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aCentre for Medical Image Computing (CMIC), The Engineering Front Building, University College London, London, WC1E 6BT, UK
bDementia Research Centre, UCL Institute of Neurology, University College London, London, WC1N 3BG, UK

Abstract

Cortical thickness estimation performed in-vivo via magnetic resonance imaging is an important technique

for the diagnosis and understanding of the progression of neurodegenerative diseases. Currently, two differ-

ent computational paradigms exist, with methods generallyclassified as either surface or voxel-based. This

paper provides a much needed comparison of the surface-based method FreeSurfer and two voxel-based

methods using clinical data. We test the effects of computing regional statistics using two different atlases

and demonstrate that this makes a significant difference to the cortical thickness results. We assess repro-

ducibility, and show that FreeSurfer has a regional standard deviation of thickness difference on same day

scans that is significantly lower than either a Laplacian or Registration based method and discuss the trade

off between reproducibility and segmentation accuracy causedby bending energy constraints. We demon-

strate that voxel-based methods can detect similar patterns of group-wise differences as well as FreeSurfer in

typical applications such as producing group-wise maps of statistically significant thickness change, but that

regional statistics can vary between methods. We use a Support Vector Machine to classify patients against

controls and did not find statistically significantly different results with voxel based methods compared to

FreeSurfer. Finally we assessed longitudinal performanceand concluded that currently FreeSurfer provides

the most plausible measure of change over time, with furtherwork required for voxel based methods.
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1. Introduction

The human cerebral cortex is a highly folded layer or ribbon of interconnected neurons, with an average

thickness of around 2.5mm - varying between 1 and 4.5mm in different parts of the brain (Fischl and Dale,

2000; von Economo, 1929). There is significant variability between individuals in disease and in health.

The cortex plays a key role in most cognitive processes and demonstrates regional specification such that

visual function, language, calculation, executive function and so on, have relatively localised cortical rep-

resentation in different parts of the brain. The thickness of the cortex is of interest as it develops, follows

the normal ageing process and changes under a wide variety ofneurodegenerative diseases. Recently, imag-

ing studies of cortical thickness have compared the group-wise differences between healthy control subjects

and patients with conditions such as sporadic and familial Alzheimer’s disease (AD) (Lerch et al., 2005;

Gutierrez-Galve et al., 2009; Knight et al., 2009), fronto-temporal lobar degeneration (FTLD) (Du et al.,

2007; Rohrer et al., 2009), posterior cortical atrophy (Lehmann et al., 2009), multiple sclerosis (Sailer et al.,

2003), Huntington’s disease (Rosas et al., 2008), and the changes that occur in healthy controls under normal

ageing (Salat et al., 2004).

The methods for estimating cortical thickness from magnetic resonance (MR) images can be broadly

categorised as surface based, or voxel based. Both of these methods require an initial segmentation to

separate grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF). In this paper the WM/GM

boundary is referred to as theWM boundary, and the GM/CSF boundary as thepial boundary.

Surface based methods typically construct a triangulated mesh based on either the WM boundary (Dale et al.,

1999; Fischl et al., 1999; Fischl and Dale, 2000; Shattuck and Leahy, 2002; Xu et al., 1999; Han et al., 2004),

or the pial boundary (Davatzikos and Bryan, 1996), which is then deformed to find the opposing boundary.

Alternatively, with WM and pial boundaries defined, both boundaries can be deformed simultaneously using

either snake like deformable models (MacDonald et al., 2000; Kim et al., 2005) or level sets (Zheng et al.,

1999), thereby utilising distance constraints to ensure a realistic coupling of the two surfaces. The use of ex-

plicit surface models enables sub-voxel accuracy (Fischl and Dale, 2000), high sensitivity (Lerch and Evans,

2005), and robustness to different field strengths, scanner upgrade and scanner manufacturer (Han et al.,

2006). With the cortex closed at the brain stem, the resultant surface is topologically equivalent to a sphere.

Surface based cortical thickness methods try to ensure correct topology of the surface after initial segmenta-

tion of the WM boundary (Shattuck and Leahy, 2001; Xu et al., 1999; Han et al., 2004), using smoothness

and self intersection constraints (Dale et al., 1999; MacDonald et al., 2000), by correcting topological de-

fects as they occur (Fischl et al., 2001; Segonne et al., 2005), or using a Laplacian function (Kim et al.,
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2005). Ensuring correct topology or surface regularity massively increases computational cost (Fischl et al.,

2001; Han et al., 2004), may require a difficult balance of parameter weights (Kim et al., 2005; Scott etal.,

2009), and reduces the model’s ability to follow areas of high curvature such as extremely thin gyral stalks

(Lohmann et al., 2003) or opposing sides of sulci with no clear CSF between, which can produce bias and

error in thickness measurements (Scott et al., 2009).

In contrast, voxel based methods (Lohmann et al., 2003; Hutton et al., 2008; Acosta et al., 2009; Aganj et al.,

2009; Das et al., 2009; Cardoso et al., 2011; Scott et al., 2009) work directly on the voxel grid and are

computationally very efficient. However, they are considered to be less accurate due to the limited res-

olution of the voxel grid, less robust to noise and mis-segmentation and significantly affected by partial

volume (PV) effects at the boundaries of convoluted structures such as deepsulci (Acosta et al., 2009).

Methods include morphological (Lohmann et al., 2003), lineintegral (Aganj et al., 2009; Scott et al., 2009),

Laplacian (Jones et al., 2000) and registration (Das et al.,2009) based approaches. Laplacian approaches

(Hutton et al., 2008; Acosta et al., 2009; Cardoso et al., 2011), solve the Laplace equation (Jones et al.,

2000) using boundary value relaxation (Press et al., 1991) or matrix methods (Haidar et al., 2005), calcu-

late thickness by integrating the tangent to the Laplacian scalar field (Jones et al., 2000), summing the Eu-

clidean distance from neighbouring voxels on the same streamline, or using a partial differential equation

(Yezzi and Prince, 2003) with boundaries set to zero (Yezzi and Prince, 2003), half the mean voxel dimen-

sion (Diep et al., 2007) or using Lagrangian initialisation(Bourgeat et al., 2008; Acosta et al., 2009). In

contrast, the registration based approach of Das et al. (2009) uses a greedy diffeomorphic registration algo-

rithm to warp the WM segment to match the GM+WM segment. The thickness is then calculated as the

distance that the WM/GM boundary moved during the registration. A potential advantage for voxel based

methods may be in the fact that the runtimes can be significantly less than the surface based methods which

may enable new application areas.

Thus far, surface based methods have been more widely used than voxel based methods. This may

be partly due to long running software efforts, producing accessible software packages such as Brain-

Suite1(Shattuck and Leahy, 2001, 2002), BrainVISA2(Mangin et al., 1995) and FreeSurfer3(Dale et al., 1999;

Fischl et al., 1999; Fischl and Dale, 2000). Of these, FreeSurfer is the most widely used (Nakamura et al.,

2010), and the FreeSurfer wiki lists many references on boththe methodology and clinical studies.

1http://www.loni.ucla.edu/Software/BrainSuite
2http://brainvisa.info/
3http://surfer.nmr.mgh.harvard.edu/
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Recently there has been significant interest in the development of voxel based methods (Hutton et al.,

2008; Scott et al., 2009; Acosta et al., 2009; Aganj et al., 2009; Cardoso et al., 2011; Das et al., 2009). In

addition, voxel based methods have featured in a comparisonwith voxel based morphometry (Hutton et al.,

2009), been used to correlate changes of cortical thicknesswith diffusion measures using sparse canonical

correlation analysis (Avants et al., 2010) and used in clinical studies (Querbes et al., 2009). However, evalua-

tion of these approaches has been limited by a lack of studiescomparing voxel based and surface based meth-

ods. This paper aims to provide such a comparison, comparingthe freely available surface basedFreeSurfer

(version 4.5.0) method with our implementations of two voxel based methods. We call these voxel-based

methods aLaplacian based method and aRegistration based method, and describe both of these below. We

chose FreeSurfer as it is the most widely used of the surface based methods (Nakamura et al., 2010). Of the

voxel based methods, we chose a Laplacian method similar to Acosta et al. (2009) as many of the references

above are Laplacian based, and a registration method similar to Das et al. (2009) as there is current interest

in diffeomorphic registration algorithms, many of which could be applied to this application. The methods

are compared in terms of reproducibility, disease differentiation and the ability to detect changes of cortical

thickness in longitudinal imaging studies.

2. Materials and methods

2.1. The FreeSurfer Method

The FreeSurfer cortical thickness pipeline has been described and validated in previous publications

(Dale et al., 1999; Fischl et al., 1999; Fischl and Dale, 2000; Han et al., 2006). Briefly, processing involves

intensity normalisation, registration to Talairach space, skull stripping, segmentation of white matter, tes-

selation of the WM boundary, smoothing of the tesselated surface and automatic topology correction. The

tesselated surface is used as the starting point for a deformable surface algorithm to find the WM and then

the pial boundary. For each point on the tesselated WM surface, the cortical thickness is calculated as the

average of the distance from the WM surface to the closest point on the pial surface and from that point back

to the closest point on the WM surface (Fischl and Dale, 2000).

2.2. A Laplacian Based Method

There are several Laplacian based methods implemented in the literature, originating from the paper

of Jones et al. (2000). A processing pipeline was implemented consisting of the following steps: an initial

probabilistic segmentation (Cardoso et al., 2011) of GM, WM and CSF is performed on a T1 weighted (T1w)

image, resulting in probability maps for each tissue type. These probability images are resampled to 0.5mm
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iso-tropic voxels using linear interpolation as in Hutton et al. (2008) and then a three label image is formed

by labelling voxels as GM wherep(GM) >= 0.80 and otherwise choosing the tissue type with the highest

probability, ignoringp(GM). The boundary is corrected as in section 2.3 of (Acosta et al., 2009) to make sure

the GM is at least one voxel wide. The Laplace equation is solved over the GM region (Jones et al., 2000),

then thickness calculated via a PDE based approach (Yezzi and Prince, 2003) using Lagrangian initialisation

(Acosta et al., 2009). The thickness measurement is capped at 6mm (discussed below). Note that the GM

mask is constructed wherep(GM) >= 0.80, which picks voxels that are classified as being highly likely

to be GM, resulting in a relatively thin GM region. The Lagrangian initialisation starts from these high

probability of GM voxels and ray casts through the GM probability map, searching for thep(GM) = 0.5

boundary, stopping when the probability indicates that another tissue type is more likely. We found this

to be more reliable than thresholding the GM probability mapdirectly at p(GM) = 0.5 in areas where the

GM from opposing sides of a sulci touch. The choice of 0.5mm voxels was made to increase the number of

voxels in the GM which improves the convergence of the relaxation methods used to solve the Laplacian and

thickness PDEs. This method is comparable to (Acosta et al.,2009), with a different segmentation algorithm

(Cardoso et al., 2011) at the start.

2.3. A Registration Based Method

A registration based method was implemented based on Das et al. (2009) and consisted of the following

steps: an initial probabilistic segmentation of GM, WM and CSF is performed (Cardoso et al., 2011) and a

greedy diffeomorphic registration algorithm was used to expand the WM segment, to match the GM+WM

segment or until a maximum of 6mm displacement was reached. From the three probability maps, a three

label image is formed by picking the tissue type with the highest probability at each voxel. For each boundary

voxel on the GM/WM boundary, the thickness is calculated as the distance moved under the registration

transformation, and this thickness value is then propogated across the GM mask. In comparison to the

Laplacian method, where we selectedp(GM) >= 0.8 for the grey matter mask, the registration method is less

dependent on this factor. The algorithm relies on having a good WM/GM boundary, so the WM boundary

is determined wherep(WM) > p(GM), and this is evolved outwards to the GM/CSF boundary, thereby

identifying cases where opposite sites of a sulci touch. In the Laplacian method, the segmented probability

images are resampled to 0.5mm isotropic voxels. This step isnot necessary for the Registration method,

as the Registration method, based on (Avants et al., 2006) isperforming subvoxel registration anyway, and

resampling to smaller voxels would add unnecessary computational and memory overhead. This method is

a re-implementation of (Das et al., 2009), with a different segmentation algorithm (Cardoso et al., 2011).
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2.4. Voxel Based Processing

Both voxel based methods are capped at 6mm. For the Laplacianmethod, the Lagrangian initialisation

(Bourgeat et al., 2008; Acosta et al., 2009) can suffer due to noisy estimates of the surface normal, leading to

erroneously high initialisation estimates. For the registration method, the WM mask is deformed outwards

to match the WM+GM mask, and in (Das et al., 2009) a fixed thickness prior (τ in step 3) is applied to stop

the registration. In practice, few voxels will reach this limit as the thickness is known to vary between 1 and

4.5mm in different parts of the brain (Fischl and Dale, 2000; von Economo,1929).

To calculate region based statistics for both voxel based methods, a region of interest must be defined

from either an atlas, or a parcellation. In these experiments, we register the AAL atlas (Tzourio-Mazoyer et al.,

2002) to each subject using block matching (Ourselin et al.,2000) followed by a spline based non-linear de-

formation (Modat et al., 2009; Rueckert et al., 1999) both implemented in NiftyReg4, or alternatively we use

the FreeSurfer parcellation to define the regions. For each subject the GM mask is assigned region labels

based on the closest atlas or parcellation label. The midline of the GM is extracted by selecting the closest

voxel to the midline of the Laplacian field. For each voxel along the midline, the inter-quartile mean of the

thickness values within a 3mm radius and within the region ofinterest was calculated and assigned to the

midline voxel. Region based statistics are calculated overthe thickness values in the midline voxels.

3. Experiments

Our four experiments were chosen to help inform the reader ina manner that was most relevant to the

existing literature, and to clinical research studies. Cortical thickness studies may use different atlases to pro-

vide regional based statistics. The first experiment tests the hypothesis that there is no difference in regional

statistics when using different atlases. In the absence of a gold-standard, the secondexperiment assesses the

reproducibility of each method. The third and fourth experiments are motivated by the increasing number of

cross-sectional and longitudinal studies in the literature.

3.1. Subjects And Scan Selection

In this paper two clinical patient cohorts and matched controls were studied. The clinical subjects were

recruited from the Specialist Cognitive Disorders Clinic of the National Hospital of Neurology and Neuro-

surgery, London, UK. The control subjects were recruited from patient spouses or other healthy age matched

4http://sourceforge.net/projects/niftyreg/
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volunteers. Informed consent was obtained from all subjects and these studies had local ethics committee

approval.

3.1.1. Cohort 1

Cohort 1 consisted of 49 subjects (see Table 1): 33 patients with probable AD, and 16 healthy controls

included in a longitudinal clinical and MRI study, details of which are provided in previous publications

(Schott et al., 2005, 2006; Barnes et al., 2007, 2008; Gutierrez-Galve et al., 2009). The diagnosis of proba-

ble AD was made according to the National Institute of Neurologic, Communicative Disorder and Stroke-

Alzheimer disease and Related Disorders Association (NINCDS-ARDA) criteria (McKhann et al., 1984).

All subjects had volumetric MRI acquired on a single 1.5T GE Signa scanner (General Electric, Milwaukee,

WI). T1-weighted volumetric images were obtained using a spoiled fast GRASS sequence with a 24-cm field

of view and a 256× 256 field of view to provide 124 contiguous 1.5-mm-thick slices in the coronal plane.

The scan acquisition parameters were as follows; TR= 15ms, TE= 5.4ms, Flip angle= 15◦, TI=650ms.

This dataset was chosen because for each of the 49 subjects, two same-day baseline scans and a single one

year repeat image had been obtained.

3.1.2. Cohort 2

Cohort 2 consisted of 101 subjects (see Table 2): 73 patientswith clinically diagnosed frontotemporal

dementia (FTD) and 28 healthy controls. The FTD patients included 30 patients with progressive non-

fluent aphasia (PNFA), 43 patients with semantic dementia (SemD). A clinical diagnosis of SemD was

made according to modified Neary criteria as per (Adlam et al., 2006) with patients having fluent speech,

marked anomia, impaired word comprehension and deficits in non-verbal semantic domains. A diagnosis

of PNFA was made based on modified Neary criteria with patients having a speech production impairment

characterised by apraxia of speech and agrammatism. Some ofthese subjects’ data have been used in

previous studies (Rohrer et al., 2009; Lehmann et al., 2010b,a). All subjects had volumetric MRI acquired on

four different 1.5T GE Signa scanners (General Electric, Milwaukee,WI). T1 weighted volumetric images

were obtained using an IR-prepared fast SPGR sequence with a24-cm field of view and 256× 256 matrix,

to provide 124 1.5-mm-thick slices in the coronal plane.

3.2. Comparison of Different Atlases

Surface based methods such as FreeSurfer and voxel based methods such as the Laplacian and Registra-

tion based methods used for these experiments often assess thickness measures by calculating statistics over

regions defined on an anatomical atlas. FreeSurfer (Fischl and Dale, 2000) uses their own atlas, Acosta et al.
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(2009) and Cardoso et al. (2011) used the AAL atlas (Tzourio-Mazoyer et al., 2002), whereas Hutton et al.

(2009) used the IBASPM atlas (Aleman-Gomez et al., 2006). The voxel based methods were first tested

using the FreeSurfer parcellation and the AAL atlas to determine whether different regions in each atlas

produced significantly different results. In preparation for the next experiment, FreeSurfer was run on the

first baseline scan of each subject in cohort 1, with default settings and no manual editing. For each sub-

ject, FreeSurfer resamples the original T1-weighted imageto isotropic 1mm voxels. This resampled image

was used as the input to the Laplacian based cortical thickness algorithm described above. This is purely a

convenience, to make comparison easier, as the input to the voxel based methods can be considered to be in

the same coordinate system as the FreeSurfer results. The output is an image where each voxel in the GM

contains the thickness at that point. Nine anatomical regions of interest were chosen in advance: the parahip-

pocampal gyrus (PHG), fusiform (FUS), superior temporal gyrus (STG), precuneus (PRE), superior parietal

gyrus (SPG), supramarginal gyrus (SMG), lateral occipitalsulcus (LO), lingual (L) and the superior frontal

gyrus (SFG). These were chosen as they are available in both the FreeSurfer and AAL atlases, and of interest

in these neurodegenerative diseases. The AAL atlas was registered to the T1w volume using block matching

(Ourselin et al., 2000) followed by a spline based non-linear registration (Modat et al., 2009; Rueckert et al.,

1999). For each of the 49 subjects in cohort 1, and each atlas,the mean cortical thickness of over each atlas

region was calculated as described in section 2.4. The FreeSurfer and AAL atlases were compared by using

paired samples two-tailed t-tests on the mean regional cortical thickness, and Pitman’s test to compare the

variance for each of the nine regions.

3.3. Results of Comparing Different Atlases

Table 3 shows the mean (standard deviation) of the cortical thickness computed over the regions con-

tained within the FreeSurfer and AAL atlas. Left and right hemispheres have been averaged together. Note

that the thickness data remains constant, for rows 1 and 2 in table 3, as it is only the choice of atlas that

changes. The third row shows p-values from the paired two-tailed t-tests and the Pitman’s tests in brackets.

In 7 out of 9 t-tests, there is a significant (p < 0.05) difference in mean cortical thickness. We did not find

statistically significant evidence of a difference in mean cortical thickness using the two different atlases in

the precuneus and lingual regions. In contrast, 7 out of 9 tests of variance showed no statistically significant

evidence of a difference in variance, with only the superior temporal gyrus and superior parietal gyrus being

statistically significant at thep < 0.05 level.
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3.4. Comparison Of Reproducibility

FreeSurfer was run on the first and second baseline scan of each of the 49 subjects of cohort 1, with

default settings and no manual editing. The FreeSurfer resampled 1mm isotropic T1w image was again used

as input to the Laplacian and Registration voxel based methods. For this and all subsequent experiments we

selected the FreeSurfer parcellation as the atlas over which to compute regional statistics.

To assess the reproducibility of each method, the standard deviation over all subjects of the difference

in regional cortical thickness between the two same day scans was calculated for each region and method.

To visualise the results, a single FreeSurfer brain surfacewas chosen at random, and for each method, the

standard deviation of each region was colour coded onto the surface and rendered using Paraview5. Pitman’s

test was used to assess whether there was a significant difference in variance between the three methods, for

each of the nine regions.

3.5. Results of Reproducibility Comparison

Figure 1 shows a visual representation of the standard deviation over the 49 subjects of the difference

in mean regional cortical thickness between the two same dayscans. The FreeSurfer result has a lower

standard deviation than the Laplacian method for all meaningful regions6, and a lower standard deviation

than the Registration method for all meaningful regions except the left temporal pole. In 33 out of 70 regions,

the Registration method had a lower standard deviation thanthe Laplacian method. Table 4 shows the mean

and standard deviation of the difference in cortical thickness for each of the nine regions andfor each of the

three methods, again with left and right sides averaged together. FreeSurfer had a statistically significantly

(p < 0.05) lower variance than either the Laplacian or Registration method for all of the 9 tested regions. The

Laplacian method had a statistically significantly (p < 0.05) lower variance than the Registration method in

the superior frontal gyrus, but we did not find significant differences for the other 8 regions.

3.6. Comparison of Cross Sectional Disease Differentiation

The complete FreeSurfer cortical thickness pipeline was run on cohort 2, and the results edited as de-

scribed on the FreeSurfer wiki by an experienced neurologist (JR). Using FreeSurfer tools, an average pial

surface was created, and a vertex-by-vertex analysis usinga general linear model (Worsley et al., 2009)

was used to assess differences in cortical thickness between the control subjectsand either SemD or PNFA

5http://www.paraview.org/
6ignoring the FreeSurfer “unknown” region, and the corpus callosum which is set to zero thickness
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patients. Cortical thicknessC was modelled as a function of group, controlling for age, sexand total inter-

cranial volume (TIV) by including them as nuisance covariates.C = β1 SemD+β2 PNFA+β3 controls+β4

age+β5 sex+β6 TIV +µ + ǫ (whereµ is a constant, andǫ is error), with contrasts of interest being the two-

tailed t-tests between the estimates of the group parameters, i.e. β1 andβ3, β2 andβ3. Two-tailed unpaired

t-tests were computed at each vertex, with significance assessed at thep = 0.05 level, when corrected for

multiple comparisons using the False Discovery Rate (FDR) (Genovese et al., 2002).

In addition, the full Laplacian and Registration based methods were run on cohort 2, again using the T1w

image produced by FreeSurfer. The average of the FreeSurferWM and pial surface was created for each

subject. This surface was used to sample the thickness data produced by each voxel based method by finding

the closest non-zero thickness voxel to each vertex. This thickness data was projected onto the FreeSurfer

average pial surface created above, and the same linear model re-run for both the Laplacian and Registration

based methods. The per-vertex p-values of the average surface were visualised for each of the methods and

visually assessed for similarity.

Subsequently, the same nine regions used in sections 3.2 and3.4 were used to compare statistics. For

each of the 9 regions the mean cortical thickness was calculated over all vertices (FreeSurfer) or voxels

(Laplacian and Registration methods) for each subject. Unpaired samples two-tailed t-tests were performed

to test for significant differences, and Cohen’s d to test for effect size, comparing the control group with both

the SemD and PNFA groups for each region and for each method.

Finally, a linear Support Vector Machine (SVM) was used to classify subjects (Vapnik, 1995, 1998),

implemented with LIBSVM version 2.89 (Chang and Lin, 2001) under MATLAB version 7.2.0. The com-

parison of interest is how well the classifier can separate the three groups, using the thickness data produced

by the three methods. Subjects were classified in an n-dimensional space, where n is the total number of ver-

tices in both hemispheres, excluding the medial wall. SVMs identify an optimal separating hyperplane, such

that subjects from each group lie as far as possible from the hyperplane, on opposite sides. We use the C-

SVM formulation, employing a two-level nested cross-validation to optimise the mis-classification penalty

parameter C using a leave one out procedure within the main leave one out loop (Wilson et al., 2009). This

ensures an unbiased estimation of genaralisation accuracyby leaving each scan out entirely from the training

procedure. A direct comparison of the classification accuracy was performed, by calculating 95% confidence

intervals for the difference in accuracy (Newcombe, 1998).
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3.7. Results of Cross Sectional Comparison

Figure 2 shows a visual comparison of the three methods, comparing SemD and PNFA patients’ cortical

thickness with control subjects. Tables 5 and 6 show the t-test p-values and Cohen’s d in brackets for each

method comparing the mean difference of cortical thickness between control subjects and either SemD or

PNFA patients. Table 7 shows the SVM scores in terms of classification accuracy and confidence intervals.

The direct comparison of the difference in accuracy rates, gave 95% confidence intervals spanning zero for

all pairwise combinations.

3.8. Assessment Of Longitudinal Change

The FreeSurfer longitudinal pipeline was run on the 49 subjects of cohort 1, using the first baseline scan,

and the one year repeat scan. The FreeSurfer longitudinal pipeline (version 4.5.0) takes the T1w image at

n-timepoints, creates an average T1w image and on this average image creates the WM and pial boundary

as described above. These initial surfaces are used as a starting point for a deformable model algorithm at

all n-timepoints. In this casen = 2. The rationale is to provide a starting point that is unbiased to the order

of the images. Both voxel based methods were applied to the FreeSurfer resampled T1w isotropic image for

both the baseline and repeat scan independently. Using the FreeSurfer atlas, the mean cortical thickness was

calculated for each of the 9 regions and each method, and an anualised percentage change computed as in

(Holland et al., 2009).

For the control (n = 16) and AD groups (n = 33), the mean and standard deviation of cortical thickness

was calculated for each region, and Cohen’s d was calculatedas a measure of effect size.

3.9. Results of Longitudinal Comparison

Table 8 shows the mean (standard deviation) of the regional cortical thickness for each method, for each

subject group, and for each of the 9 regions, and the value forCohen’s d for each method. FreeSurfer results

in an anualised percentage change that for control subjectsranges from+0.53% (PHG) to -2.14% (SPG),

and for AD subjects a percentage change of -2.22% (SPG) to -3.70% (STG), and for all of the 9 regions,

the annualised percentage change for AD subjects has consistently higher magnitude (more atrophy) than

control subjects. For both the Laplacian and Registration methods 7 out of 9 cases show AD subjects having

more atrophy than control subjects. In general it can be seenthat the standard deviation of the annualised

percentage change for the voxel based methods is higher thanfor FreeSurfer.
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4. Discussion

In this paper we have compared the surface based cortical thickness method FreeSurfer with two voxel

based methods. This is a challenging task as the methodologies are significantly different, and we must err

on the side of caution in the interpretation of the results. Furthermore, to add to the challenge, it is difficult

to obtain a gold standard. Previous authors have used simulated MRI phantoms (Lee et al., 2006) at one

time point, or simulations of atrophy (Camara et al., 2008; Lerch and Evans, 2005) for longitudinal studies,

however providing a physiologically plausible simulationof atrophy is itself a difficult task. For this reason,

we chose to compare the performance of the algorithm according to reproducibility and both cross-sectional

and longitudinal group differentiation, which are common applications within the literature.

We assessed the influence of the atlases used to define anatomical regions: atlas creation is an extensive

topic within the literature, with each atlas dependent on the quantity and quality of data, the segmentation and

registration algorithms used, and the demographics of the subjects themselves. For these reasons, the borders

of anatomical regions in different atlases are expected to be different. We show that regional means and

standard deviations of cortical thickness, calculated using an identical method, differ significantly depending

on which atlas is used - with up to 10% difference in certain regions assigned the same label. This result

is important for this paper, as it indicates that for a fair comparison, we must use the same atlas for all

three methods, but furthermore, it has implications when interpreting results from other papers. Simply

put, caution is advised when comparing the results of different studies, whether the comparison is at a

methodological or clinical level, whenever the underlyingatlas is different.

Subsequently we assessed the reproducibility of the thickness measurements in experiment 3.4. The

surface and voxel based methods are fundamentally different. The FreeSurfer surface based method creates

a WM segmentation, then a tesselated surface mesh, and deforms that mesh to find both surfaces. This

means that reproducibility will be affected by the consistency of the segmentation and also the performance

of the deformable model process, whereby the evolving mesh will have a good opportunity to correct for

any segmentation differences. The surface will deform and converge to a consistent local minima on two

different scans and be guided or restricted by the bending energyconstraints of the mesh. Although these

bending energy constraints may themselves cause the segmentation to be incorrect, such as in thin gyral

stalks (Lohmann et al., 2003), or buried sulci, at least the results will be consistent. On the other hand,

voxel based methods create an initial segmentation, and then measure the thickness directly. Any errors, or

differences between scans that result in a single voxel being differently classified may impact the thickness

results. Figure 1 shows a visual representation of the consistency of the algorithms by projecting onto a
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randomly chosen single subject brain surface the standard deviation over each region of the difference in

cortical thickness for two same day scans. The FreeSurfer results have a lower standard deviation than

the Laplacian method for all regions, and a lower standard deviation than the Registration method for all

regions apart from the left temporal pole. For the Laplacianmethod, we tried both 1mm iso-tropic and

0.5mm iso-tropic voxels. The Laplacian method uses a grid based relaxation process (Press et al., 1991) to

solve the Laplace equation and the thickness PDE. The cortexvaries between 1 and 4.5mm in different parts

of the brain (Fischl and Dale, 2000; von Economo, 1929), which means that with 1mm iso-tropic voxels

the grey matter might be only 1 - 4 voxels wide. This may lead toa poor convergence of the relaxation

process, and additionally poor estimation of surface normals. Simply by sub-sampling to 0.5mm helps

alleviate these problems, and this approach can be seen in the work of Hutton et. al. (Hutton et al., 2008,

2009). Subsampling further may improve results, but becomes prohibitively expensive in terms of memory

and computational cost. It can be seen that both the Laplacian and Registration methods produce very

visually similar results and in 8 out of 9 tested regions, we found no significant difference between the

regional variance in thickness (Table 4). Furthermore, themean difference shows negligible bias for all three

methods.

We compared the three algorithms in terms of the ability to detect group wise differences (experiment

3.6). This is a typical application found in the literature,with conclusions typically drawn based on visual

inspection. Figure 2 shows an average brain, colour coded with regions where there is statistically significant

evidence (p < 0.05), when corrected for multiple comparisons using the FDR method (Genovese et al.,

2002), of SemD patients (figure 2a) or PNFA patients (figure 2b) having thinner cortex than control subjects.

In figure 2, the areas wherep > 0.05 are all grey, so all coloured areas are deemed to show statistically

significant evidence of thinning (red to yellow), or thickening (blue to light blue), relative to control subjects.

The three columns in each sub-figure show the results for eachmethod. Referring to figure (a), for SemD

patients, all 3 methods are suitable for detecting group-wise differences, displaying qualitatively similar

results. All 3 methods display atrophy on the left more than right side, and in concurrence with (Rohrer et al.,

2009), we see evidence of atrophy in the left temporal lobe, in particular the temporal pole, entorhinal cortex,

parahippocampus, and inferior temporal gyri for all three methods. There is also evidence of atrophy in the

right temporal lobe, in particular the entorhinal cortex, temporal pole and parahippocampus for all three

methods. However, FreeSurfer additionally found evidenceof atrophy in the fusiform, an area known to be

very atrophic in SemD (Chan et al., 2001). For PNFA patients the FreeSurfer method produces evidence of

atrophy in the left superior temporal lobe, banks of the superior temporal sulcus and some evidence in the
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left inferior frontal lobes. By contrast, both voxel based methods find a more extensive spread of atrophy

in the left temporal lobe, with the Laplacian method extending to the inferior midbrain. Additionally, both

voxel based methods find evidence of atrophy in the right temporal lobe.

When region based averages were derived (Table 5 and 6), the regions that differed between cases and

controls varied between the methods. Nonetheless for some regions all methods showed significant atrophy.

For example for SemD patients, the parahippocampal gyrus, supramarginal gyrus, lingual and left superior

frontal gyrus have significant evidence of atrophy for all three methods. However, the fact that these results

do differ for each method suggests that care should be taken at everystage of processing in any cortical

thickness pipeline, and cohorts should be as large as possible. Furthermore, the p-values and Cohen’s d

values combined demonstrate that there are cases where voxel based methods can show larger effect sizes

than FreeSurfer, and vice versa. Voxel based methods in particular would benefit from improvements that

drive down the standard deviation of thickness measurements. In Tables 5 and 6 we can see that effect size

provides additional information to significance tests. As with p-values, the results vary, with both FreeSurfer

and the Laplacian method more consistently producing larger negative (atrophy) values than the Registration

method.

We did not find any statistically significant evidence of a difference between methods when using an

SVM to try and classify controls from SemD patients or controls from PNFA patients. This fits with other

studies that suggest that voxel based methods are capable offinding similar group-wise differences when

applied to a cross sectional study (Hutton et al., 2008; Acosta et al., 2009; Querbes et al., 2009).

Longitudinal cortical thickness measurement has been proposed as a potential bio-marker (Desikan et al.,

2009) however the available methods are still under active development. The FreeSurfer longitudinal pipeline

was released with version 4.5.0 (Aug 2009), and provides an unbiased methodology whereby the WM and

pial surfaces are created on an average volume and deformed to match each timepoint. Voxel based lon-

gitudinal methods have been proposed such as CLADA (Nakamura et al., 2010) and also Das et al. (2009)

segment a baseline scan and measure thickness on the baseline scan, then use registration to warp the base-

line image to the follow-up image (Das et al., 2009). For the experiments in this paper, we wanted to simply

test the capability of applying the thickness calculationsto two timepoints, as each method has been more

widely used in a cross sectional sense. For all three methods, thickness was calculated at two points and

an annualised percentage change calculated for each regionas in (Holland et al., 2009). Whilst no gold

standard exists, one would expect AD patients to have greater atrophy than control subjects, and for neither

group to have increasing cortical thickness. FreeSurfer ismost consistent with this hypothesis, with only the
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parahippocampal gyrus showing an increase in thickness forcontrol subjects, all other longitudinal changes

being a reduction in thickness, and AD patients showing greater reduction in thickness than controls. The

Laplacian method has 3 regions showing increasing corticalthickness and in 7 out of 9 regions AD patients

show greater reduction in thickness than controls. Similarresults can be seen for the Registration method. It

can be seen that in general FreeSurfer provides a larger effect size than both the Laplacian and Registration

methods for 8 regions, with the exception being the superiorparietal gyrus. This may also be a consequence

of the improved reproducibility seen on the two same-day scans. In the voxel based methods, even small

change around the borders of an object can influence the thickness results, making it difficult to detect small

changes in cortical thickness. For example, a 2% change in a 4mm thick region is only 0.08mm. Future

work should include a comparison of true longitudinal methods, using 2 or preferably more timepoints.

5. Conclusions

This paper is the first to compare voxel and surface based cortical thickness estimation methods. The

choice of atlas produces a significant effect on regional based statistics, suggesting that the comparison of

cortical thickness results across different papers, where the authors have used different atlases should pro-

ceed with caution. FreeSurfer produced more reproducible results on same day scans than both the Laplacian

and Registration methods in all but one cortical regions, with the Laplacian and Registration methods per-

forming similarly. FreeSurfer benefits from the deformablemodel settling to a consistent boundary, and the

smoothness constraints therein enforcing consistent results. Furthermore, this consistency plays a part in a

more convincing measure of longitudinal change, that currently the voxel-based Laplacian and Registration

methods reviewed here do not possess. We also conclude that for group-wise studies where the aim is to

produce maps of statistically significant changes in thickness for visual comparison, both surface and voxel

based methods produce comparable results. Furthermore, using and SVM we did not find statistically sig-

nificant evidence of a difference in methods when performing a classification task. Comparisons of methods

such as this will hopefully stimulate efforts to improve different cortical thickness measures.
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Figure 1: Reproducibility of FreeSurfer (left), Laplacian(middle)
and Registration (right) based methods. The standard deviation of
the difference in mean cortical thickness per region for two same
day scans (n=49) is colour coded onto an average brain surface.
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(a) Control versus SemD (b) Control versus PNFA

Figure 2: A comparison of FreeSurfer, Laplacian and Registration based methods, displaying colour coded t-test p-values, comparing
control subjects with SemD patients (left) and PNFA patients(right). Results are thresholded FDR corrected p-values< 0.05. Red to
yellow indicates patients thinner than controls, and blue to light blue indicates patients thicker than controls.
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Table 1: Subject Demographics for Cohort 1
Characteristic Controls AD
Number of subjects 16 33
Number of women (%) 8 (50) 14 (42)
Mean (SD) age at baseline (years)72.5 (13.2) 72.1 (10.4)
Mean (SD) scan interval (days) 366 (6) 366 (18)
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Table 2: Subject Demographics for Cohort 2
Characteristic Controls SD PNFA
Number of subjects 28 43 30
Number of women (%) 17 (61) 26 (60) 21 (70)
Mean (SD) age at baseline (years)66.4 (8.3) 63.8 (7.4) 66.2 (7.7)
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Table 3: Atlas comparison: mean (standard deviation) of the regional cortical thickness in millimetres for the Laplacian method, where
statistics are computed over regions defined by the FreeSurfer and also the AAL atlas. The third row shows p values of the t-tests
(Pitman’s tests).

Atlas PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer 3.42 (0.39) 3.81 (0.32) 3.39 (0.32) 2.95 (0.38) 2.53 (0.31) 3.18 (0.38) 2.60 (0.41) 2.86 (0.40) 3.27 (0.30)
AAL 3.75 (0.38) 3.93 (0.31) 3.16 (0.40) 2.96 (0.37) 2.66 (0.35) 3.23 (0.41) 2.68 (0.43) 2.90 (0.40) 3.35 (0.32)
p-value 0.00 (0.78) 0.00 (0.67) 0.00 (0.00) 0.20 (0.41) 0.00 (0.00) 0.01 (0.10) 0.00 (0.26) 0.08 (0.98) 0.02 (0.52)
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Table 4: Reproducibility: mean (standard deviation) of the difference in cortical thickness in millimetres per region for each of the three
methods, over regions defined by the FreeSurfer atlas. An asterisk (*) indicates a Pitman’s test p-value< 0.05 for that region when
comparing the variance of the Laplacian method with the Registration method.

Method PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer 0.00 (0.07) -0.01 (0.05) -0.01 (0.04) -0.01 (0.05) -0.02 (0.07) -0.02 (0.04) -0.01 (0.06) -0.01 (0.04) -0.02 (0.08)
Laplacian -0.03 (0.20) -0.04 (0.20) -0.04 (0.17) -0.05 (0.17) -0.03 (0.14) -0.05 (0.18) -0.00 (0.14) -0.02 (0.18) -0.02 (0.22)
Registration -0.03 (0.20) -0.02 (0.18) -0.02 (0.14) -0.03 (0.15) -0.04(0.16) -0.05 (0.16) -0.00 (0.15) -0.02 (0.17) 0.00 (0.13*)
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Table 5: Group comparison: t-test p-values (Cohen’s d) for 9 left hemisphere regions, contrasting the control group with either SemD
or PNFA patient groups, for each of the three methods. The value 0.00 indicates a p-value< 0.005

Method Group PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer SemD 0.00 (-2.47) 0.00 (-2.62) 0.00 (-3.42) 0.01 (-0.61) 0.86 (-0.04) 0.02 (-0.52) 0.44 (-0.17) 0.00 (-0.72) 0.03 (-0.46)
Laplacian SemD 0.00 (-2.44) 0.00 (-0.86) 0.37 (-0.22) 0.00 (-2.07) 0.03 (-0.51) 0.00 (-0.65) 0.28 (-0.25) 0.00 (-3.76) 0.00 (-1.44)
Registration SemD 0.00 (-1.11) 0.22 (-0.29) 0.07 (0.47) 0.98 (-0.01) 0.50 (-0.17) 0.00 (-0.89) 0.44 (-0.18) 0.00 (-1.83) 0.00 (-0.78)
FreeSurfer PNFA 0.79 (-0.07) 0.01 (-0.69) 0.00 (-1.14) 0.00 (-0.82) 0.09 (-0.46) 0.00 (-0.92) 0.55 (-0.16) 0.11 (-0.43) 0.00 (-0.97)
Laplacian PNFA 0.00 (-1.15) 0.25 (-0.31) 0.12 (-0.42) 0.36 (-0.24) 0.00 (-0.81) 0.01 (-0.72) 0.96 (-0.01) 0.00 (-1.76) 0.00 (-1.34)
Registration PNFA 0.06 (-0.52) 0.08 (0.48) 0.90 (0.03) 0.60 (-0.14) 0.54 (-0.17) 0.71 (-0.10) 0.14 (0.40) 0.01 (-0.76) 0.05 (-0.54)
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Table 6: Group comparison: t-test p-values (Cohen’s d) for 9 right hemisphere regions, contrasting the control group witheither SemD
or PNFA patient groups, for each of the three methods. The value 0.00 indicates a p-value< 0.005

Method Group PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer SemD 0.00 (-1.10) 0.00 (-0.68) 0.00 (-0.90) 0.77 (-0.07) 0.50 (0.15) 0.86 (-0.04) 0.57 (0.13) 0.51 (-0.15) 0.83 (0.05)
Laplacian SemD 0.00 (-0.96) 0.57 (-0.15) 0.15 (0.36) 0.00 (-0.92) 0.17 (0.30) 0.36 (-0.20) 0.86 (-0.04) 0.00 (-1.40) 0.00 (-0.74)
Registration SemD 0.06 (-0.47) 0.27 (-0.26) 0.00 (0.73) 0.76 (-0.08) 0.27 (0.25) 0.02 (-0.61) 0.73 (-0.08) 0.00 (-1.24) 0.00 (-0.94)
FreeSurfer PNFA 0.12 (0.42) 0.58 (0.15) 0.54 (-0.16) 0.05 (-0.54) 0.58 (-0.15) 0.12 (-0.42) 0.85 (0.05) 0.28 (-0.29) 0.07 (-0.48)
Laplacian PNFA 0.21 (-0.34) 0.22 (-0.33) 0.78 (-0.07) 0.48 (0.19) 0.02 (-0.62) 0.04 (-0.55) 0.92 (-0.03) 0.02 (-0.64) 0.00 (-1.02)
Registration PNFA 0.68 (0.11) 0.46 (0.20) 0.69 (0.11) 0.48 (-0.19) 0.19 (-0.35) 0.39 (-0.23) 0.08 (0.48) 0.68 (-0.11) 0.18 (-0.36)
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Table 7: SVM classification: Results for 3 cortical thickness methods, distinguishing control subjects from SemD and PNFApatients.
Method Group Accuracy (%) -CI (%) +CI (%)
FreeSurfer SemD 95.8 88.1 99.1
Laplacian SemD 97.2 90.2 99.2
Registration SemD 95.8 88.1 99.1
FreeSurfer PNFA 79.3 66.6 88.8
Laplacian PNFA 84.5 72.6 92.7
Registration PNFA 75.9 62.8 86.1
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Table 8: Longitudinal results: Mean (standard deviation) and effect size (Cohen’s d) of the annualised percent change in cortical
thickness for control and AD subjects, for each of the three methods.

Method Group PHG FUS STG PRE SPG SMG LO L SFG
FreeSurfer Control 0.53 (4.43) -0.08 (2.85) -1.06 (2.92) -1.51 (3.07) -2.14 (3.68) -0.91 (2.17) -1.45 (2.94) -0.46 (2.56) -0.98 (3.42)

AD -3.36 (8.37) -3.54 (4.12) -3.70 (2.85) -2.74 (4.37) -2.22 (6.58) -2.74 (3.53) -2.62 (3.74) -3.06 (5.02) -3.27 (4.79)
Effect -0.54 -0.94 -0.94 -0.31 -0.01 -0.59 -0.34 -0.60 -0.53

Laplacian Control 2.49 (6.94) 0.77 (6.03) 0.07 (5.39) -1.60 (5.12) -2.10 (5.95) -0.18 (4.03) -1.82 (7.28) -1.13 (4.69) -1.03 (7.19)
AD -0.74 (8.51) -2.80 (5.73) -4.03 (5.83) -2.45 (5.13) -1.99 (5.68) -2.84 (7.96) -1.14 (7.04) -2.50 (5.89) -3.13 (7.31)
Effect -0.41 -0.63 -0.73 -0.17 0.02 -0.39 0.10 -0.25 -0.30

Registration Control -0.46 (9.28) -0.13 (5.56) 0.06 (3.62) -0.93 (4.09) -1.71 (6.03) 0.79 (4.21) -1.01 (7.34) -2.44 (4.01) -0.17 (5.63)
AD -0.31 (4.37) -0.25 (3.37) -1.29 (5.04) -1.47 (4.99) -1.94 (5.78) -1.31 (4.32) -1.40 (6.53) -1.77 (4.61) -1.71 (5.23)
Effect 0.03 -0.03 -0.50 -0.18 -0.06 -0.73 -0.08 0.24 -0.42
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