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Abstract
Diffusional kurtosis imaging (DKI) is a clinically feasible extension of diffusion tensor imaging
that probes restricted water diffusion in biological tissues using magnetic resonance imaging. Here
we provide a physically meaningful interpretation of DKI metrics in white matter regions
consisting of more or less parallel aligned fiber bundles by modeling the tissue as two non-
exchanging compartments, the intra-axonal space and extra-axonal space. For the b-values
typically used in DKI, the diffusion in each compartment is assumed to be anisotropic Gaussian
and characterized by a diffusion tensor. The principal parameters of interest for the model include
the intra- and extra-axonal diffusion tensors, the axonal water fraction and the tortuosity of the
extra-axonal space. A key feature is that these can be determined directly from the diffusion
metrics conventionally obtained with DKI. For three healthy young adults, the model parameters
are estimated from the DKI metrics and shown to be consistent with literature values. In addition,
as a partial validation of this DKI-based approach, we demonstrate good agreement between the
DKI-derived axonal water fraction and the slow diffusion water fraction obtained from standard
biexponential fitting to high b-value diffusion data. Combining the proposed WM model with DKI
provides a convenient method for the clinical assessment of white matter in health and disease and
could potentially provide important information on neurodegenerative disorders.
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1 Introduction
Diffusion weighted imaging (DWI) is a widely applied and clinically important MRI method
used to measure the micron-scale displacement of water molecules in the brain. Diffusion on
this length scale is very sensitive to the microstructure of neural tissue, being strongly
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affected by the number, orientation and permeability of barriers (e.g. myelin) and the
presence of various cell types and organelles (e.g. neurons, dendrites, axons, neurofilaments
and microtubules) (Beaulieu, 2002). Moreover, as the tissue microarchitecture is closely
associated with function, DWI offers a unique and very powerful method to study brain
pathology.

By far the most widely applied DWI technique to date is diffusion tensor imaging (DTI), in
which the apparent diffusion tensor is estimated from the measurement of the apparent
diffusion coefficient (ADC) along multiple directions (Basser et al., 1994). Several
rotationally invariant diffusion metrics can be extracted from a DTI-analysis, including the
mean diffusivity (MD) and the fractional anisotropy (FA), which are both popular markers
of white matter (WM) integrity (Pierpaoli and Basser, 1996). In addition, DTI is also a
commonly used method for fiber tractography, i.e. reconstructing the pathways of major
WM fiber tracts through the brain (Basser et al., 2000). Although DTI is an important
technique for investigating mechanisms of health and disease in brain WM (Thomason and
Thompson, 2011), among its limitations are the inability of DTI-based fiber tractography to
resolve fiber crossings, and the lack of specificity to histological features.

While DWI has the potential to fully characterize the water diffusion properties of the brain,
it is well recognized that DTI yields only a fraction of the information potentially accessible
with DWI, which is mainly due to the fact that DTI is based upon a Gaussian approximation
of the diffusion displacement probability function. Non-Gaussian diffusion is readily
observed in the brain when applying diffusion gradients such that the corresponding b-value
(diffusion weighting) is significantly higher than the typical DTI b-value of 1000 s/mm2

(Assaf and Cohen, 1998; Niendorf et al., 1996). The non-Gaussian diffusion effects in the
brain are believed to arise from diffusion restricted by barriers, such as cell membranes and
organelles, as well as the presence of distinct water compartments with differing
diffusivities.

Several techniques for assessing non-Gaussian diffusion have been developed (Alexander et
al., 2002; Jensen and Helpern, 2010; Liu et al., 2004; Maier et al., 2004; Tuch, 2004;
Wedeen et al., 2005). Among them, diffusional kurtosis imaging (DKI) has been proposed
as a minimal extension of DTI that enables the quantification of non-Gaussian diffusion
through the estimation of the diffusional kurtosis, a quantitative measure of the non-
Gaussianity of the diffusion process (Jensen et al., 2010; Jensen et al., 2005; Lu et al., 2006).
A typical DKI-protocol for brain requires a maximum b-value of 2000 s/mm2 and DWI
measurements along a minimum of 15 different directions (Tabesh et al., 2010). Quantitative
rotationally invariant diffusion metrics can be extracted from the DKI-analysis, such as the
mean kurtosis (MK), radial kurtosis and axial kurtosis, that are of potential interest to the
study of white and gray matter integrity. So far, DKI has shown promising preliminary
results for several brain diseases including stroke (Jensen et al., 2010), attention-deficit
hyperactivity disorder (ADHD) (Helpern et al., 2010), the staging of glioblastomas (Raab et
al., 2010), as well as normal aging (Falangola et al., 2008). Additionally, DKI is potentially
useful in tractography for resolving crossing fibers (Lazar et al., 2008). However, similar to
DTI, DKI metrics of non-Gaussianity are pure diffusion measures and lack microstructural
and pathological specificity. Furthermore, a clear explanation for the microscopic origin of
the diffusional kurtosis in WM has not been previously given.

The extraction of cell properties and histological details of WM necessarily relies on
biophysical modeling of the DWI signal, and on the subsequent interpretation of the model
parameters in terms of intrinsic tissue properties. The most basic model used to analyze high
b-value data is the biexponential model that is based on the assumption of two non-
exchanging compartments: one exhibiting fast diffusion, and the other slow diffusion.
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Despite good fits of the DWI signal, the original attempt to assign the two compartments to
the intra- and extracellular space is still a subject of a debate (Assaf and Cohen, 1998; Clark
and Le Bihan, 2000; Kiselev and Il'yasov, 2007; Maier et al., 2004; Mulkern et al., 2000;
Niendorf et al., 1996). However, for the WM, assigning the highly restricted water diffusion
inside the axons to the slow compartment and the less hindered diffusion in the extra-axonal
space to the fast compartment has been justified experimentally (Assaf and Basser, 2005;
Assaf and Cohen, 2000; Assaf et al., 2004) and theoretically (Fieremans et al., 2010b).

A number of advanced morphology-based models have been proposed to interpret DWI in
brain WM. As an early and comprehensive model, Stanisz et al. represented bovine optic
nerve tissue by three compartments formed by spherical glial cells, prolate ellipsoidal axons
and the extracellular space. By using this analytical model, the compartment parameters,
such as volume fractions, compartment size, membrane permeability and diffusivity, could
be estimated for fixed tissue (Stanisz et al., 1997). The less elaborate CHARMED model
(Assaf and Basser, 2005; Assaf et al., 2004) assumes two types of diffusion in the brain:
restricted diffusion inside impermeable cylindrical axons and hindered diffusion in the extra-
axonal space, allowing estimation of the compartment volume fractions and diffusivities for
the human brain in vivo. In the framework of “Axcaliber”, the CHARMED model was
further developed to extract the axonal diameter distribution, which was evaluated ex vivo
on pig spinal cord (Assaf et al., 2008) and in vivo in the corpus callosum of a rat (Barazany
et al., 2009). A similar model of two non-exchanging compartments has been developed by
Jespersen et al, wherein the restricted diffusion component arises from an angular
distribution of narrow cylinders (representing the axons and dendrites), allowing one to
estimate the compartment volume fractions and diffusivities, as well as the intra-voxel
distribution of fiber orientations, as demonstrated in fixed brain tissue of the rat and baboon
(Jespersen et al., 2010; Jespersen et al., 2007). Recently, Alexander et al. proposed a four-
compartment brain WM model that allows the axon diameter and density to be derived, as
illustrated in fixed monkey brain and in vivo human brain (Alexander et al., 2010).

To extract all the features of the models summarized above, DWI data are needed for several
high b-values (i.e., b ≥ 3000 s/mm2), multiple diffusion gradient directions and/or different
diffusion times, which necessitates long scan times and limits the applicability of these
models for most clinical studies. Alternatively, DKI is a clinically feasible technique with
acquisition times only a few minutes longer than conventional DTI. However, as DKI
metrics of non-Gaussianity are model-independent, they must be augmented with a tissue
model to help interpret the physical meaning of any changes associated with disease
processes.

In this work, we focus on WM regions consisting of more or less parallel aligned fiber
bundles and propose a model of diffusion in the WM that is suitable for DKI analysis and
provide a more meaningful physical interpretation of DKI diffusion metrics in WM. We first
introduce the WM diffusion model of two non-exchanging compartments: the intra-axonal
space, consisting of impermeable cylindrical axons (IAS), and the extra-axonal space (EAS).
Next, we demonstrate how the diffusion in each compartment appears to be Gaussian for the
b-values typically used in DKI and hence can be described by compartment-specific
diffusion tensors. Combining this model with DKI provides analytical expressions for the
intra- and extra-axonal diffusion tensors, and allows for quantification of the axonal water
fraction (AWF) and of the tortuosity of the EAS. We use then the newly proposed model to
characterize human brain WM in vivo and discuss the biological significance of the tissue
parameters as derived using DKI. Finally, we compare the AWF obtained from DKI-
analysis to the slow diffusion fraction obtained from conventional biexponential fitting to
high b-value diffusion data.
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2 Methods
In this section, we first describe the WM model, discuss the validity of its assumptions, and
outline its relation to DKI. We then specify the datasets, imaging protocols and data
processing needed to evaluate the derived WM parameters.

2.1 White Matter Diffusion Model for DKI
2.1.1 Model Description and Assumptions—In this work, we make the following two
main assumptions about in vivo diffusion in brain WM:

i. The WM consists of two non-exchanging compartments: the intra-axonal space
(IAS) and extra-axonal space (EAS): The IAS is assumed to consist mainly of
myelinated axons that are idealized as infinitely long cylinders (there may possibly
also be a small contribution to the IAS from unmyelinated axons, dendrites or glial
processes). The protons trapped in the myelin are MRI invisible for echo times (TE
~ 100 ms) used in a typical DWI-experiment given their short T2 relaxation times
(Mackay et al., 1994; Stanisz et al., 1999). The remainder of the WM is referred to
as the extra-axonal space (EAS) and modeled as an effective medium (Fieremans et
al., 2010b), assuming the glial cells are in fast exchange with the extracellular
matrix. This assumption is supported by the fact that glial cells are known to be
highly permeable (Arciénega et al., 2010; Nielsen et al., 1997) and also because
restricted diffusion inside the glial cells would result in a slow diffusion component
that is independent of the gradient direction, which has not been observed in the in
vivo brain WM (Alexander et al., 2010; Assaf and Basser, 2005). The exchange
between the IAS and EAS is neglected, as myelinated axons have a very low
permeability (Meier et al., 2003).

ii. The diffusion in both the EAS and IAS can be modeled by compartment specific
diffusion tensors, whereby we implicitly assume that the diffusion appears to be
Gaussian, but not necessarily unrestricted, in each individual compartment. This
assumption is justifiable for the EAS at clinically relevant diffusion times and for
straight axonal bundles. In general, its validity depends both on the direction
distribution of axons, the diffusion time, and the maximum b-value considered in
the DWI-analysis, as will be discussed in more detail in the next section 2.1.2.

Based on these assumptions, both the IAS and EAS are modeled by the corresponding
compartmental diffusion tensors Da and De. The axonal water fraction (AWF), denoted by
the symbol f, is the fraction of MRI visible water in the axons relative to the total visible
water signal. The DWI signal intensity, S, in the direction n, as a function of the diffusion
weighting, b, in such a system is then described by

(1)

Below, we first justify Eq. (1) and then outline the procedure to extract the WM parameters
based on the DKI representation of the DWI signal.

2.1.2 Model Justification—We substantiate here the assumption made in Eq. (1) of
Gaussian diffusion in the EAS and the IAS. For the EAS, the mean square displacement of
water molecules during a typical DWI experiment

( , where De is the free extra-axonal diffusivity )
is much greater than the correlation length of the axonal packing (~1 μm), so that the
tortuosity asymptote is reached (Fieremans et al., 2010b). Hence, it is reasonable to assume
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that the diffusion profile in the EAS at long times, while anisotropic, is Gaussian in every
direction and can be represented by the diffusion tensor De.

The diffusion in the IAS is highly restricted and in general non-Gaussian. However, the fact
that there is no observed time dependence of the diffusion metrics at clinically available
diffusion times (Clark et al., 2001) indicates that any effects of non-Gaussian diffusion due
to barriers become negligible in the direction along the axons at long diffusion times. It is
then reasonable to assume Gaussian diffusion in the intra-axonal compartment for a voxel
consisting of perfectly aligned axons with zero radius as the transverse diffusivity is zero in
this limit (Fieremans et al., 2010b). Hence, the DWI signal S∥ becomes trivially Gaussian in
all directions and is described by

(2)

where Da is the free intra-axonal diffusivity and θ is the angle with respect to the axon axis.
The zero radius approximation is valid for long diffusion times t >> R2/Da, where R is the
axon radius. For typical values, R ≈ 1 μm and Da ≈ 1 μm2/ms, we find t >> 1 ms, which is
well satisfied for clinical DWI experiments, where t ~ 50ms.

When the axons are not perfectly aligned within a voxel, Gaussianity becomes dependent on
both the direction distribution of the axons and the b-value. A general criterion for the
diffusion to appear Gaussian in a given direction can be derived based on the cumulant
expansion (Jensen et al., 2005; Kiselev, 2010),

(3)

where S is the DWI signal and D, K are the apparent diffusion coefficient and diffusional
kurtosis in that direction.

Whereas for the EAS and the case of perfectly aligned axons described earlier, the higher
order cumulants vanish due to zero K or D, this is not necessarily true for any axonal
geometry. To a good approximation, a compartment will appear Gaussian if the b-value

(4)

so that the 2nd and (presumably) higher order terms in b become negligible in Eq. (3). As a
practical matter, we adopt the criterion

(5)

as the condition for being effectively Gaussian. This criterion can be used as a guide to
whether the diffusion appears Gaussian in a specific axonal geometry for a given b-value.

As an example, consider a voxel that contains two crossing fiber bundles with equal volume
fractions, oriented at polar angles (θA,θB) relative to a particular diffusion direction of
interest, as illustrated in Fig. 1 (a). For such a system, D and K for the axonal compartment
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can be analytically derived (see Appendix A) and the b-value condition for Gaussianity (5)
can then be written as

(6)

where Da is the free intra-axonal diffusivity. This condition is evaluated numerically in Fig.
1 (b), showing a substantial region of approximate Gaussianity in (θA,θB) space. In
particular, for two axonal bundles intersecting at an angle ≤ 30 degrees, this axonal
geometry will look essentially Gaussian for a typical DKI protocol (i.e., a maximum b-value
of 2000 s/mm2) in all directions. However, this axonal geometry may not necessarily be
accurately modeled as a Gaussian compartment for higher b-values.

In the more general case of a voxel containing axon bundles that intersect at larger angles or
for randomly oriented axons in a plane, the diffusion in such geometries will not be
Gaussian anymore in all directions. Yet, the derivation in Appendix A illustrates that an
approximately coplanar axonal geometry with an out of plane angular spread of up to ± 45°
will, for a typical DKI protocol, be effectively Gaussian for diffusion in the direction
perpendicular to the plane.

2.1.3 Model Parameters—Directly fitting the DWI signal for many directions
simultaneously to Eq. (1) is a hard multi-parameter non-linear problem, whose solution is
numerically challenging and may in practice be unstable to noise. An alternative, based on
the biexponential fitting for each diffusion direction separately (Maier et al., 2004), has been
shown to require high b-values which are typically above those utilized clinically (Kiselev
and Il'yasov, 2007). Here we suggest utilizing the DKI metrics, which are determined by a
straightforward linear fitting procedure, together with a set of relationships that connect
these to the AWF and the tensors Da and De. In what follows next, we provide analytical
expressions for the AWF, Da and De based on the diffusion and kurtosis tensor. A detailed
derivation is given in Appendix B.

2.1.3.1 Estimation of the Axonal Water Fraction: On a voxel-by-voxel basis, the AWF is
estimated by

(7)

where Kmax is the maximum kurtosis over all diffusion directions (based on the kurtosis
tensor). Eq. (7) assumes there is a direction for which the IAS diffusivity Da,i=0, while for
the other directions the diffusion in the IAS appears Gaussian, according to criterion (5).
This approximation for the AWF has a broad applicability, e.g. the derivation in Appendix A
illustrates that in a quasi-coplanar axonal geometry the kurtosis as measured in the direction
perpendicular to the fiber plane is typically the maximum kurtosis and thus indicates the
water fraction of the restricted compartment.

When the assumption of above (Da,i=0) is not precisely met (e.g. imperfect alignment of the
axons or due to effects of finite axonal radius relative to the diffusion length), Eq. (7)
becomes a lower bound for the AWF. In that case, a more accurate estimate of the AWF is
given by
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(8)

where D1, D2, D3 are the diffusion coefficients and K1, K2, K3 the corresponding kurtoses
along the axis directions of a chosen reference frame. We note that the term

 is rotationally invariant as discussed in Appendix B. Da is the
axonal diffusion coefficient with Da,min being a lower bound for Da, defined by:

(9)

Da can then be estimated by selecting the maximum Da,min over all voxels within a specified
region of interest (ROI). This estimate will be exact if the ROI contains at least one voxel
wherein Da,i=0 in a certain direction. This procedure assumes that Da is the same for all the
voxels within the ROI.

Alternatively, the AWF can be found from a conventional biexponential fit to high b-value
diffusion data, as in many previous studies (Inglis et al., 2001; Maier et al., 2004; Mulkern et
al., 2000; Niendorf et al., 1996), which will be performed in this study to evaluate our
proposed WM model parameter estimates based on DKI metrics. The biexponential fitting
approach requires, in practice, much higher maximum b-values than DKI (7000 s/mm2

rather than 2000 s/mm2), and hence, according to criterion (5), is only applicable in regions
with nearly aligned fiber directions.

2.1.3.2 Estimation of the Compartment diffusivities: With an estimate for the AWF,
given by Eq. (7) or (8), the IAS and EAS compartment diffusion coefficients in a given
direction, Da,i and De,i, can be derived from the diffusion coefficient Di and kurtosis Ki in
that direction by:

(10)

(11)

We note that Eqs. (10) and (11) have the underlying assumption that Da,i ≤ De,i, which is
justified by the arguments described in Appendix B and Fig. B.1(a-b). It also follows from
Appendix B and Fig. B.1(c) that Eqs. (10) and (11) are true in any direction. Hence, by
choosing 6 or more independent directions, we can then reconstruct (using the standard DTI
method) the full diffusion tensors Da and De.

By applying this WM model to the DKI metrics, several compartment-specific metrics can
be derived, in addition to the usual DTI/DKI parameters. The same rotationally invariant
measures as derived in standard DTI can now be obtained specifically for each compartment
tensor. For this study, we focus on the following WM metrics of interest:
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• the axonal water fraction (AWF) as given by Eq. (7) or Eq. (8),

(12)

(13)

(14)

(15)

All of these WM metrics assume that Eq. (1) is valid in the considered voxel, as discussed
earlier in section 2.1.2. This implies that Eq. (12) is a good approximation for the intra-
axonal along axis diffusivity in voxels that contain fiber bundles with an angular spread of
less than 30 degrees. In addition, the definition of the tortuosity (Eq. 15) is only meaningful
in the specific case of a voxel containing a single fiber direction so that De,∥ (Eq. 13)
represents then the EAS diffusivity in the direction along the fibers and De,⊥ (Eq. 14) the
EAS diffusivity perpendicular to the fibers.

In what follows, we will estimate and evaluate each of these WM parameters in healthy
volunteers. For the AWF, we will compare the estimated values with the values obtained
from a biexponential fit.

2.2 MRI 2.2.1 Subjects
Test data sets for evaluating the model come from three healthy human volunteers. Subject 1
is a 27 year old female, subject 2 is a 28 year old female, subject 3 is a 28 year old male. The
subjects were scanned with informed consent obtained as approved by our Institutional
Review Board.

2.2.2 Image Acquisition—MRI images were acquired using a 3T wide-bore Siemens
Verio system (Siemens Medical Solutions, Erlangen, Germany) with a transmission body
coil and a 12-channel head coil for reception.

Whole brain T1-weighted magnetization-prepared rapid gradient echo (MPRAGE) images
were acquired with TR = 2200 ms, TI = 1100 ms, TE = 2.3 ms, matrix = 256 x 256, FOV =
256 × 256 mm2, slices per slab = 192, slice thickness = 1 mm, band width = 260 Hz/pixel in
a total time of 4:30 min.

Diffusion-weighted images were acquired along 30 gradient directions for b = 0, 1000, 2000
s/mm2 with a twice-refocused spin-echo (TRSE) echo planar imaging sequence (Reese et
al., 2003) with TR = 8700 ms, TE = 96 ms (corresponding diffusion time ~ 50 ms), matrix =
82 × 82, FOV = 222 × 222 mm2, 40 slices, slice thickness = 2.7 mm, no gap, NEX = 11 for
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b = 0, NEX = 2 for b = 1000, 2000 s/mm2, band width = 1355 Hz/pixel in a total time of 20
min.

Additional DWIs were acquired along one direction for 16 b-values (0, 100, 500 to 7000 in
increments of 500 s/mm2). The gradient direction was the same as the direction of the slice
selection, which was chosen perpendicular to the anterior commissure-posterior commissure
(AC-PC) plane. A standard Stejskal-Tanner (Tanner and Stejskal, 1968) sequence was used
instead of the TRSE diffusion preparation to minimize the echo time (TE = 132 ms) and
repetition time (TR = 12,500 ms) in order to obtain a higher SNR and shorter scan time,
respectively. Other imaging parameters were: matrix = 104 × 104, FOV = 280 × 280 mm2,
40 slices, slice thickness = 2.7 mm, no gap, NEX = 8 for all b-values, band width = 1502
Hz/pixel. The total acquisition time was 36 min.

2.3 Analysis of the MRI data
2.3.1 Data Preprocessing—Data preprocessing with SPM8 (Statistical Parametric
Mapping, Wellcome Department of Imaging Neuroscience, University College London,
UK) included 3D motion correction by aligning all DWIs to the first b = 0- image and
removing cerebrospinal fluid (CSF) from the DWIs by applying a binary mask derived from
thresholding the CSF probability map (created with SPM from segmentation of the b = 0
image) at a cut-off probability value of ≤ 0.2.

2.3.2 Voxelwise analysis—The co-registered and masked DWI images acquired in 30
directions for b = 0, 1000, 2000 s/mm2 were then further processed using in-house software
(Diffusional Kurtosis Estimator (DKE) (Tabesh et al., 2010)) running in Matlab and the
diffusion and kurtosis tensors were calculated on a voxel-by-voxel basis using a weighted
linear least squares (LLS) fitting algorithm. The AWF was derived based on Eq. (7) where
Kmax is taken as the maximum value of calculated kurtosis-values along 10,000 randomly
chosen directions based on the kurtosis tensor. The generated f-map, together with the
diffusion and kurtosis tensor element maps were then used to derive parametric maps of the
diffusion coefficients of the axonal and extra-axonal tensors Da and De along the same 30
directions that were used for the DWI acquisition based on Eqs. (10) and (11). Next, the
eigenvalues of Da and De were obtained using the standard DTI method (Basser et al., 1994)
and the specific WM parameters of interest Da, De,∥, De,⊥ and α were derived based on Eqs.
(12)-(15).

The idealized WM model described above assumes that the axons are more or less parallel
and becomes less appropriate in regions of complex fiber architecture such as fiber crossings
of significant fanning. Additionally, to justify the use of a biexponential fit to the signal
decay averaged over an ROI (see further in section 2.3.3), precise unidirectionality of the
fibers in the specific ROI is required. Therefore we limit this study to voxels in which a
single fiber orientation is expected corresponding to straight parallel fibers. We computed
the coefficients of linearity , planarity , and sphericity , where λ1, λ2,
and λ3 are the eigenvalues of the overall diffusion tensor D (λ1 ≤ λ2 ≤ λ3), that describe how
close D is to the generic cases of line, plane and sphere (Westin et al., 1999). For further
processing we included only voxels that fulfilled

(16)

For each WM parameter, given by Eqs. (12)-(15), we derived the histogram, mean value and
standard deviation over all voxels that fulfill criterion (16).
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2.3.3 Biexponential fitting—Fiber bundles oriented in a plane perpendicular to the slice
direction were identified for further analysis. ROIs were drawn on the color-coded FA map
considering only voxels that are colored in red (left-right direction) and/or green (anterior-
posterior direction). In addition, ROIs for which the mean values of cL, cP and cS did not
fulfill criterion (16) were excluded. ROIs meeting the criteria described above were the
genu, midbody and splenium of the corpus callosum and selected parts of the left and right
part of forceps major (fmajor) and the inferior fronto-occipital fasciculus (ifo).

For each ROI and b-value (b = 0 – 7000 s/mm2), the signal of the DWIs acquired along the
slice direction was averaged. The mean signal S(b) was fitted by a biexponential function

(17)

with Ds ≤ Df. The fitting procedure was performed in Matlab using the trust region
algorithm with the robust option set to bisquare, enabling a fit that minimizes the summed
square of residuals, and down-weights outliers using bi-square weights. The fitted slow and
fast diffusion coefficients, Ds and Df, are then compared to the compartment diffusivities
along the slice direction, Da,slice and De,slice. Similarly, the fraction fbiexp corresponding to
Ds is compared to the AWF of our DKI WM model. The AWFs in the voxels of each ROI
were estimated by either Eq. (7), or by Eq. (8) where Da is selected as the maximum Da,min
over the whole ROI. To reduce the effect of noise, the maximum Da,min was approximated
as max(Da,min) ≈ mean(Da,min) + SD(Da,min), where SD is the standard deviation over the
whole ROI.

3 Results
This section shows the results of testing the new WM DKI model; first we evaluate the
parametric maps of three healthy young adults, then we show the comparison between the
DKI-derived AWF and the slow diffusion fraction as obtained from biexponential fitting in
WM regions where the biexponential model is physically justified.

3.1 Voxelwise analysis
The low b-value diffusion data acquired over multiple directions were used for testing the
DKI WM model. Parametric maps are shown in Fig. 2 for the WM metrics of interest (the
AWF based on Eq. (7); the axonal diffusivity, Da; the axial EAS diffusivity, De,∥; the radial
EAS diffusivity, De,⊥; and the tortuosity of the EAS, α) for an axial slice through the genu
and splenium of the corpus callosum of one subject. The AWF is highest in the splenium of
the corpus callosum. The IAS diffusivity Da is found to be smaller than the axial EAS
diffusivity De,∥, and both are observed to be the highest in the corpus callosum (~1.2 μm2/
ms and ~ 2.5 μm2/ms respectively), while the radial EAS diffusivity De,⊥ is found to be
slightly lower in those regions. Consequently, the tortuosity of the EAS, as defined by Eqn.
(15), is the highest in these regions of the corpus callosum.

The WM parameters are shown to be very reproducible between subjects. The histograms of
the WM parameters of the same subject as in Fig. 2 are shown in Fig. 3. The parametric
maps and histograms of the other two subjects appear to be very similar, which is
demonstrated in Fig. 4, plotting the mean values and standard deviation of the WM
parameters over all selected WM-voxels for each subject. Over all subjects, average values
and standard deviations were found for the AWF, f = 0.49 ± 0.07, the axonal diffusivity, Da
= 0.99 ± 0.18, the axial EAS diffusivity, De,∥ = 2.26 ± 0.31, the radial EAS diffusivity, De,⊥
= 0.87 ± 0.16, and the tortuosity of the EAS, α = 2.75 ± 1.13.
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For all the results shown in Figs. 2-4, only voxels were selected with a single fiber
orientation according to criterion (16), which were respectively 19%, 18% and 24% of all
WM voxels for the three subjects. In addition, a small number of voxels in the corpus
callosum near the ventricles (< 0.3% of all WM voxels) was excluded from the analysis in
which either D3 is artifactually small (< 0.08 μm2/ms) or De,∥ is artifactually high (> 3 μm2/
ms = diffusion coefficient of water at 37°C). To derive these ratios, a mask of all WM
voxels was created based on the segmented MPRAGE-images (cut-off probability of ≤ 0.99)
that were co-registered and resliced to the b = 0 – image.

3.2 Comparison to biexponential fit
The additional high b-value diffusion data acquired in the slice direction were used to
compare the DKI WM model to the biexponential model. ROIs were chosen such that the
voxels were in fiber bundles perpendicular to the diffusion gradient, i.e. the corpus callosum,
the forceps major and parts of the inferior fronto-occipital fasciculus. The biexponential
model, given by Eq. (17), fits the ROI-averaged b-dependent signal up to 7000 s/mm2 very
well for all ROIs (R2 ≥ 0.997), as illustrated in Fig. 5 for one subject.

The theory predicts that the fitted slow and fast diffusion coefficient, Ds and Df, correspond
to the IAS and EAS compartment diffusivities in the slice direction, Da,slice and De,slice,
respectively. The fitted slow diffusion coefficient Ds is on average 0.06 ± 0.02 μm2/ms,
whereas the fast diffusion coefficient Df is on average 0.75 ± 0.17 μm2/ms over all selected
ROIs. As a comparison, Da,slice is on average 0.08 ± 0.02 μm2/ms and De,slice is on average
0.86 ± 0.15 μm2/ms over the same ROIs as used in the biexponential analysis.

Similarly, the fraction fbiexp of the slow diffusion compartment in Eqn. (17) can also be
compared to the AWF derived using our DKI WM model, approximated either by fKmax in
Eq. (7) or by fDa in Eq. (8). To assess agreement between the parameters obtained from the
biexponential model on the one hand and the DKI WM model on the other hand, Bland-
Altman plots of the difference against their mean were created for each parameter set in Fig.
6 (Bland and Altman, 1986). The Bland-Altman plot for (Ds, Da,slice) is plotted in Fig. 6(a),
showing a mean bias of -0.03 μm2/ms and lower and upper limits of agreement of - 0.12
μm2/ms and 0.05 μm2/ms. The Bland-Altman plot for (Df, De,slice) is plotted in Fig. 6(b),
showing a mean bias of 0.22 μm2/ms and lower and upper limits of agreement of -0.05 μm2/
ms and 0.49 μm2/ms. The Bland-Altman plot for (fbiexp, fKmax) is plotted in Fig. 6(c),
showing a mean bias of 0.05 and lower and upper limits of agreement of -0.02 and 0.12, and
the Bland-Altman plot for (fbiexp, fDa) is plotted in Fig. 6(d), showing a mean bias of 0.01
and lower and upper limits of agreement of -0.04 and 0.07.

4 Discussion
DKI has been introduced as a clinically feasible technique to study restricted diffusion in
brain WM (Jensen and Helpern, 2010; Jensen et al., 2005). It is a fast and robust method that
quantifies the diffusion coefficient and diffusional kurtosis, both physically well-defined,
model independent, diffusion metrics. In this work, we provide a physical interpretation for
the diffusional kurtosis by augmenting the DKI metrics with an idealized model for WM
tissue, as described in detail in section 2.1.1. The WM is modeled here by two non-
exchanging compartments, the IAS and the EAS, as captured by Eq. (1). Similar multi-
compartment models based on the IAS and EAS are commonly used with high b-
valuediffusion data in brain WM (Alexander et al., 2010; Assaf et al., 2004; Jespersen et al.,
2007; Sen and Basser, 2005) and are shown to explain simulated and experimental data very
well (Fieremans et al., 2010b; Panagiotaki et al., 2009). We also note that other bi- and
multiexponential models have been proposed that take a form similar to Eq. (1), but model
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the diffusion originating purely from the IAS consisting of multiple fiber orientations
(Anderson, 2005).

Fitting Eq.(1) directly to the raw diffusion data is a hard non-linear problem that has, to our
knowledge, not been attempted and would likely be confounded by multiple local minima in
the parameter space. We provide here a straightforward and practical method to solve Eq.
(1) by utilizing the DKI metrics. In addition, our DKI-approach facilitates selecting the one
solution as being the most physically reasonable, as the derivation in appendix B shows how
the extra information contained in the kurtosis tensor allows one to resolve the sign
ambiguity of Eq. (B3 - B4) and conclude that De,i ≥ Da,i.

Applying model (1) to in vivo human WM DKI data yields estimates of the AWF and the
compartment-specific diffusion tensors, from which scalar parameters of potential interest
can be derived, such as the radial and axial intra- and extra-axonal diffusivities and the
tortuosity of the EAS. All these parameters values are consistent between subjects (Fig. 4)
and agree with prior studies as discussed below in more detail. We also discuss how this
approach can be useful in clinical applications, and finally we address some potential
limitations.

4.1 Model Parameters
The axial compartment diffusivities, Da and De,∥, provide estimates for the intrinsic intra-
and extra-axonal diffusion coefficient of water in human WM. The axial diffusion is found
to be higher in the EAS than in the IAS, which follows from Appendix B and is illustrated in
Fig. B.1. This observation can be understood by the presence of cytoplasm and organelles in
the IAS that plausibly slows down the diffusion. A similar experimental finding has been
reported in fixed rat brain WM (Jespersen et al., 2010), in which a two-compartment model
was used to interpret the high b-value diffusion data.

The best estimate for the “free” intra- and extra-axonal diffusion coefficients of water in
human WM are probably the values of Da and De,∥ in those voxels of the corpus callosum
with the strongest fiber alignment. The IAS diffusion coefficient Da is then about 1.2 μm2/
ms, resulting in 0.4 for the ratio of Da relative to the free diffusion constant of water at 37°C.
Remarkably, Kroenke et al. (2004) obtained the same ratio for the in vivo measured parallel
diffusion coefficient of NAA in the corpus callosum relative to its diffusion coefficient in
dilute aqeous solution. That study also reports a higher ratio of 0.46 as measured in large
voxels within rat brains. Differences might be due to imperfect fiber alignment within the
voxel, and/or the fact that NAA diffuses much slower than water (0.36 μm2/ms versus 1.2
μm2/ms). As a result, NAA has a shorter diffusion length (6 μm) than water (11 μm), and its
diffusion is thus less hindered by intra-axonal restrictions such as axonal varicosities, that
have an overall mean spacing of 5.2 μm (Shepherd and Raastad, 2003). The IAS diffusivity
in the direction perpendicular to the fibers, Da,slice, is found to be almost zero, which
supports the assumption that the diffusion in the IAS is almost fully restricted.

The axial EAS diffusion coefficient in the corpus callosum is about 2.5 μm2/ms, which is
17% lower than the free diffusion constant of water at 37°C (3 μm2/ms), indicating that the
water molecules are only weakly hindered by membranes in the EAS in the direction along
the fibers. The radial EAS diffusivity, De,⊥, is found to be much smaller than De,∥, which
supports the EAS diffusion in the direction perpendicular to the fibers being strongly
restricted.

The EAS tortuosity provides an indirect measure of the myelinated axonal fraction
(including the myelin), as it increases for decreasing EAS volume fraction (Fieremans et al.,
2008). The higher tortuosity values observed in the corpus callosum (Fig. 2) can be
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explained by the presence of myelin and a high axonal density. The mean value α = 2.79 we
found in this study for WM is close to literature values. As a comparison, a mean tortuosity
value α = 3.1 has been measured in brain extracellular space (Kroenke and Neil, 2004) using
diffusion MRI. Similarly, a mean tortuosity value α = 2.89 has been found for the corpus
callosum of adult rat brain using the standard iontophoresis method with
tetramethylammonium (TMA) as probing molecule (Syková and Nicholson, 2008) (this
value is derived from the reported value of 1.7 for the tortuosity, operationally defined as

, and squared according to our definition Eq. (15)).

The AWF provides a measure of the IAS water volume relative to the EAS water volume
and neglects the myelin water that practically does not contribute to the DWI signal due to
fast transverse relaxation. This parameter should not be confused with the total cellular
volume fraction of approximately 0.8, as the EAS also contains glial cells. The highest AWF
values are observed in the corpus callosum, as shown in Fig. 2 and Fig. 6, as expected. The
mean value f = 0.49 we found in this study for WM is in good agreement with normalized
water fractions as estimated using multiexponential analysis of T1- and T2-relaxation
measurements in human WM (Hwang et al., 2010; Lancaster et al., 2003; Lancaster et al.,
2005) and rat trigeminal nerve (Does and Gore, 2002). Our results confirm that in the WM
there is no real disagreement between the fast and slow diffusion fractions from the
biexponential fit and the physical water fractions of the EAS and IAS (Assaf and Basser,
2005; Maier et al., 2004).

When neglecting the contribution of the myelin volume, the measured AWF can be
compared to histological volume fractions: Tang et al. (1997) performed stereology on
human WM and found a mean value of 0.33 for the volume fraction of myelinated fibers.
This value agrees well with the earlier reported mean AWF-value of 0.3 over all WM voxels
with FA > 0.25 (Fieremans et al., 2010a). The mean AWF-value of 0.49 we report here is
higher, probably because we limited this study to those WM-voxels (according to Eq. (16))
that have the highest fiber density. For example, the AWF-values we find in the corpus
callosum (Fig. 6) compare favorably to the reported value of about 0.7 for the axonal
volume density of the commisura anterior of rat brain based on AMG staining (Jespersen et
al., 2010).

4.2 Comparison to the biexponential model
The values we find for the AWF using DKI data are also similar to the values found in other
advanced multi-compartment models that typically require analysis of high b-value diffusion
data (Alexander et al., 2010; Jespersen et al., 2010; Jespersen et al., 2007; Panagiotaki et al.,
2009). We compared the DKI WM model here against the biexponential model using high
b-value data. Assuming that the fraction of the slow diffusion component corresponds to the
axonal compartment, we find a reasonable agreement between this fraction and the AWF.
Although the agreement seems slightly better for the AWF based on an ROI estimate of Da
(Eq. (8)) in Fig. 6 (d)), the voxel-based approach (Eq. (7)) in Fig. 6 (c)) is more objective
and easier to implement, while also providing a fairly good estimate. These preliminary
results suggest that approximately the same information about compartment diffusivities and
the AWF can be derived from DKI-data as from high b-value diffusion data using
biexponential or more complicated fitting. The advantage of our approach is that the DKI
data-acquisition time is much shorter because the DKI WM-analysis requires only low b-
values (up to 2000 s/mm2) and puts less demand on the hardware. Thanks to the relatively
low b-value range, DKI also provides an adequate signal-to-noise (SNR) making the
technique useful in a clinical setting.
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Another potential advantage of the DKI WM model over other advanced high b diffusion
models lies in the fact that because of the smaller b-range, the two-compartment model has a
broader applicability in the case of voxels containing non-collinear axons. For the data
analysis and ROI selection, we applied a mask that selected voxels with a homogeneous
axon orientation (Eq. (16)). Whereas this mask is most likely a prerequisite for applying
biexponential fitting using high b-value diffusion data, the derivation in section 2.1.1
(together with Fig. 1 and Appendix A) suggests that the DKI WM model might be valid in
significantly more voxels than those selected by the WM mask. Future work will investigate
in more detail the applicability of the DKI WM model in less highly oriented voxels.

4.3 Applications
This model offers new perspectives for the clinical assessment of WM tissue. DKI is
relatively easy to implement on clinical scanners and a typical DKI protocol requires 7 to 20
minutes for full brain coverage depending on the hardware and imaging parameters (Jensen
and Helpern, 2010; Tabesh et al., 2010). The current DKI WM model then allows for the
estimation of various microstructural parameters from the DKI data, such as the
compartment diffusivities and the water fractions of each compartment. The axonal water
fraction is formally determined by the maximum kurtosis over all directions (Eq. (7)), but
can in practice often be approximated by the radial kurtosis. The axial kurtosis reflects then
the diffusional heterogeneity between the IAS and the EAS.

These parameters may help elucidate the meaning of changes in DKI metrics as observed in
clinical studies. As an example, Jensen et al. (2010) reported substantial increases in the
mean kurtosis within ischemic lesions for stroke patients. More specifically, for the lesions
with strongly oriented axon bundles, the increase in the axial kurtosis was much greater than
that in the radial kurtosis. Using our approach, it follows then naturally that this change is
due to a large decrease of the intra-axonal diffusivity, as also suggested in their study. The
AWF and the tortuosity are likely to be sensitive to changes in the number of axons, the
myelin volume and axonal geometry and could potentially provide important information for
assessing, e.g. multiple sclerosis (Inglese and Bester, 2010; Warlop et al., 2009; Warlop et
al., 2008), Alzheimer's disease (Bartzokis), and other neuro-psychiatric and/or neuro-
degenerative disorders that may be related to myelin dysfunction (Nave, 2010). More
advanced analysis methods such as tract-based spatial statistics (TBSS) (Smith et al., 2006)
and tractometry (Bells et al., 2011) seem particularly well suited for our model, as these
naturally restrict the analysis to WM voxels consisting of strongly aligned fibers. Future
work will focus on the clinical applications of the DKI WM model.

4.4 Limitations
The present WM model is highly idealized, with some aspects of water diffusion in WM not
explicitly included. One such limitation is that the CSF is not considered as a separate
compartment. A possible effect of different transverse relaxation times for the intra- and
extra-axonal compartments is also neglected, that may influence the estimates of the AWF
and the tortuosity (Frøhlich et al., 2008). Furthermore, the DKI WM model is based on
relatively low b-values diffusion data in a small number of diffusion directions, which
inherently limits the amount of information that can be extracted. This is in contrast to other
advanced diffusion models, based on high b-value and/or many gradient directions, aiming
to characterize the axon diameter, diameter distribution or fiber orientation distribution
(Alexander et al., 2010; Assaf et al., 2008; Barazany et al., 2009; Jespersen et al., 2010). The
limited information available in a DKI-dataset, due to its low b-value and limited angular
information, makes it impossible to incorporate all of these as well as some other features
into our model. Nonetheless, our proposed DKI WM model seems to be a useful description
of the actual biophysical structure that yields realistic values for all microscopic parameter
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values included in the model. Important advantages of our approach are both its simplicity
and the practical benefits of only requiring relatively low b-value diffusion data.

5 Conclusion
We have proposed an idealized two-compartment no exchange diffusion model of white
matter suitable for analysis with diffusional kurtosis imaging (DKI) diffusion metrics. Based
on this model, standard DKI metrics can be used to estimate the intra- and extra-axonal
diffusivities, the axonal water fraction, and the tortuosity of the extra-axonal geometry.
Values for these parameters obtained in healthy young adults agree well with those of prior
studies. The axonal water fraction and the tortuosity provide information related to axonal
and myelin density, which may be useful in assessing myelin-associated neuropathologies.
Since a DKI dataset can be acquired within a few minutes, this approach can be applied for
the quantitative assessment of white matter tissue properties in a clinical setting.
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Appendix A: Gaussianity condition for axonal bundles
The bundles of axons are regarded as Gaussian compartments in our DKI WM model. We
propose criterion (5) to test the validity of this assumption. Here we apply this criterion for
the two axonal compartment geometries discussed in section 2.1.1. For that, we derive
expressions for the compartmental D and K in these systems.

The first example discussed in section 2.1.2 is a voxel consisting of two crossing fiber
bundles, oriented at polar angles (θA, θB) relative to a particular diffusion direction of
interest, as illustrated in Fig. 1 (a). When idealizing the axons as having zero radius, the total
axonal diffusion coefficient in such a system is given by

(A.1)

where we have assumed for simplicity the two bundles have the same water fractions and Da
is the free intra-axonal diffusivity. The kurtosis for a given direction is derived using the
standard formula for the multiple compartment kurtosis (Jensen and Helpern, 2010):

(A.2)

Substituting Eqs. (A.1) and (A.2) in the b-value criterion for Gaussianity (5), yields Eq. (6)
in section 2.1.2.

Next, we consider the general case of axons that are oriented according to a direction
distribution of F(n), where n is a unit vector parallel to a particular axon. The distribution of
directions is normalized so that

(A.3)
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where dΩn is a solid angle element and the integral is taken over all possible directions. The
diffusion coefficient in a direction n is then given by

(A.4)

and, similarly, the diffusional kurtosis is given by

(A.5)

Now let us consider a spherical coordinate system with n corresponding to the z-axis. Then
we have

(A.6)

where

(A.7)

with (θ, ϕ) being the usual spherical angles. Note that G(θ) is normalized so that

(A.8)

Now we consider the 2nd example of axons in a nearly coplanar configuration with the
diffusion gradient applied perpendicular to the axons. Let us assume that the axons are
uniformly distributed within a range of angles defined by

(A.9)

One may readily verify that the model of Eq. (A.9) satisfies the normalization condition of
Eq. (A.8). Combining Eqs. (A.4)-(A.9) results in the compartment diffusivity and kurtosis:

(A.10)

and

(A.11)

independent of θ0, which using criterion (5), leads to the b-value condition
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(A.12)

So even for a π/2-range (θ0 = π/4), taking Da = 1 μm2, we find b ≤ 2500 s/mm2, which is
adequate for DKI.

Appendix B: Derivation of DKI WM parameters
Here we outline the derivations of some of the basic results presented in the section 2.1.3.
To develop the DKI WM model, we choose an arbitrary reference frame where D1, D2, D3
are the measured diffusion coefficients along the axis directions 1, 2 and 3 and K1, K2, K3
the corresponding kurtoses. The diagonal elements of the compartmental diffusion tensors
Da and De in Eq. (1) in this basis are Da,1, Da,2, Da,3 and De,1, De,2, De,3 respectively. By
modeling the system as two non-exchanging compartments, the overall diffusion
coefficients, D1, D2, D3, can be described as a function of the model parameters:

(B.1)

for i = 1, 2 and 3, where f is the volume fraction of the IAS.

Similarly, the along axis kurtoses, K1, K2 and K3, are related to the model parameters by

(B.2)

for i = 1, 2 and 3.

With a given estimate for f, Eqs. (B.1) and (B.2) can be inverted resulting in:

(B.3)

and

(B.4)

for i = 1, 2 and 3.

For the small axon approximation, one can show that

(B.5)

where Da is the free longitudinal intra-axonal diffusion coefficient along the axis. In
addition, the mean extra-axonal diffusivity is
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(B.6)

We first resolve the sign ambiguities in Eqs. (B.3) and (B.4) in the reference frame in which
the overall D is diagonal: Taking De,3 ≥ Da,3 makes physical sense since the 3rd direction
(which by assumption has the smallest diffusion coefficient) should be roughly
perpendicular to the axon direction. Thus, we take the upper sign for the 3rd direction. The
signs for the 1st and 2nd directions are then determined by

(B.7)

which is, theoretically, 1 for the upper sign and –1 for the lower sign. In Eq. (B.7) Wijkl is
the kurtosis tensor, here defined in the frame of reference where the overall D is diagonal.
The derivation of Eq. (B.7) follows from the properties of the kurtosis tensor as described by
(Jensen et al., 2005; Lu et al., 2006) but is omitted due to length considerations. Empirically
ηi is found to be about 1 for most voxels in healthy young brain, as illustrated in the example
in Fig. B.1 (a) and (b). Hence, De,i ≥ Da,i. in the eigenframe in which the overall D is
diagonal.

Next, we show that De,i ≥ Da,i.also holds in arbitrary frames as long as Kmin> 0: From Eqs.
(B.1), (B.5), and (B.6), we see that

(B.8)

where D ̄ ≡ (D1 + D2 + D3)/3 the total mean diffusivity. Applying Eq. (B.2) leads to

(B.9)

Combining with Eq. (B.8) yields the following expression:

(B.10)

Note that the right side of Eq. (B.10) is independent of the choice of reference frame. The
same must then be true for the left side. Now let us assume that we start in the eigenframe of
the overall D for which ±i = + for i = 1, 2, 3 and imagine continuously rotating the reference
frame so that the values for (D1, D2, D3) and (K1, K2, K3) also change continuously. For the
left side, continuity implies that the sign ambiguity ±i can only flip for a reference frame in
which Di and/or Ki vanish. For brain tissue, we know that Di does not vanish, as all the
diffusion tensor eigenvalues are positive. Thus, we can only have a sign flip if there is a
diffusion direction for which Ki vanishes. As a corollary, we see that if Kmin> 0, where Kmin
is the kurtosis minimum for all directions, then if the upper signs apply in one frame of
reference then they must also apply in all reference frames. Empirically, Kmin is found to be
positive (> 0) for most voxels in healthy young brain white matter, as illustrated in the
example in Fig. B.1 (c). Therefore, we take the upper in sign in Eqs. (B.3) and (B.4)
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henceforth, so that De,i ≥ Da,i in any frame of reference. With this preferred sign choice,
Eqs. (B.3) and (B.4) can be rewritten as Eqs. (10) and (11) in section 2.1.3.2.

In order to derive expressions for f, we express first all the undetermined model parameters
in Eqs. (B.1) and (B.2) via Da, the free longitudinal intra-axonal diffusion coefficient along
the axis, and then try to estimate Da. According to our sign choice, solving Eq. (B.10) for f
gives

(B.11)

Thus the AWF can be found from the DKI measurements plus an estimate for Da. What is
left now is to estimate Da. The physical requirement Da,i ≥ 0, combined with Eq. (B.4),
yields the condition

(B.12)

Applying this to Eq. (B.10) leads to

(B.13)

We then have the lower bound of

(B.14)

So the largest kurtosis value Ki = Kmax in the denominator gives the best lower bound and
hence the best estimate for Da.

Now let us define

(B.15)

where we vary the right hand side over all voxels within a specified ROI. We may then

reasonably make the approximation . This would be exact if the axons are perfectly
aligned in any of the voxels.

Eqs. (B.11) and (B.14) are equivalent to Eqs. (8) and (9) in section 2.1.3.1. For ROI
consisting of a single voxel, Eq. (B.11) simplifies in combination with Eq. (B.15), resulting
in Eq. (7).

Abbreviations

ADC apparent diffusion coefficient
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AWF axonal water fraction

DTI diffusion tensor imaging

DKI diffusional kurtosis imaging

DWI diffusion weighted imaging or diffusion weighted image

EAS extra-axonal space

FA fractional anisotropy

IAS intra-axonal space

MD mean diffusivity

MRI magnetic resonance imaging

ROI region of interest

SD standard deviation

WM white matter
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Highlights

• DKI is a clinically feasible extension of DTI to probe restricted diffusion in
tissue

• We provide a physically meaningful interpretation of DKI metrics in white
matter

• White matter parameters: intra- and extra-axonal diffusivities, axonal water
fraction

• White matter parameters estimated in vivo in healthy brain agree with prior
knowledge

• Convenient method for the clinical assessment of white matter in health and
disease
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Fig. 1.
Illustration of the b-value dependence of the criterion of Eq. (6) for determining whether the
diffusion is effectively Gaussian in an axonal compartment consisting of two crossing fibers
oriented at polar angles (θA ,θB) relative to a particular diffusion direction of interest, as
illustrated in Fig. 1(a). Depending on the polar angles (shown in degrees), this system can be
considered a “Gaussian compartment” when the (Dab) is smaller than the plotted values in
Fig. 1(b), with Da the free intra-axonal diffusivity. The central portion of the plot and the
corner regions correspond to the most Gaussian diffusion.
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Fig. 2.
WM parametric transversal maps as overlays on the MPRAGE image of a healthy young
control: (a) the AWF according to Eq. (7); (b) the axonal diffusivity according to Eq. (12);
(c) the axial EAS diffusivity according to Eq. (13); (d) the radial EAS diffusivity according
to (Eq. (14); (e) the tortuosity of the EAS accordign to Eq. (15). A mask was applied to the
parametric maps that selects regions with aligned fibers according to Eq. (16).
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Fig. 3.
Histograms of the WM parameters of a healthy young control over all WM voxels
consisting of aligned fibers (according to Eqn. (16)): (a) the AWF according to Eq. (7); (b)
the axonal diffusivity according to Eq. (12); (c) the axial EAS diffusivity according to (Eq.
(13); (d) the radial EAS diffusivity according to Eq. (14); (e) the tortuosity of the EAS
according to Eq. (15). The histograms of the other 2 subjects look very similar (not shown
here).

Fieremans et al. Page 27

Neuroimage. Author manuscript; available in PMC 2012 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Mean values of the WM indices in 3 healthy young adults: (a) the AWF according to Eq.
(7); (b) the axonal diffusivity according to Eq. (12); (c) the axial EAS diffusivity according
to (Eq. (13); (d) the radial EAS diffusivity according to Eq. (14); (e) the tortuosity of the
EAS according to Eq. (15). The error bars represent the standard variation for all WM
voxels consisting of aligned fibers (mask according to Eqn. (16)).
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Fig. 5.
The decay of the DWI-signal relative to the b = 0 – signal for different fiber bundles with
the diffusion gradient applied in the direction perpendicular to the fiber bundle. The solid
lines represent the optimal biexponential fits.
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Fig. 6.
Comparison between the parameters obtained from biexponential fitting to high b-value
diffusion data in the slice direction of the patient coordinate system and the DKI-WM model
parameters for ROIs with the main fiber direction parallel to the AC-PC plane. Bland-
Altman plots are shown assessing the agreement between: (a) the slow diffusion coefficient,
Ds, and IAS diffusivity, Da,slice; (b) the fast diffusion coefficient, Df, and EAS diffusivity,
De,slice; (c) the biexponential slow component volume fraction fbiexp, and the AWF fKmax
(Eq. (7)); (d) the biexponential slow component volume fraction fbiexp, and the AWF fROI
(Eq. (8)). In each plot, the mean bias and limits of agreement are indicated by the solid and
dashed lines, respectively. The radial EAS diffusivity is lower, and the AWF higher, in the
ROIs in the corpus callosum (□) than in the ROIs of the forceps major (●) and inferior
occipital fasciculus (●).
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Fig. B.1.
Histograms of (a) η1, and (b) η2, as defined in Eq. (B.7), and (c) Kmin (the minimum kurtosis
minimum for all directions) over all non-CSF voxels of the brain of a healthy young control.
The η-values show a reasonably narrow distribution centered around 1 (with standard
deviations SD = 0.3), which corresponds to the upper sign solution of Eqn. (B.3) and (B.4)
and indicates that De,i ≥ Da,i in the brain. The finite SD may reflect measurement noise as
well as the approximate nature of our model. We also noted negative η-values in a very
small number of voxels of the corpus callosum (< 0.2 % of all WM-voxels), but neglected
those voxels as the corresponding D3-values were very small which makes the
corresponding kurtosis tensor elements difficult to be determine accurately. The Kmin values
show a distribution of predominantly positive values centered around 0.58 (with standard
deviation SD = 0.22), indicating that De,i ≥ Da,i in any frame of reference.
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