzzy group mean (with its
3D rendering shown in blue box of Fig. 7). On the contrary, our method begins with a clear
group mean image (as shown in red box of Fig. 7), which is close to the population center.
The evolutions of the group mean image by the conventional and our registration methods
are provided in the top and bottom rows, respectively. It is clear that, although the final
group mean images are similar by both methods, ours is much sharper than that by the
conventional method. Also, this experiment has demonstrated that our method will not
introduce bias in the final group mean image since the group mean images by two methods
(ours and the conventional unbiased registration method) are very similar. To better evaluate
the group mean images by these two methods, we show six transverse views in Fig. 8.

To quantitatively measure the registration accuracy by overlap ratio, we first vote a
reference image based on the warped results of all (tissue-segmented) subject images, as
mentioned in the beginning of this section. Then, the overlap ratio is calculated between
each warped subject image and the reference image one by one. Table 1 reports the overlap
ratio on white matter (WM), gray matter (GM), and ventricle (VN) by the tree-based method
and three groupwise registration methods, respectively. The average overlap ratio on three
tissues (WM, GM, and CSF) is 68.12% by the tree-based method, which is lower than any
of the groupwise registration method. This demonstrates the advantage of groupwise
registration over the tree-based registration method which has bias in selection of template
and thus may affect registration of a group of subjects. For the groupwise registration
methods, the overlap ratio is 78.07% by our method and 70.84% by the conventional
method, indicating a 7.23% improvement. Compared to the ABSORB method, the overlap
ratio by our method is also slightly better, with 2% improvement. The standard deviations
on three tissues by these four methods are also reported in the Table 1. Accordingly, we
show the maps of overlap on WM, GM, and VN by the tree-based method, the conventional
method, the ABSORB method, and our method in Fig. 9(a)–(d), respectively.

Although the evolution of the group mean image can be visually inspected in Fig. 7, we
further quantitatively plot the evolution curves of the tissue overlap ratio during the
groupwise registration by the conventional method and our method. To demonstrate the
advantage of employing the adaptive and dynamic weighting strategy (controlled by the
local distance measurement D and the gradually decreased temperature r in Eq. 6), we also
set the median image as the initial group mean and then allows the conventional groupwise
registration method to perform the rest of registration. We call this method as “pseudo sharp
mean” method. Fig. 10 shows the evolution curves of overlap ratio of white matter (Fig.
10(a)), gray matter (Fig. 10(b)), and ventricle (Fig. 10(c)) with respect to the iteration
number. It can be observed that the performance of the conventional method and the
“pseudo sharp mean” method is comparable and their overlap ratios are much lower than
ours, not only in the end of registration but also during the whole registration procedure.
Specifically, the “pseudo sharp mean” method still produce worse results, compared to ours,
although it has the same performance in the first iteration as our method’s. The reason is
that, even using the median image as the initial group mean image in the “pseudo sharp
mean” method, the subsequently constructed group mean images by simple averaging the
warped subjects are still fuzzy, thus suffering the same problem as the conventional method.

Besides providing the evaluation on overlap ratios, we further quantitatively evaluate the
registration consistency according to the entropy of tissue probability on each brain voxel
across 18 aligned subjects. Note that lower entropy indicates more consistent registration
results across individual subjects. The average entropy value is 0.72 after affine registration.
After non-rigid registration, the average entropy value is 0.54 by the tree-based method, 0.51
by the conventional method, 0.42 by ABSORB, and 0.34 by our method. Again, our
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groupwise registration method achieves the best performance in terms of registration
consistency.

3.2. Experiment on NIREP Data
In this experiment, we align 16 brain subjects in NIREP dataset (Christensen et al., 2006) by
the tree-based method and all three groupwise registration methods, respectively. The
NIREP dataset consists of 16 3D MR images of 8 normal male adults and 8 normal female
adults, each with 32 manually-delineated gray matter ROIs. All 16 MR images have been
aligned according to the anterior and posterior commissures (AC and PC). The image size is
256 × 300 × 256, and the voxel dimension is 0.7 × 0.7 × 0.7mm3.

After calculating the overlap ratio for each ROI after the registration of 16 images, the
overall overlap ratio is 61.69% by the tree-based method, 61.25% by the conventional
groupwise registration method, 65.31% by ABSORB, and 66.66% by our groupwise
registration method (which achieves the highest overlap ratio among all four methods). Fig.
11 shows the overlap ratio in each ROI by the three groupwise registration methods with
blue for the conventional method, green for ABSORB, and red for our method, respectively.
Furthermore, we use the blue “†” and red “*” to designate the significant improvement of
overlap ratio (with the p-value less than 0.05 in t-test) on ROIs by our groupwise registration
method, compared to the conventional method and ABSORB, respectively. It can be
observed from Fig. 9 that our method outperforms the conventional method in all ROIs,
demonstrating the importance of always keeping the sharpness of the group mean image
during the entire registration procedure. Compared with ABSORB, our method has obtained
significant improvements on 20 out of 32 ROIs.

3.3. Experiment on LONI LPBA40 Data
In this experiment, we use the LONI LPBA40 dataset (Shattuck DW, 2008) with 40 brain
images and 54 manually labeled ROIs in each brain image. Similarly, we employ the tree-
based registration method and three groupwise registration methods to align these 40 brain
images, respectively. The overall overlap ratio is 66.95% by the tree-based method, 66.36%
by the conventional method, 69.50% by ABSORB, and 70.36% by our method. Fig. 12
shows the overlap ratios in all 54 ROIs by the three groupwise registration methods, with
blue for the conventional method, green for ABSORB, and red for our method, respectively.
Also, the blue “†” is used to denote the significant improvement on ROIs achieved by our
method over the conventional method, while the red “*” is used to denote the significant
improvement by our method over ABSORB. It can be observed that our method
outperforms the conventional method on most ROIs. On the other hand, although our
method produces slightly better overlap ratio than ABSORB, the improvement on each ROI
is not significant after performing t-test. However, as we will show below, our method is
faster; it uses only around 1/3 computation time of ABSORB.

3.4. Computation Time
We perform all of the above experiments on Dell workstation (with 8 Xeon CPU@2.66GHz
and 32 G DDR memory). The computation time of the tree-based method, the conventional
method, ABSORB, and our method is provided in Table 2. It is worth noting that we set the
same number of iterations (10 rounds) for the conventional method and our method. For
ABSORB, we choose its optimal parameters. Our method is faster than ABSORB, but
slightly slower than the conventional method, and much slower than the tree-based method
since it performs only 1 round of registration for the whole group.
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3.5. Discussion
MST-based strategy is used in each round of our groupwise registration method to improve
the robustness of registration results. In order to evaluate the contribution of MST in our
method, we apply our groupwise registration method, with and without MST (by keeping all
other same parameters), to 18 elderly brains, NIREP data set, and LONI LPBA 40 data set,
respectively. Table 3 shows their overall average overlap ratio and the standard deviation.
Obviously our groupwise registration method with MST consistently achieves better
registration accuracy than the counterpart without MST, demonstrating the advantage of
employing MST in our complete method.

Particularly, we notice that the improvement on registration accuracy is much more in the
data set of 18 elderly brains than the other two data sets (NIREP and LONI LBPA40). One
explanation is that the anatomical shape variations in 18 elderly brains (see in Fig. 6) are
much larger than those in NIREP and LBPA40 data sets. Our method can fully take the
advantage of MST to hierarchically register each subject to the group mean image by
composting multiple segments of transformation fields from the underlying node (individual
subject) to the root of the tree (group mean image). The minimal spanning tree used in the
first round of our groupwise registration is shown in Fig. 13. Obviously each pair of
neighboring nodes in the tree has similar anatomical shape. In brief summary, this
experiment strongly demonstrates the importance of using MST-based registration in each
round of groupwise registration, especially in case of large anatomical variations in the data
set.

4. Conclusion
We have demonstrated the importance of always keeping a sharp group mean image during
the entire groupwise registration procedure. In order to improve the overall registration
performance of the whole population, we generalize a popular unbiased groupwise
registration method in this paper. In our new framework, different subjects are adaptively
weighed to construct the sharp group mean image, according to their similarities to the
previous-estimated group mean image. Also, we utilize a tree-based registration to improve
the registration quality in each round of groupwise registration. Based on these two
innovative formulations, our groupwise registration method has achieved much better results
than other state-of-the-art groupwise registration methods, and the tree-based registration
method, using simulated and real data.

In the current method, we only use the intensity-based registration method, i.e.,
Diffeomorphic Demons (Vercauteren et al., 2009), as a pairwise registration component in
each round of groupwise registration. However, minimizing the intensity difference does not
necessarily mean the good anatomical correspondences across subjects. In our future work,
we will first integrate other feature-based registration methods, e.g., HAMMER in (Shen,
2007), into our groupwise registration framework. Second, since it is very important to
process the large population data efficiently in many clinical applications, we will improve
the overall registration speed by optimizing the program and using the learning-based
method for fast predication of deformation field as we did for our pairwise registration
method (Kim et al., 2010). Finally, we will also apply our groupwise registration method to
various neuroscience studies, such as atlas building for early human brain development
(Kazemi et al., 2007) and Alzheimer’s Disease study using ADNI data (ADNI, 2004).
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Appendix I: Estimation of group mean image
After calculating the weight  for each subject s at each location x and removing all un-
necessary terms with Mt, the objective function F1 in SP1 becomes:

Here x and y denote the arbitrary spatial location in the common space. Pb denotes a local
(spherical) image patch, thus ∀x ∈ Pb(y) ⇒ y ∈ Pb(x). D is the overall similarity in the
local image patch. The estimation of Mt can be calculated by requiring the derivative

. As the result, we get:

By swapping the variable x and y, we obtain the Eq. 9 in the paper to compute the mean
image at each point.

Appendix II: The objective function in step 2

Recall that  is the deformed  w.r.t. the transformation field . Then, after
determining the group mean image M̂t and weights , the overall objective function in
Eq. 4 turns to be the function of transformation fields G:
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Fig. 1.
The schematic illustration of the unbiased groupwise registration algorithm (Joshi et al.,
2004). In each round of groupwise registration, all subject images will be registered onto the
latest estimated group mean image (shown by dashed arrows), to obtain a new updated
group mean image. With the evolution of the group mean image (shown by gray rectangle in
the beginning to the red circle in the final), all subjects will be warped closely to the
population center.
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Fig. 2.
A toy example demonstrating the importance of always keeping the sharpness of the group
mean image during the groupwise registration. The synthetic data are shown in (a). (b)
shows the groupwise registration results starting with a fuzzy group mean image, which was
achieved by equally weighting all warped subject images in the population. (c) demonstrates
the results by the proposed method which starts with the sharp group mean image and
always keeps its sharpness during the registration by adaptively weighting each warped
subject image for building the group mean image (see the method in Section 2.2).
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Fig. 3.
Demonstration of the advantage of our proposed method. The blue circles in (a)–(f) denote
the projection of 61 toy images of Fig. 2 in the 2D PCA space. (a–c) and (d–f) show
different weighting strategies and registration results by the conventional method (with
equal weighting) and our method (with adaptive weighting), respectively. In our method, we
propose assigning large weights to the subjects nearby the group mean image, while small
weights to those faraway subjects. The weights for each image throughout the whole
registration are displayed with red meshes in (d)–(f), where the shape of the red meshes
changes from sharp to flat. The evolutions of groupwise registration results by the
conventional method and our proposed method are specially shown in (b–c) and (e–f),
respectively, where the red triangles denote the warped subjects in the same 2D PCA space.
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Fig. 4.
(a) Pairwise registration is independently performed for each subject, regardless of its
difference to the current group mean image. (b) Our MST-based registration framework is
used in each round of groupwise registration, where all subjects are organized into a tree-
based hierarchy by considering each subject as the tree node. In our registration, each
subject will be sequentially registered to its parent nodes one by one until it reaches the root
node (i.e., the group mean image Mt).
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Fig. 5.
Diagrams for the conventional method (a) and our method (b). The step numbers in the
figure are consistent to those used in Section 2.4 for the two methods.
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Fig. 6.
18 elderly brain images used for the evaluation of the tree-based registration method and
three groupwise registration methods.
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Fig. 7.
The evolution of the group mean image. The evolutions of the conventional groupwise
registration starting with a fuzzy mean (in blue box) and our method with a sharp mean (in
red box) are displayed in the top and bottom rows, respectively.
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Fig. 8.
Six transverse views of the group mean images by the conventional method and our method.
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Fig. 9.
The overlap of VN, GM, and WM by the tree-based method, the conventional method, the
ABSORB method, and our groupwise registration method.
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Fig. 10.
The evolution curves on tissue overlap ratio during the registration. From left to right shows
the evolution curve of overlap ratio on white matter, gray matter, and ventricle, respectively.
In each figure, the evolution curves by the conventional method, pseudo sharp mean
method, and our method are displayed in blue, green, and red, respectively.
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Fig. 11.
The overlap ratios of 32 manually delineated labels in 16 NIREP brain images. The overlap
ratios by the conventional groupwise registration method, ABSORB, and our groupwise
registration method are shown in blue, green, and red, respectively. It can be observed that
our method achieves much better alignment result in all ROI regions than the conventional
method. Compared with ABSORB, our registration results outperform in most ROIs. The
overall overlap ratio is 61.25% by the conventional method, 65.31% by ABSORB, and
66.66% by our method. For each ROI, we use blue “†” and red “*” to denote the significant
improvement of overlap ratio (with p-value less than 0.05) by our method over the
conventional method and ABSORB, respectively.
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Fig. 12.
The overlap ratios of 54 manually delineated labels in 40 LONI LPBA40 dataset. The
overlap ratios by the conventional groupwise registration method, ABSORB, and our
groupwise registration method on each ROI are shown in blue, green, and red, respectively.
For each ROI, we use blue “†” to denote the significant improvement of overlap ratio (with
p-value less than 0.05) by our method over the conventional method.
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Fig. 13.
The minimal spanning tree (MST) built for the 18 elderly brains in the first iteration (t = 1).
Each node in the MST is corresponding with a subject image shown in Fig. 6.
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Table 1

Overall overlap ratios and standard deviation of WM, GM, and VN by the tree-based registration method, the
conventional groupwise registration method, ABSORB algorithm, and our registration method.

WM GM VN Overall

Tree-based Method 68.15% (±1.96%) 59.74% (±3.51%) 76.51% (±3.08%) 68.12% (±2.85%)

Conventional Method 73.88% (±1.52%) 60.51% (±2.28%) 78.14% (±3.53%) 70.84% (±2.44%)

ABSORB 79.01% (±1.27%) 66.82% (±2.60%) 82.33% (±2.24%) 76.05% (±2.04%)

Our Method 81.36% (±1.11%) 70.29% (±3.03%) 81.72% (±2.36%) 78.07% (±2.16%)
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Table 3

The overall overlap ratio and standard deviation by our method with and without MST in three data sets.

Method 18 elderly brains NIREP LONI LPBA40

Our method with MST 78.07% (±2.16%) 66.66% (±3.64%) 70.36% (±3.73%)

Our method without MST 75.28% (±2.38%) 66.05% (±3.34%) 69.15% (±4.26%)
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