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Abstract

Cortical thickness estimation performed in-vivo via magmneesonance imaging is an important technique
for the diagnosis and understanding of the progressionuiaegenerative diseases. Currently, twiedi

ent computational paradigms exist, with methods genectlysified as either surface or voxel-based. This
paper provides a much needed comparison of the surface-laesthod FreeSurfer and two voxel-based
methods using clinical data. We test theeets of computing regional statistics using twéelient atlases
and demonstrate that this makes a significafiedgénce to the cortical thickness results. We assess repro-
ducibility, and show that FreeSurfer has a regional stahdawiation of thickness fierence on same day
scans that is significantly lower than either a Laplacian egiBration based method and discuss the trade
off between reproducibility and segmentation accuracy cabgdiending energy constraints. We demon-
strate that voxel-based methods can detect similar pattégroup-wise dierences as well as FreeSurfer in
typical applications such as producing group-wise mapsatissically significant thickness change, but that
regional statistics can vary between methods. We use a 8uygdor Machine to classify patients against
controls and did not find statistically significantlyfidirent results with voxel based methods compared to
FreeSurfer. Finally we assessed longitudinal performamceconcluded that currently FreeSurfer provides
the most plausible measure of change over time, with fustloek required for voxel based methods.
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1. Introduction

The human cerebral cortex is a highly folded layer or ribbbimerconnected neurons, with an average
thickness of around 2.5mm - varying between 1 and 4.5mmfiaréint parts of the brain (Fischl and Dale,
2000; von Economoa, 1929). There is significant variabiligivieen individuals in disease and in health.
The cortex plays a key role in most cognitive processes antbdstrates regional specification such that
visual function, language, calculation, executive fumetand so on, have relatively localised cortical rep-
resentation in dferent parts of the brain. The thickness of the cortex is @rést as it develops, follows
the normal ageing process and changes under a wide varieguoddegenerative diseases. Recently, imag-
ing studies of cortical thickness have compared the groige-diferences between healthy control subjects
and patients with conditions such as sporadic and famillahéimer’s disease (AD) (Lerch etlal., 2005;
Gutierrez-Galve et all, 2009; Knight et al., 2009), frotéoiporal lobar degeneration (FTLD) (Du et al.,
2007) Rohrer et al., 2009), posterior cortical atrophy (hahn et al., 2009), multiple sclerosis (Sailer et al.,
2003), Huntington’s disease (Rosas et al., 2008), and treges that occur in healthy controls under normal
ageingl(Salat et al., 2004).

The methods for estimating cortical thickness from magnetsonance (MR) images can be broadly
categorised as surface based, or voxel based. Both of thed®as require an initial segmentation to
separate grey matter (GM), white matter (WM) and cerebradginid (CSF). In this paper the W}&M
boundary is referred to as th@V boundary, and the GMCSF boundary as thgal boundary.

Surface based methods typically construct a triangulateshrbased on either the WM boundary (Dale et al.,
1999 Fischl et al., 1999; Fischl and Dale, 2000; Shattucklarahy, 2002; Xu et al., 1999; Han et al., 2004),
or the pial boundary (Davatzikos and Bryan, 1996), whiclhéntdeformed to find the opposing boundary.
Alternatively, with WM and pial boundaries defined, both bdaries can be deformed simultaneously using
either snake like deformable models (MacDonald et al., 280 et al.,|2005) or level sets (Zheng et al.,
1999), thereby utilising distance constraints to ensugahgtic coupling of the two surfaces. The use of ex-
plicit surface models enables sub-voxel accuracy (Fisatil2ale| 2000), high sensitivity (Lerch and Evans,
2005), and robustness tofiirent field strengths, scanner upgrade and scanner mamefafitian et al.,
2006). With the cortex closed at the brain stem, the resistarface is topologically equivalent to a sphere.
Surface based cortical thickness methods try to ensureatdopology of the surface after initial segmenta-
tion of the WM boundary (Shattuck and L eahy, 2001; Xu et al99tHan et al., 2004), using smoothness
and self intersection constraints (Dale etlal., 1999; Mawdbet al.; 2000), by correcting topological de-

fects as they occur (Fischl et al., 2001; Segonnelet al.,)2@05using a Laplacian function (Kim etlal.,



2005). Ensuring correct topology or surface regularity snady increases computational cost (Fischl et al.,
2001;[Han et all, 2004), may require d@hdiult balance of parameter weights (Kim et al., 2005; Scadllet
2009), and reduces the model’s ability to follow areas ohhigrvature such as extremely thin gyral stalks
(Lohmann et all, 2003) or opposing sides of sulci with norc@8F between, which can produce bias and
error in thickness measurements (Scott et al., 2009).

In contrast, voxel based methods (Lohmann et al.,|2003pHwt al.| 2008; Acosta etlal., 2009; Aganj et al.,
2009;! Das et al., 2009; Cardoso et al., 2011; Scottlet al.9R@@rk directly on the voxel grid and are
computationally very ficient. However, they are considered to be less accurateadtietlimited res-
olution of the voxel grid, less robust to noise and mis-sagatén and significantly fiected by partial
volume (PV) dfects at the boundaries of convoluted structures such as sidep(Acosta et al., 2009).
Methods include morphological (Lohmann et al., 2003), iimtegral (Aganj et al., 2009; Scott et al., 2009),
Laplacian [(Jones et al., 2000) and registration (Das|e2@09) based approaches. Laplacian approaches
(Hutton et al.,| 2008; Acosta etlal., 2009; Cardoso =t al.,120%olve the Laplace equation (Jones et al.,
2000) using boundary value relaxation (Press et al.,|198adrix methods|(Haidar et al., 2005), calcu-
late thickness by integrating the tangent to the Laplaciates field (Jones et al., 2000), summing the Eu-
clidean distance from neighbouring voxels on the samersiiee, or using a partial dierential equation
(Yezzi and Prince, 2003) with boundaries set to zero (YezdiRrincz| 2003), half the mean voxel dimen-
sion {Diep et al.. 2007) or using Lagrangian initialisati@ourgeat et all, 2008; Acosta el al., 2009). In
contrast, the registration based approadh of Das et alSj2G&s a greedy fieomorphic registration algo-
rithm to warp the WM segment to match the GMWM segment. The thickness is then calculated as the
distance that the WKGM boundary moved during the registration. A potential adage for voxel based
methods may be in the fact that the runtimes can be significkasts than the surface based methods which
may enable new application areas.

Thus far, surface based methods have been more widely uaadvttxel based methods. This may
be partly due to long running softwardf@ts, producing accessible software packages such as-Brain
Suit@(Shattuck and L eahy, 2001, 2002), BrainVB{Mangin etall 1995)and FreeSuH(DaIe etal., 1999;
Fischl et al.| 1999; Fischl and Dale, 2000). Of these, FrefeSis the most widely used (Nakamura et al.,

2010), and the FreeSurfer wiki lists many references on thatlmethodology and clinical studies.

Thttpy/www.loni.ucla.edySoftwargBrainSuite
2httpy/brainvisa.infg
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Recently there has been significant interest in the devedopwf voxel based methods (Hutton et al.,
2008;/ Scott et all, 2009; Acosta et al., 2009; Aganj et al092@ardoso et al., 2011; Das et al., 2009). In
addition, voxel based methods have featured in a compawgbrnvoxel based morphometry (Hutton et al.,
2009), been used to correlate changes of cortical thickwmégbgliffusion measures using sparse canonical
correlation analysis (Avants etlal., 2010) and used incditstudies (Querbes et al., 2009). However, evalua-
tion of these approaches has been limited by a lack of stadi@paring voxel based and surface based meth-
ods. This paper aims to provide such a comparison, comptréigeely available surface baseéceeSurfer
(version 4.5.0) method with our implementations of two udx@sed methods. We call these voxel-based
methods & aplacian based method andRegistration based method, and describe both of these below. We
chose FreeSurfer as it is the most widely used of the surfasedbmethods (Nakamura et al., 2010). Of the
voxel based methods, we chose a Laplacian method similacdstA et al. (2009) as many of the references
above are Laplacian based, and a registration method sitmil2as et al.[(2009) as there is current interest
in diffeomorphic registration algorithms, many of which could ppled to this application. The methods
are compared in terms of reproducibility, disead€edentiation and the ability to detect changes of cortical

thickness in longitudinal imaging studies.

2. Materialsand methods
2.1. The FreeSurfer Method

The FreeSurfer cortical thickness pipeline has been destrand validated in previous publications
(Dale et al.| 1999; Fischl et al., 1999; Fischl and Dale, 2008h et al.| 2006). Briefly, processing involves
intensity normalisation, registration to Talairach spasaull stripping, segmentation of white matter, tes-
selation of the WM boundary, smoothing of the tesselatecasarbnd automatic topology correction. The
tesselated surface is used as the starting point for a defidensurface algorithm to find the WM and then
the pial boundary. For each point on the tesselated WM suyrtheecortical thickness is calculated as the
average of the distance from the WM surface to the closest poithe pial surface and from that point back

to the closest point on the WM surface (Fischl and Dale, 2000).

2.2. A Laplacian Based Method

There are several Laplacian based methods implementea ilitdhature, originating from the paper
of Jones et all (2000). A processing pipeline was implenteotasisting of the following steps: an initial
probabilistic segmentation (Cardoso etlal., 2011) of GM, Wid @SF is performed on a T1 weighted (T1w)

image, resulting in probability maps for each tissue tygeese probability images are resampled to 0.5mm



iso-tropic voxels using linear interpolation as in Huttdrak (2008) and then a three label image is formed
by labelling voxels as GM wherp(GM) >= 0.80 and otherwise choosing the tissue type with the highest
probability, ignoringp(GM). The boundary is corrected as in section 2.3 of (Acostal£2@09) to make sure
the GM is at least one voxel wide. The Laplace equation isesbbwer the GM regiori (Jones et al., 2000),
then thickness calculated via a PDE based approach (Yed#dnce, 2003) using Lagrangian initialisation
(Acosta et al., 2009). The thickness measurement is cagpgdra (discussed below). Note that the GM
mask is constructed whe@GM) >= 0.80, which picks voxels that are classified as being highlgljik

to be GM, resulting in a relatively thin GM region. The Lagg#n initialisation starts from these high
probability of GM voxels and ray casts through the GM proligbinap, searching for th@(GM) = 0.5
boundary, stopping when the probability indicates thattlaeotissue type is more likely. We found this
to be more reliable than thresholding the GM probability rdapctly atp(GM) = 0.5 in areas where the
GM from opposing sides of a sulci touch. The choice of 0.5mmel®was made to increase the number of
voxels in the GM which improves the convergence of the rélaranethods used to solve the Laplacian and
thickness PDEs. This method is comparablé to (Acostal €@09), with a diferent segmentation algorithm

(Cardoso et all, 2011) at the start.

2.3. A Registration Based Method

A registration based method was implemented based on Dag20@9) and consisted of the following
steps: an initial probabilistic segmentation of GM, WM andFd$ performed|(Cardoso etlal., 2011) and a
greedy difeomorphic registration algorithm was used to expand the Wiyhsat, to match the GMWM
segment or until a maximum of 6mm displacement was reachemn Ehe three probability maps, a three
label image is formed by picking the tissue type with the bigtprobability at each voxel. For each boundary
voxel on the GMWM boundary, the thickness is calculated as the distance dnorder the registration
transformation, and this thickness value is then propaljatzoss the GM mask. In comparison to the
Laplacian method, where we selecg&M) >= 0.8 for the grey matter mask, the registration method is less
dependent on this factor. The algorithm relies on having@d&M/GM boundary, so the WM boundary
is determined wher@(WM) > p(GM), and this is evolved outwards to the G&BF boundary, thereby
identifying cases where opposite sites of a sulci touchhénltaplacian method, the segmented probability
images are resampled to 0.5mm isotropic voxels. This steptisiecessary for the Registration method,
as the Registration method, basedlon (Avantsiet al. | 20q@@rferming subvoxel registration anyway, and
resampling to smaller voxels would add unnecessary conipug and memory overhead. This method is

a re-implementation of (Das etlal., 2009), with &elient segmentation algorithm (Cardoso et al., 2011).



2.4. Voxel Based Processing

Both voxel based methods are capped at 6mm. For the Laplamémod, the Lagrangian initialisation
(Bourgeat et all, 2008; Acosta el al., 2009) caffiesidue to noisy estimates of the surface normal, leading to
erroneously high initialisation estimates. For the regigin method, the WM mask is deformed outwards
to match the WM-GM mask, and in.(Das et al., 2009) a fixed thickness prian (Step 3) is applied to stop
the registration. In practice, few voxels will reach thiwili as the thickness is known to vary between 1 and
4.5mm in diferent parts of the brain (Fischl and Dale, 2000; von Econdra9).

To calculate region based statistics for both voxel basetthads, a region of interest must be defined
from either an atlas, or a parcellation. In these experig)eve register the AAL atlas (Tzourio-Mazoyer et al.,
2002) to each subject using block matching (Ourselin €2800) followed by a spline based non-linear de-
formation (Modat et all, 2009; Rueckert et al., 1999) botplemented in NiftthJi or alternatively we use
the FreeSurfer parcellation to define the regions. For eabjest the GM mask is assigned region labels
based on the closest atlas or parcellation label. The naidifrthe GM is extracted by selecting the closest
voxel to the midline of the Laplacian field. For each voxelrgjahe midline, the inter-quartile mean of the
thickness values within a 3mm radius and within the regioint#rest was calculated and assigned to the

midline voxel. Region based statistics are calculated theethickness values in the midline voxels.

3. Experiments

Our four experiments were chosen to help inform the readarritanner that was most relevant to the
existing literature, and to clinical research studies.tiCakthickness studies may usdfdrent atlases to pro-
vide regional based statistics. The first experiment testhiypothesis that there is ndférence in regional
statistics when using fierent atlases. In the absence of a gold-standard, the segpadment assesses the
reproducibility of each method. The third and fourth expesnts are motivated by the increasing number of

cross-sectional and longitudinal studies in the litematur

3.1. Subjects And Scan Selection

In this paper two clinical patient cohorts and matched adsitivere studied. The clinical subjects were
recruited from the Specialist Cognitive Disorders Clinfdtte National Hospital of Neurology and Neuro-

surgery, London, UK. The control subjects were recruitedifpatient spouses or other healthy age matched

“httpy/sourceforge.ngirojectgniftyreq/



volunteers. Informed consent was obtained from all subjent these studies had local ethics committee

approval.

3.1.1. Cohort 1

Cohort 1 consisted of 49 subjects (see Table 1): 33 patieithsprobable AD, and 16 healthy controls
included in a longitudinal clinical and MRI study, detailswhich are provided in previous publications
(Schott et all, 200%, 2006; Barnes etlal., 2007, 2008; GatieGalve et all, 2009). The diagnosis of proba-
ble AD was made according to the National Institute of Neaga, Communicative Disorder and Stroke-
Alzheimer disease and Related Disorders Association (NOBARDA) criteria (McKhann et al!, 1934).
All subjects had volumetric MRI acquired on a single 1.5T Ggna scanner (General Electric, Milwaukee,
WI). T1-weighted volumetric images were obtained using dlsgdast GRASS sequence with a 24-cm field
of view and a 256x 256 field of view to provide 124 contiguous 1.5-mm-thick efidn the coronal plane.
The scan acquisition parameters were as follows;=TE_ms, TE= 5.4ms, Flip angle= 15°, TI=650ms.
This dataset was chosen because for each of the 49 subjeatsame-day baseline scans and a single one

year repeat image had been obtained.

3.1.2. Cohort 2

Cohort 2 consisted of 101 subjects (see Table 2): 73 patittisclinically diagnosed frontotemporal
dementia (FTD) and 28 healthy controls. The FTD patienttudted 30 patients with progressive non-
fluent aphasia (PNFA), 43 patients with semantic demen&mn(®. A clinical diagnosis of SemD was
made according to modified Neary criteria as per (Adlam e2806) with patients having fluent speech,
marked anomia, impaired word comprehension and deficit®mverbal semantic domains. A diagnosis
of PNFA was made based on modified Neary criteria with patieating a speech production impairment
characterised by apraxia of speech and agrammatism. Sores# subjects’ data have been used in
previous studies (Rohrer et al., 2009; Lehmann et al., 2@)0All subjects had volumetric MRI acquired on
four different 1.5T GE Signa scanners (General Electric, Milwaukég, T1 weighted volumetric images
were obtained using an IR-prepared fast SPGR sequence &dtkcen field of view and 25& 256 matrix,

to provide 124 1.5-mm-thick slices in the coronal plane.

3.2. Comparison of Different Atlases

Surface based methods such as FreeSurfer and voxel badeatisistich as the Laplacian and Registra-
tion based methods used for these experiments often abgEgsess measures by calculating statistics over

regions defined on an anatomical atlas. FreeSurfer (FischDale| 2000) uses their own atlas, Acosta et al.



(2009) and Cardoso etial. (2011) used the AAL atlas (TzoMi@zoyer et al., 2002), whereas Hutton €t al.
(2009) used the IBASPM atlas (Aleman-Gomez etial., 2006)e Udxel based methods were first tested
using the FreeSurfer parcellation and the AAL atlas to deitee whether dierent regions in each atlas
produced significantly dierent results. In preparation for the next experiment, Suefer was run on the
first baseline scan of each subject in cohort 1, with defatttregys and no manual editing. For each sub-
ject, FreeSurfer resamples the original T1-weighted imagdsotropic 1mm voxels. This resampled image
was used as the input to the Laplacian based cortical thiskakgorithm described above. This is purely a
convenience, to make comparison easier, as the input tottet based methods can be considered to be in
the same coordinate system as the FreeSurfer results. Tt ég&ian image where each voxel in the GM
contains the thickness at that point. Nine anatomical regid interest were chosen in advance: the parahip-
pocampal gyrus (PHG), fusiform (FUS), superior temporalgy{STG), precuneus (PRE), superior parietal
gyrus (SPG), supramarginal gyrus (SMG), lateral occigitdtus (LO), lingual (L) and the superior frontal
gyrus (SFG). These were chosen as they are available intmtréeSurfer and AAL atlases, and of interest
in these neurodegenerative diseases. The AAL atlas wadterssgi to the T1w volume using block matching
(Ourselin et al., 2000) followed by a spline based non-limegistration/(Modat et al., 2009; Rueckert et al.,
1999). For each of the 49 subjects in cohort 1, and each #ilmsyean cortical thickness of over each atlas
region was calculated as described in sedfioh 2.4. The Brisr&ind AAL atlases were compared by using
paired samples two-tailed t-tests on the mean regionakebthickness, and Pitman’s test to compare the

variance for each of the nine regions.

3.3. Results of Comparing Different Atlases

Table[3 shows the mean (standard deviation) of the cortitekiess computed over the regions con-
tained within the FreeSurfer and AAL atlas. Left and righiriigpheres have been averaged together. Note
that the thickness data remains constant, for rows 1 and &bie[®, as it is only the choice of atlas that
changes. The third row shows p-values from the paired tiledt&tests and the Pitman'’s tests in brackets.
In 7 out of 9 t-tests, there is a significamt &€ 0.05) difference in mean cortical thickness. We did not find
statistically significant evidence of afférence in mean cortical thickness using the twedent atlases in
the precuneus and lingual regions. In contrast, 7 out oft8 tdvariance showed no statistically significant
evidence of a dference in variance, with only the superior temporal gyrussperior parietal gyrus being

statistically significant at thp < 0.05 level.



3.4. Comparison Of Reproducibility

FreeSurfer was run on the first and second baseline scan lofoddlbe 49 subjects of cohort 1, with
default settings and no manual editing. The FreeSurfempkal 1mm isotropic T1w image was again used
as input to the Laplacian and Registration voxel based ndstHeor this and all subsequent experiments we
selected the FreeSurfer parcellation as the atlas ovethwbicompute regional statistics.

To assess the reproducibility of each method, the standandtibn over all subjects of theftierence
in regional cortical thickness between the two same daysseas calculated for each region and method.
To visualise the results, a single FreeSurfer brain surfexechosen at random, and for each method, the
standard deviation of each region was colour coded ontautiece and rendered using Para\HeWitman’s
test was used to assess whether there was a signifi¢Baredice in variance between the three methods, for

each of the nine regions.

3.5. Results of Reproducibility Comparison

Figure[1 shows a visual representation of the standard titaviaver the 49 subjects of thefférence
in mean regional cortical thickness between the two samesdags. The FreeSurfer result has a lower
standard deviation than the Laplacian method for all meg‘:tulrregion, and a lower standard deviation
than the Registration method for all meaningful regionseexthe left temporal pole. In 33 out of 70 regions,
the Registration method had a lower standard deviationtthmhaplacian method. Taldlé 4 shows the mean
and standard deviation of theffdirence in cortical thickness for each of the nine regionsfandach of the
three methods, again with left and right sides averagedhegeFreeSurfer had a statistically significantly
(p < 0.05) lower variance than either the Laplacian or Registrati@thod for all of the 9 tested regions. The
Laplacian method had a statistically significantty< 0.05) lower variance than the Registration method in

the superior frontal gyrus, but we did not find significarffeliences for the other 8 regions.

3.6. Comparison of Cross Sectional Disease Differentiation

The complete FreeSurfer cortical thickness pipeline wasom cohort 2, and the results edited as de-
scribed on the FreeSurfer wiki by an experienced neurdl¢di). Using FreeSurfer tools, an average pial
surface was created, and a vertex-by-vertex analysis @siggneral linear model (Worsley et al., 2009)

was used to assesdi@rences in cortical thickness between the control subgalsither SemD or PNFA

Shttpy/www.paraview.org
Signoring the FreeSurfer “unknown” region, and the corpusam which is set to zero thickness



patients. Cortical thickne<s was modelled as a function of group, controlling for age, et total inter-
cranial volume (TIV) by including them as nuisance covasa€ = 8; SemD+3, PNFA +83 controls+8,
age+ps sex+Bs TIV +u + € (wherey is a constant, anélis error), with contrasts of interest being the two-
tailed t-tests between the estimates of the group paramer3; andgs, 8. andBs. Two-tailed unpaired
t-tests were computed at each vertex, with significancesaedeat thgp = 0.05 level, when corrected for
multiple comparisons using the False Discovery Rate (FIl@npvese et al., 2002).

In addition, the full Laplacian and Registration based rmdthwere run on cohort 2, again using the T1w
image produced by FreeSurfer. The average of the FreeSui¥erand pial surface was created for each
subject. This surface was used to sample the thickness aataqed by each voxel based method by finding
the closest non-zero thickness voxel to each vertex. Thikriass data was projected onto the FreeSurfer
average pial surface created above, and the same lineat reed@ for both the Laplacian and Registration
based methods. The per-vertex p-values of the averageswiere visualised for each of the methods and
visually assessed for similarity.

Subsequently, the same nine regions used in sedfiohs 32.dweere used to compare statistics. For
each of the 9 regions the mean cortical thickness was cééculaver all vertices (FreeSurfer) or voxels
(Laplacian and Registration methods) for each subjectalag samples two-tailed t-tests were performed
to test for significant dierences, and Cohen’s d to test ffieet size, comparing the control group with both
the SemD and PNFA groups for each region and for each method.

Finally, a linear Support Vector Machine (SVM) was used tassify subjects (Vapnik, 1995, 1998),
implemented with LIBSVM version 2.89 (Chang and|Lin, 200hyiar MATLAB version 7.2.0. The com-
parison of interest is how well the classifier can separaétiee groups, using the thickness data produced
by the three methods. Subjects were classified in an n-dioreadspace, where n is the total number of ver-
tices in both hemispheres, excluding the medial wall. SViidsitify an optimal separating hyperplane, such
that subjects from each group lie as far as possible from yperplane, on opposite sides. We use the C-
SVM formulation, employing a two-level nested cross-validn to optimise the mis-classification penalty
parameter C using a leave one out procedure within the maue lene out loop (Wilson et al., 2009). This
ensures an unbiased estimation of genaralisation acchydegpving each scan out entirely from the training
procedure. A direct comparison of the classification acguveas performed, by calculating 95% confidence

intervals for the dierence in accuracy (Newcombe, 1998).
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3.7. Results of Cross Sectional Comparison

Figure[2 shows a visual comparison of the three methods, aongpSemD and PNFA patients’ cortical
thickness with control subjects. Tablds 5 amd 6 show thsttpevalues and Cohen'’s d in brackets for each
method comparing the meanfigirence of cortical thickness between control subjects #&hdreSemD or
PNFA patients. Tablel 7 shows the SVM scores in terms of ¢leason accuracy and confidence intervals.
The direct comparison of theftierence in accuracy rates, gave 95% confidence intervalsisgerero for

all pairwise combinations.

3.8. Assessment Of Longitudinal Change

The FreeSurfer longitudinal pipeline was run on the 49 stibjef cohort 1, using the first baseline scan,
and the one year repeat scan. The FreeSurfer longitudipelipe (version 4.5.0) takes the T1w image at
n-timepoints, creates an average T1w image and on this avérsge creates the WM and pial boundary
as described above. These initial surfaces are used agiagtaint for a deformable model algorithm at
all n-timepoints. In this case = 2. The rationale is to provide a starting point that is undibt® the order
of the images. Both voxel based methods were applied to geSerfer resampled T1w isotropic image for
both the baseline and repeat scan independently. UsingdleSErfer atlas, the mean cortical thickness was
calculated for each of the 9 regions and each method, anduslised percentage change computed as in
(Holland et al., 2009).

For the control f = 16) and AD groupsr( = 33), the mean and standard deviation of cortical thickness

was calculated for each region, and Cohen’s d was calcutstedneasure offect size.

3.9. Results of Longitudinal Comparison

Table[8 shows the mean (standard deviation) of the regiamttal thickness for each method, for each
subject group, and for each of the 9 regions, and the valuédben’s d for each method. FreeSurfer results
in an anualised percentage change that for control subjestges from+0.53% (PHG) to -2.14% (SPG),
and for AD subjects a percentage change of -2.22% (SPG) 10%3(STG), and for all of the 9 regions,
the annualised percentage change for AD subjects has tamtgishigher magnitude (more atrophy) than
control subjects. For both the Laplacian and Registratiethids 7 out of 9 cases show AD subjects having
more atrophy than control subjects. In general it can be #edrthe standard deviation of the annualised

percentage change for the voxel based methods is highefahkreeSurfer.
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4, Discussion

In this paper we have compared the surface based corticahttés method FreeSurfer with two voxel
based methods. This is a challenging task as the methodslage significantly dierent, and we must err
on the side of caution in the interpretation of the resultgtitermore, to add to the challenge, it ishdiult
to obtain a gold standard. Previous authors have used sgduldR| phantomsl (Lee etll., 2006) at one
time point, or simulations of atrophy (Camara €tlal., 2008:ch and Evans, 2005) for longitudinal studies,
however providing a physiologically plausible simulatiimatrophy is itself a diicult task. For this reason,
we chose to compare the performance of the algorithm aguptdireproducibility and both cross-sectional
and longitudinal group dlierentiation, which are common applications within theréitare.

We assessed the influence of the atlases used to define aratoegions: atlas creation is an extensive
topic within the literature, with each atlas dependent @fhantity and quality of data, the segmentation and
registration algorithms used, and the demographics ofithgsts themselves. For these reasons, the borders
of anatomical regions in fierent atlases are expected to bffedent. We show that regional means and
standard deviations of cortical thickness, calculatedgiah identical method, filer significantly depending
on which atlas is used - with up to 10%Jdirence in certain regions assigned the same label. Thik resu
is important for this paper, as it indicates that for a faimparison, we must use the same atlas for all
three methods, but furthermore, it has implications whearpreting results from other papers. Simply
put, caution is advised when comparing the results ffedint studies, whether the comparison is at a
methodological or clinical level, whenever the underlyattas is dfferent.

Subsequently we assessed the reproducibility of the tbskmeasurements in experimgni 3.4. The
surface and voxel based methods are fundamentdiigrdnt. The FreeSurfer surface based method creates
a WM segmentation, then a tesselated surface mesh, and defloatnmesh to find both surfaces. This
means that reproducibility will befiiected by the consistency of the segmentation and also tfepance
of the deformable model process, whereby the evolving makthawve a good opportunity to correct for
any segmentation fiferences. The surface will deform and converge to a consikteal minima on two
different scans and be guided or restricted by the bending energraints of the mesh. Although these
bending energy constraints may themselves cause the stgioerto be incorrect, such as in thin gyral
stalks (Lohmann et al., 2003), or buried sulci, at least #wmults will be consistent. On the other hand,
voxel based methods create an initial segmentation, amdntteasure the thickness directly. Any errors, or
differences between scans that result in a single voxel beffegetitly classified may impact the thickness

results. Figuré]l shows a visual representation of the stamsly of the algorithms by projecting onto a
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randomly chosen single subject brain surface the standanatibn over each region of theffiirence in
cortical thickness for two same day scans. The FreeSurgeltsechave a lower standard deviation than
the Laplacian method for all regions, and a lower standavihitien than the Registration method for alll
regions apart from the left temporal pole. For the Laplacizthod, we tried both 1mm iso-tropic and
0.5mm iso-tropic voxels. The Laplacian method uses a grigdbaelaxation process (Press et al., 1991) to
solve the Laplace equation and the thickness PDE. The ceatées between 1 and 4.5mm irfidirent parts

of the brain [(Fischl and Dalé, 2000; von Economo, 1929), Wwhieans that with 1mm iso-tropic voxels
the grey matter might be only 1 - 4 voxels wide. This may lead fwoor convergence of the relaxation
process, and additionally poor estimation of surface n@m&imply by sub-sampling to 0.5mm helps
alleviate these problems, and this approach can be sees imdtk of Hutton et. al.|(Hutton et al., 2008,
2009). Subsampling further may improve results, but besgpnehibitively expensive in terms of memory
and computational cost. It can be seen that both the Laplania Registration methods produce very
visually similar results and in 8 out of 9 tested regions, wend no significant dierence between the
regional variance in thickness (Table 4). Furthermorepikan diference shows negligible bias for all three
methods.

We compared the three algorithms in terms of the ability tiectegroup wise dierences (experiment
[3.8). This is a typical application found in the literatuvdth conclusions typically drawn based on visual
inspection. Figurel2 shows an average brain, colour codidragions where there is statistically significant
evidence p < 0.05), when corrected for multiple comparisons using the FD&had (Genovese etlal.,
2002), of SemD patients (figulé 2a) or PNFA patients (figlieh2lving thinner cortex than control subjects.
In figure[2, the areas whege > 0.05 are all grey, so all coloured areas are deemed to showtiallly
significant evidence of thinning (red to yellow), or thickeg (blue to light blue), relative to control subjects.
The three columns in each sub-figure show the results for eathod. Referring to figure (a), for SemD
patients, all 3 methods are suitable for detecting grougewdiferences, displaying qualitatively similar
results. All 3 methods display atrophy on the left more thghtrside, and in concurrence with (Rohrer €t al.,
2009), we see evidence of atrophy in the left temporal labparticular the temporal pole, entorhinal cortex,
parahippocampus, and inferior temporal gyri for all threztiods. There is also evidence of atrophy in the
right temporal lobe, in particular the entorhinal corteemporal pole and parahippocampus for all three
methods. However, FreeSurfer additionally found evidesfarophy in the fusiform, an area known to be
very atrophic in SemD_(Chan etlal., 2001). For PNFA patiemsRreeSurfer method produces evidence of

atrophy in the left superior temporal lobe, banks of the sop¢éemporal sulcus and some evidence in the
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left inferior frontal lobes. By contrast, both voxel basedthods find a more extensive spread of atrophy
in the left temporal lobe, with the Laplacian method extegdio the inferior midbrain. Additionally, both
voxel based methods find evidence of atrophy in the right teaipgobe.

When region based averages were derived (Table 5land 6),gimmsehat difered between cases and
controls varied between the methods. Nonetheless for segiens all methods showed significant atrophy.
For example for SemD patients, the parahippocampal gyapsamarginal gyrus, lingual and left superior
frontal gyrus have significant evidence of atrophy for alethmethods. However, the fact that these results
do differ for each method suggests that care should be taken at stegyy of processing in any cortical
thickness pipeline, and cohorts should be as large as pesdHurthermore, the p-values and Cohen’s d
values combined demonstrate that there are cases wherebasesl methods can show largéieet sizes
than FreeSurfer, and vice versa. Voxel based methods ircglart would benefit from improvements that
drive down the standard deviation of thickness measuresnémfTables b and| 6 we can see théieet size
provides additional information to significance tests. Adhww-values, the results vary, with both FreeSurfer
and the Laplacian method more consistently producing targgative (atrophy) values than the Registration
method.

We did not find any statistically significant evidence of &atience between methods when using an
SVM to try and classify controls from SemD patients or colstfoom PNFA patients. This fits with other
studies that suggest that voxel based methods are capafiteliofy similar group-wise dierences when
applied to a cross sectional study (Hutton et al., 2008; fscesal.| 2009; Querbes et al., 2009).

Longitudinal cortical thickness measurement has beerggexpas a potential bio-marker (Desikan et al.,
2009) however the available methods are still under acéveldpment. The FreeSurfer longitudinal pipeline
was released with version 4.5.0 (Aug 2009), and providesndased methodology whereby the WM and
pial surfaces are created on an average volume and defoormadtth each timepoint. Voxel based lon-
gitudinal methods have been proposed such as CLADA (Nakaetuwal., 2010) and also Das et al. (2009)
segment a baseline scan and measure thickness on the éaselin then use registration to warp the base-
line image to the follow-up image (Das et al., 2009). For tkgegiments in this paper, we wanted to simply
test the capability of applying the thickness calculatitmsvo timepoints, as each method has been more
widely used in a cross sectional sense. For all three metlibidgkness was calculated at two points and
an annualised percentage change calculated for each ragion(Holland et al., 2009). Whilst no gold
standard exists, one would expect AD patients to have graetitgphy than control subjects, and for neither

group to have increasing cortical thickness. FreeSurfi@oist consistent with this hypothesis, with only the
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parahippocampal gyrus showing an increase in thicknesfarol subjects, all other longitudinal changes
being a reduction in thickness, and AD patients showingtgraaduction in thickness than controls. The
Laplacian method has 3 regions showing increasing cottiggdness and in 7 out of 9 regions AD patients
show greater reduction in thickness than controls. Simdanlts can be seen for the Registration method. It
can be seen that in general FreeSurfer provides a laffpat size than both the Laplacian and Registration
methods for 8 regions, with the exception being the supgaoietal gyrus. This may also be a consequence
of the improved reproducibility seen on the two same-dayscdn the voxel based methods, even small
change around the borders of an object can influence thenisskresults, making itfiicult to detect small
changes in cortical thickness. For example, a 2% change mra thick region is only 0.08mm. Future

work should include a comparison of true longitudinal melhaising 2 or preferably more timepoints.

5. Conclusions

This paper is the first to compare voxel and surface basettabthickness estimation methods. The
choice of atlas produces a significafflieet on regional based statistics, suggesting that the aisppeof
cortical thickness results acrossfdrent papers, where the authors have usédrdint atlases should pro-
ceed with caution. FreeSurfer produced more reproducisielts on same day scans than both the Laplacian
and Registration methods in all but one cortical regiongh Wie Laplacian and Registration methods per-
forming similarly. FreeSurfer benefits from the deformatledel settling to a consistent boundary, and the
smoothness constraints therein enforcing consistentisegturthermore, this consistency plays a part in a
more convincing measure of longitudinal change, that citiyéhe voxel-based Laplacian and Registration
methods reviewed here do not possess. We also concludeothgitoup-wise studies where the aim is to
produce maps of statistically significant changes in thédenfor visual comparison, both surface and voxel
based methods produce comparable results. Furthermang,arsd SVM we did not find statistically sig-
nificant evidence of a flierence in methods when performing a classification task.g2oisons of methods

such as this will hopefully stimulatefferts to improve dferent cortical thickness measures.
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Figure 1: Reproducibility of FreeSurfer (left), Laplaciéniddle)

and Registration (right) based methods. The standard dmviat

the diference in mean cortical thickness per region for two same
day scans (R49) is colour coded onto an average brain surface.
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Figure 2: A comparison of FreeSurfer, Laplacian and Regdistrdbased methods, displaying colour coded t-test p-vak@aparing
control subjects with SemD patients (left) and PNFA pati€¢nght). Results are thresholded FDR corrected p-vatu@d05. Red to
yellow indicates patients thinner than controls, and biulgght blue indicates patients thicker than controls.
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Table 1: Subject Demographics for Cohort 1

Characteristic Controls AD
Number of subjects 16 33
Number of women (%) 8 (50) 14 (42)

Mean (SD) age at baseline (years)’2.5 (13.2)| 72.1(10.4)
Mean (SD) scan interval (days) | 366 (6) 366 (18)
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Table 2: Subject Demographics for Cohort 2

Characteristic Controls | SD PNFA
Number of subjects 28 43 30
Number of women (%) 17 (61) 26 (60) 21 (70)
Mean (SD) age at baseline (years¥6.4 (8.3) | 63.8(7.4)| 66.2 (7.7)
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Table 3: Atlas comparison: mean (standard deviation) of thenal cortical thickness in millimetres for the Laplacian heet, where
statistics are computed over regions defined by the FreeSamtealso the AAL atlas. The third row shows p values of thests

(Pitman’s tests).

Atlas PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer| 3.42 (0.39)| 3.81 (0.32)] 3.39 (0.32)| 2.95 (0.38)| 2.53 (0.31)| 3.18 (0.38)| 2.60 (0.41)| 2.86 (0.40)| 3.27 (0.30)
AAL 3.75(0.38)| 3.93 (0.31)| 3.16 (0.40)| 2.96 (0.37)| 2.66 (0.35)| 3.23 (0.41)| 2.68 (0.43)| 2.90 (0.40)| 3.35 (0.32)
p-value | 0.00(0.78)| 0.00 (0.67)| 0.00 (0.00)| 0.20 (0.41)| 0.00 (0.00)| 0.01 (0.10)| 0.00 (0.26)| 0.08 (0.98)| 0.02 (0.52)
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Table 4: Reproducibility: mean (standard deviation) of thitedence in cortical thickness in millimetres per region forreaicthe three
methods, over regions defined by the FreeSurfer atlas. Ansist®) indicates a Pitman'’s test p-value0.05 for that region when

comparing the variance of the Laplacian method with the Redgish method.

Method PHG FUS STG PRE SPG SMG Xe) L SFG
FreeSurfer | 0.00 (0.07) | -0.01 (0.05)| -0.01 (0.04)| -0.01 (0.05)| -0.02 (0.07)| -0.02 (0.04) | -0.01 (0.06)| -0.01 (0.04)| -0.02 (0.08)
Laplacian | -0.03 (0.20) | -0.04 (0.20) | -0.04 (0.17)| -0.05 (0.17)| -0.03 (0.14) | -0.05 (0.18) | -0.00 (0.14) | -0.02 (0.18)| -0.02 (0.22)
Registration | -0.03 (0.20) | -0.02 (0.18) | -0.02 (0.14)| -0.03 (0.15)| -0.04(0.16) | -0.05 (0.16) | -0.00 (0.15) | -0.02 (0.17)| 0.00 (0.13*)
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Table 5: Group comparison: t-test p-values (Cohen'’s d) fafthemisphere regions, contrasting the control group wittee SemD
or PNFA patient groups, for each of the three methods. Theev@00 indicates a p-value 0.005

Method Group | PHG FUS STG PRE SPG SMG Xe) L SFG
FreeSurfer | SemD | 0.00 (-2.47) | 0.00 (-2.62) | 0.00 (-3.42) | 0.01(-0.61) | 0.86 (-0.04) | 0.02 (0.52) | 0.44(-0.17)| 0.00(-0.72) | 0.03 (-0.46)
Laplacian | SemD | 0.00 (-2.44) | 0.00(-0.86) | 0.37(-0.22) | 0.00(-2.07) | 0.03 (-0.51) | 0.00 (-0.65) | 0.28 (-0.25) | 0.00 (-3.76) | 0.00 (-1.44)
Registration | SemD | 0.00 (-1.11) | 0.22(-0.29) | 0.07 (0.47) | 0.98 (-0.01) | 0.50(-0.17) | 0.00(-0.89) | 0.44(-0.18) | 0.00(-1.83) | 0.00 (-0.78)
FreeSurfer | PNFA | 0.79 (-0.07) | 0.01(-0.69) | 0.00 (-1.14) | 0.00 (-:0.82) | 0.09 (-0.46) | 0.00(-0.92) | 0.55(-0.16) | 0.11(-0.43)| 0.00(-0.97)
Laplacian | PNFA | 0.00(-1.15) | 0.25(-0.31) | 0.12(-0.42) | 0.36 (-0.24) | 0.00(-0.81) | 0.01(-0.72) | 0.96(-0.01) | 0.00(-1.76) | 0.00 (-1.34)
Registration | PNFA | 0.06(-0.52) | 0.08(0.48) | 0.90(0.03) | 0.60(-0.14) | 0.54(-0.17) | 0.71(-0.10) | 0.14(0.40) | 0.01(-0.76) | 0.05 (-0.54)
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Table 6: Group comparison: t-test p-values (Cohen'’s d) fagl® hemisphere regions, contrasting the control group aittier SemD
or PNFA patient groups, for each of the three methods. Theev@00 indicates a p-value 0.005

Method Group | PHG FUS STG PRE SPG SMG Xe) L SFG
FreeSurfer | SemD | 0.00 (-1.10) | 0.00 (-0.68) | 0.00 (-0.90) | 0.77 (-0.07) | 0.50 (0.15) | 0.86 (-0.04) | 0.57 (0.13) | 0.51 (-0.15) | 0.83 (0.05)

Laplacian | SemD | 0.00(-0.96) | 0.57 (-0.15) | 0.15(0.36) | 0.00(-0.92) | 0.17 (0.30) | 0.36(-0.20) | 0.86(-0.04) | 0.00 (-1.40) | 0.00 (-0.74)
Registration | SemD | 0.06 (-0.47) | 0.27 (-0.26) | 0.00(0.73) | 0.76 (-0.08) | 0.27 (0.25) | 0.02(-0.61) | 0.73(-0.08) | 0.00(-1.24) | 0.00 (-0.94)
FreeSurfer | PNFA | 0.12 (0.42) | 0.58 (0.15) | 0.54 (-0.16) | 0.05 (-0.54) | 0.58 (-0.15) | 0.12 (‘0.42) | 0.85(0.05) | 0.28 (-0.29) | 0.07 (-0.48)
Laplacian | PNFA | 0.21(-0.34) | 0.22(-0.33) | 0.78(-0.07) | 0.48(0.19) | 0.02(-0.62) | 0.04(-0.55) | 0.92(-0.03) | 0.02(-0.64) | 0.00 (-1.02)
Registration | PNFA | 0.68(0.11) | 0.46(0.20) | 0.69(0.11) | 0.48(-0.19) | 0.19(-0.35) | 0.39(-0.23) | 0.08(0.48) | 0.68(-0.11) | 0.18 (-0.36)
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Table 7: SVM classification: Results for 3 cortical thicks@sethods, distinguishing control subjects from SemD and Pptients.

Method Group | Accuracy (%) | -ClI (%) | +CI (%)
FreeSurfer | SemD | 95.8 88.1 99.1
Laplacian SemD | 97.2 90.2 99.2
Registration| SemD | 95.8 88.1 99.1
FreeSurfer | PNFA | 79.3 66.6 88.8
Laplacian PNFA | 845 72.6 92.7
Registration| PNFA | 75.9 62.8 86.1
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Table 8: Longitudinal results: Mean (standard deviatiom)l afect size (Cohen’s d) of the annualised percent change icabrt
thickness for control and AD subjects, for each of the threthous.

Method Group | PHG FUS STG PRE SPG SMG O L SFG
FreeSurfer | Control | 0.53 (4.43) | -0.08 (2.85) | -1.06 (2.92) | -1.51 (3.07) | -2.14 (3.68) | -0.91 (2.17) | -1.45 (2.94) | -0.46 (2.56) | -0.98 (3.42)
AD -3.36 (8.37) | -3.54(4.12) | -3.70 (2.85) | -2.74 (4.37) | -2.22(6.58) | -2.74 (3.53) | -2.62(3.74) | -3.06 (5.02) | -3.27 (4.79)
Effect | -0.54 -0.94 -0.94 -0.31 -0.01 -0.59 -0.34 -0.60 -0.53
Laplacian | Control | 2.49 (6.94) | 0.77 (6.03) | 0.07 (5.39) | -1.60(5.12) | -2.10(5.95) | -0.18(4.03) | -1.82(7.28) | -1.13(4.69) | -1.03 (7.19)
AD -0.74 (8.51) | -2.80 (5.73) | -4.03 (5.83) | -2.45 (5.13) | -1.99 (5.68) | -2.84 (7.96) | -1.14 (7.04) | -2.50 (5.89) | -3.13 (7.31)
Effect | -0.41 -0.63 -0.73 -0.17 0.02 -0.39 0.10 -0.25 -0.30
Registration | Control | -0.46 (9.28) | -0.13 (5.56) | 0.06 (3.62) | -0.93 (4.09) | -1.71(6.03) | 0.79 (4.21) | -1.01(7.34) | -2.44 (4.01) | -0.17 (5.63)
AD -0.31(4.37) | -0.25(3.37) | -1.29(5.04) | -1.47 (4.99) | -1.94 (5.78) | -1.31(4.32) | -1.40 (6.53) | -1.77 (4.61) | -1.71(5.23)
Effect | 0.03 -0.03 -0.50 -0.18 -0.06 -0.73 -0.08 0.24 -0.42
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