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Abstract
Diffusion-weighted images of the human brain are acquired more and more routinely in clinical
research settings, yet segmenting and labeling white matter tracts in these images is still
challenging. We present in this paper a fully automated method to extract many anatomical tracts
at once on diffusion tensor images, based on a Markov random field model and anatomical priors.
The approach provides a direct voxel labeling, models explicitly fiber crossings and can handle
white matter lesions. Experiments on simulations and repeatability studies show robustness to
noise and reproducibility of the algorithm, which has been made publicly available.
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1. Introduction
Diffusion-weighted imaging (DWI) has become a major tool for the in vivo study of
connectivity in the human human brain in health and disease (Bihan et al., 2001; Basser and
Jones, 2002). Clinical researchers have been increasingly interested in using DWI in their
studies, and have widely adopted diffusion tensor derived indices of white matter (WM)
integrity such as fractional anisotropy (FA) and mean, parallel and perpendicular diffusivity
(Horsfield and Jones, 2002). Furthermore, recent works have shown that a tract-based
analysis of the white matter has the promise to offer a deeper insight into its characteristics
in health and disease (Reich et al., 2006; Yushkevich et al., 2008; O’Donnell et al., 2009).

Obtaining an anatomical segmentation of white matter tracts, however, has proven to be
difficult for several reasons. DWI tractography, which provides information about the
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connections between remote regions of the brain (Mori and van Zijl, 2002), does not directly
lead to the characterization of fiber bundles (tracts) corresponding to known anatomy, and
requires grouping, trimming, and labeling of the numerically computed fibers (Mori et al.,
2005; Kouby et al., 2005; O’Donnell and Westin, 2007; Maddah et al., 2007; Lawes et al.,
2008; Ziyan et al., 2009; Mayer et al., 2011). Fiber tracking reliability can further vary with
imaging resolution, noise and patient orientation (Wakana et al., 2007) as well as decreased
anisotropy or lesions that occur with disease, and more advanced methods (Tuch, 2004;
Behrens et al., 2007; Jones, 2008; Descoteaux et al., 2009; Reisert et al., 2011) require
longer imaging times, often impractical for clinical imaging. Finally, the presence of
pathology influences many of these methods and may confound the results in studies of
diseases involving WM lesions (Reich et al., 2010).

Alternative approaches have been proposed to represent and study the white matter, most
prominently a skeleton representation built on the FA map (Smith et al., 2006) and a region-
based parcellation (Mori et al., 2008). Both methods rely on deformable registration
strategies to align the diffusion images to labeled templates or group averages (Yang et al.,
2008; Ceritoglu et al., 2009). These methods provide indirect information about the tracts
and may be misled by WM lesions, which disrupt the FA map and provide undesirable
features for registration algorithms to match between subjects.

In this work, we present a new approach to fiber tract segmentation capable of accurate
performance on routine clinical acquisitions. With an atlas-based Markov random field
(MRF) representation, we derive a fast, scalable estimation algorithm to reliably segment
most of the major anatomical fiber tracts within the human brain. The approach bypasses
tractography and associated issues and is therefore considered a “direct” tract segmentation
approach. Our approach models overlapping and crossing fibers and robustly handles the
presence of noise and white matter lesions without manual initialization or pre-filtering. The
method was tested and validated on simulations and repeatability studies, and has been
successfully applied to the analysis of WM tracts in multiple sclerosis (MS). The algorithm
(coded in the cross-platform Java programming language) together with its statistical tract
atlas are available for free on the NITRC.org website.

1.1. Related Works
Previous methods for direct tract segmentation include a method based on level sets (Lenglet
et al., 2006), one using non-parametric fuzzy classification (Awate et al., 2007), and tensor-
space clustering approaches (Goh and Vidal, 2008; Rodrigues et al., 2009). These methods
required the specification of initial regions of interest (ROIs) corresponding to specific tracts
of interest. Some probabilistic tractography methods evaluate the connection strength
between regions or voxels (Parker and Alexander, 2003; Fletcher et al., 2007; Yendiki et al.,
2008); however, the connection pathways they can define are not necessarily identifiable as
known anatomical tracts.

Recent studies indicate that multi-atlas registration combined with image-based
segmentation approaches have improved accuracy (Heckemann et al., 2010). Indeed,
statistical atlas-based approaches incorporated in voxel classification techniques (Maddah et
al., 2008; Hagler et al., 2009) or in parametric deformable models (Eckstein et al., 2009)
have shown some promising results for segmenting anatomical tracts. In particular, (Hagler
et al., 2009) proposed to use a statistical atlas essentially equivalent to the one presented
here. However, these methods have so far considered each fiber tract as a separate structure
without explicitly addressing either joint segmentation or crossing tracts. MRFs have been
previously considered for regularizing diffusion tensors (Poupon et al., 1998), but have not
been used for segmentation. Our work brings together MRF modeling and atlas-based
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segmentation in a global and computationally efficient algorithm that explicitly handles fiber
crossings and lesions in clinical-quality images.

2. Methods
Our segmentation method combines the global information of location and direction
contained in a probabilistic atlas of known white matter tracts with the local diffusion
information obtained from the image within a MRF model (Li, 2009). In a MRF, the
conditional probability distribution for the labels l at x is entirely determined by the
conditional probability distribution in their neighborhood. Due to the Hammersley-Clifford
theorem, the joint distribution follows a Gibbs distribution:

(1)

for a MRF including a unary term V1(x, l) and a pairwise term V2(x, y, l, m), with y and m
the location and label of a voxel in the neighborhood of x, l, T a scaling parameter and Z a
normalization factor. The terms V1 and V2 are often referred to as energy terms, and we will
also use U(x, l) = V1(x, l) + ∑y,m V2(x, y, l, m) to denote the overall energy at voxel x. In our
model, the unary term V1(x, l) combines the tensor direction and diffusion characteristics of
the data with the tract atlas to encode the likelihood of each label l at x, and the pairwise
term V2(x, y, l, m) encodes the local connections between neighboring diffusion tensors.

As it is well known that there is extensive overlap and crossing between multiple tracts at
the current voxel resolution in diffusion MRI, it would be unrealistic to expect a given voxel
to contain a single tract everywhere, and so our set of labels {l} must not only include labels
for each separate tract but also overlapping tracts within a single voxel. To avoid
combinatorial explosion, we limit ourselves to a maximum of two tracts per voxel and
exclude unlikely pairs (see Section 2.4). The approach can in principle be extended to
multiple overlaps, provided that the underlying diffusion information is sufficient to
differentiate multiple crossings from isotropic regions.

To obtain a tract segmentation, we need to first model V1 and V2 as a function of the
diffusion data for the possible labels and then to maximize P({l}) with respect to the label
field {l}. The resulting segmented tracts are represented by membership functions
(probabilistic assignments at each voxel) and can be analyzed in a variety of ways including
computation of tract volume and determining average diffusion properties (e.g., FA, MD).

Our segmentation algorithm, referred to as Diffusion-Oriented Tract Segmentation (DOTS),
is organized as follows. First, the diffusion weighted images are combined and pre-
processed to obtain tensor images (Section 2.1). DOTS starts by registering our probabilistic
atlas (described in Section 2.2) to the DTI data, and then using the MRF model to estimate
the posterior probability of the voxel label given the data (Section 2.3). The model
incorporates information about the local anisotropy (Section 2.3.1), the connectivity between
neighboring voxels (Section 2.3.2) and the statistics of the atlas (Section 2.3.3). Section
2.3.4 brings all the different components of the MRF into the probability function P({l}) to
be maximized by the algorithm. Additional optional modeling is provided to exclude
anatomically irrelevant crossing configurations (Section 2.4) and to handle white matter
lesions (Section 2.5). Additional implementation details are given in Section 2.6.
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2.1. Diffusion-weighted image pre-processing
To process a series of diffusion-weighted images, we first perform a tensor reconstruction to
get a set of diffusion eigenvectors and associated eigenvalues {υ⃗n(x), λn(x)}1, N at each voxel
x with the standard linear reconstruction method (Basser and Jones, 2002). The images are
first aligned to the b0 image and corrected for distortions against a structural image within
the CATNAP software (Landman et al., 2007). Extra-cranial tissues are removed with an
automatic skull-stripping method (Carass et al., 2007) applied to a co-registered structural
image or using a semi-automatic method (Bazin et al., 2007) applied to the mean diffusivity
image if a structural image is not available.

2.2. White Matter Tract Atlas
Our statistical atlas is based on the atlas of Mori and Wakana (Mori et al., 2005). Following
the atlas tract definitions and delineation protocols, we obtained a set of semi-manual
delineations of major tracts, which we augmented with additional expert delineations of a
few other tracts of interest. All tracts were delineated using tractography and multiple
regions of interest (ROI) selection in DTI Studio.1 Our standard atlas currently includes the
following fiber tracts (separated for left and right when applicable): anterior, superior, and
posterior thalamic radiations, corpus callosum and tapetum, inferior and superior
longitudinal and fronto-occipital fasciculi, cingulum, fornix, uncinate fasciculus, optic tract,
optic radiation, cortico-spinal and cortico-pontine tracts, medial lemniscus, inferior, middle,
and superior cerebellar peduncles (see Table 1).

Our atlas includes both the spatial probability pl(x) of the existence of label l at voxel x as
well as the most probable diffusion direction d̄l(x) along the tract. Deterministic tractography
usually provides very conservative delineations, including only the portion of the tracts that
can be reconstructed through multiple ROIs. For this reason, we extended the definition of
the tracts in the vicinity of the delineated regions with a smoothing function:

(2)

where  is the delineated tract region,  the smoothed delineation, k a smoothing

kernel,  the principal direction at voxel x in image t for tract l, and N (x) is the
neighborhood defined by the smoothing kernel. Note that the directions are meaningful at
first only inside the delineated regions , and must be extrapolated from higher probability
to lower probability regions. The directions are orientation-independent (i.e. d̄ and −d̄ are
the same direction), so the sums of directions are performed as follows:

(3)

where d⃗ is the oriented vector corresponding to direction d̄. The averaged direction in Eq. (2)
may not have unit norm, unless all the directions are the same. This provides information
about the uncertainty in direction at each location in the atlas. In this work we use a linear
smoothing kernel of radius 5 mm to construct our atlas. The size of the kernel has some

1http://www.mristudio.org/
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impact on the segmentation, as a larger scale is better at representing tracts with large
individual variations but also increases the risk of mislabeling regions with too many
overlapping candidates. Our experiments however indicate that a small but reasonable
smoothing (5 mm corresponds to about two voxels at the atlas’s original resolution)
improves the results.

Examples from the atlas are given in Figure 1. Although this atlas includes most of the
major WM tracts in the human brain, the segmentation also includes isotropic regions like
the gray matter structures or the ventricles, and some undefined regions of white matter, for
instance the “U” fibers that connect neighboring gyri of the cortex. We model the isotropic
regions by creating a low anisotropy mask (FA ≤ 0.1) and we capture the undefined white
matter regions by subtracting from the opposite mask (FA > 0.1) any region included in one
of the tracts defined above.

2.3. Markov Random Modeling of Diffusion
Given the DTI data and the statistical atlas above, we derive below the terms of the MRF
model of Eq. (12): unary terms representing local diffusion properties of the tensor and the
contributions of the tract atlas in terms of shape and direction, and a binary term
representing connectivity between neighboring tensors.

Our set of possible labels includes the individual tracts listed in Table 1, undefined fiber
tracts and isotropic regions, as well as overlapping pairs of tracts. In the following, we
describe general properties that apply to any individual tract, group of overlapping tracts or
isotropic region independently of the specific label. Let us denote by T, O, and I general
attributes of the single tract, overlapping tracts and isotropic regions respectively.

2.3.1. Diffusion Type—At every voxel x, we can have one of three types of structures in
this model: isotropic diffusion, diffusion along a single tract, or diffusion along multiple
tracts overlapping or crossing. To model the type of diffusion, we use indices of diffusion
along a single tract (T), overlapping tracts (O), and isotropic regions (I) derived from the
linear, planar and spherical indices of (Westin et al., 2002):

(4)

Note that water may still diffuse along a single direction for overlapping but aligned tracts,
so we cannot differentiate between the two in regions of linear diffusion and dO ≥ dT (see
Fig. 2b).

2.3.2. Local tensor connectivity—The evidence for fiber tracts comes from the
diffusion tensors: if two tensors are aligned they likely correspond to the same tract or
overlapping tracts. The connectivity between neighboring tensors is modeled as follows,
assuming a single tract:

(5)

where υ⃗xy represents the direction vector between voxels x and y, υ ⃗1(x) and υ⃗1(y) represent

the principal eigenvector directions at x and y, and  arccos(|υ ⃗1 · υ ⃗2|). The
function θ(υ⃗1, υ ⃗2) gives the angle between directions υ ⃗1 and υ⃗2 normalized in [0, 1]. Because
it is linear, it is more sensitive to small angular variations than the product υ⃗1 · υ ⃗2. In some
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of the following cases, the vectors in this formula have less than unit norm as a way to
encode uncertainty in their direction as a lower bound on angles. In such cases, the function

θ(υ ⃗1, υ ⃗2) returns values in [α, 1], where  arccos(|υ1| |υ2|). Note that other measures
involving the complete tensor are possible and they may be interesting to explore in the
future.

The similarity function sT(x, y) is close to +1 when the diffusion directions at x and y are
aligned with each other and with the path from x to y. If both diffusion directions are
orthogonal to that path, we cannot assume that they are related even if they are aligned:
many fiber tracts have “kissing” fibers that follow the same direction before diverging. In
such cases, sT(x, y) goes to zero in order to model the uncertainty. When the diffusion
directions are orthogonal and one of them is aligned with the path, then it is clear that both
points cannot be part of the same tract, which translates into a negative value up to −1 (see
Fig. 2c–e).

For crossing or overlapping fibers, the main diffusion direction can easily switch from υ⃗1 to
υ ⃗2 if the tensor is “flat”, and so we extend the connectivity to consider the secondary
directions:

(6)

The first part of this equation means that we select the pair of directions at x and y that are
best aligned among the first two eigenvectors {υ⃗1(x), υ ⃗2(x), υ ⃗1(y), υ ⃗2(y)}.

We penalize the υ⃗2 by  to account for the uncertainty due to the fact it is required to be
orthogonal to υ⃗1. Note also that these directions are not the true fiber directions, which
cannot be retrieved with the tensor representation. However, the erroneous tensors will be
similar and share directions as long as the two fibers are crossing along similar directions
and the diffusion is slightly stronger in one direction. In practice, many regions of overlap
between the tracts that we can observe at clinical resolution involve primarily kissing fibers
as opposed to crossing ones, for which the principal direction of diffusion as estimated from
a tensor reconstruction is still meaningful.

Finally, isotropic regions are assumed to have uniform connectivity sI(x, y) = sI, given as a
prior parameter. The value of sI will influence how labels from isotropic regions propagate
into anisotropic ones as compared to fibers and overlapping regions. Because all the regions
evolve simultaneously, we set sI = 1/Nt in our experiments, where Nt is the total number of
regions in the atlas.

2.3.3. Atlas information—The atlas provides a prior on tract location pl and tract
direction d̄l, which is integrated in the MRF model through a shape prior term ul and a
direction coefficient cl as follows.

Because we allow the presence of multiple tracts at a location, the prior probability for a
particular label defined by the atlas cannot be used directly. Instead, we define the shape
prior term ul(x) for a single tract l as follows:
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(7)

giving high values where the prior probability pl(x) is high and likely to be a single tract (∑m
pm(x) ≈ pl(x), for all tract labels m).

To compute cl, we compare the direction prior d⃗l(x) with the principal direction υ ⃗1(x) of the
tensor in the image to segment:

(8)

The coefficient cl is positive when the directions coincide, and negative when they are
orthogonal. The uncertainty on the direction prior, represented by its norm, lowers both
positive and negative values of cl. For two crossing tracts l and m, the shape prior term
combines the priors of both objects with the likelihood for two overlapping tracts:

(9)

If the tracts have different orientations, the reconstructed tensor will represent a mixture
pointing to a different direction than the individual diffusion tensors for each tract. However,
if we assume the true tensors with principal directions vectors d⃗1,l(x) and d⃗1,m(x) to be
prolate tensors with high anisotropy, we can derive from the Stejskal-Tanner equation that
the estimated tensor for the mixture will have for its principal direction the vector d⃗l,m(x) =
d⃗1,l(x)±d⃗1,m(x) with largest norm.

The composite tensor direction d⃗l,m(x) is then renormalized so that its norm is

. From this composite vector, we can define the following direction
coefficient as we did before in the single tract case:

(10)

Finally, isotropic regions use the same shape prior as individual tracts and assume no

preferred direction, setting .

2.3.4. Propagation of the tract probabilities—Once we have the various elements of
diffusion and atlas information above, we can derive the terms of the energy function. From
the diffusion and prior-based terms, we derive the following unary term:

(11)
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for single tracts, overlapping tracts and isotropic regions respectively. We combine all the
terms as a product since we require all three conditions to be met jointly in order to attribute
a label l to a given voxel (unlike with more classical probabilistic models, we cannot
separate the terms of V1 into a sum of conditionally independent elements).

The neighborhood term propagates the unary energy values along the most likely fiber
directions or isotropically depending on the type of label. Let x+ = argmaxy∈N+(x)sT(x, y),
where N+(x) is the half of the 26-neighborhood N(x) of x such that υ⃗xy · υ ⃗1(x) > 0, and
similarly x− = argmaxy∈N−(x)sT(x, y), with N−(x) such that υ⃗xy · υ ⃗1(x) ≤ 0. The same
definition holds for overlapping tracts, substituting sO(x, y) to sT(x, y). The binary term V2(x,
y, l, m) is only non-zero if y = x+ or y = x− and l, m include one same label, leading to the
following formula for the energy term U(x, l) = V1(x, l) + ∑y,m V2(x, y, l, m) at x:

(12)

These three equations list all the possible cases: single tract labels, pairs of overlapping
labels, and isotropic regions. Because regions of overlap interact with single tract regions,
the energy can propagate between different labels as long as they share a common tract.

With this model, only the neighboring voxels most likely to be along the same tract are
considered for single or overlapping tracts, whereas the contribution of all neighbors is
averaged for isotropic regions. By using such a subset of the neighborhood, we greatly
simplify the structure of the MRF and improve computational stability, as the field is locally
oriented along the tracts, removing many loops in the neighborhood graph. The probability
function can be efficiently maximized through an iterated conditional modes algorithm
which converges quickly in practice and requires little computational overhead (Besag,
1986). This simplified neighborhood structure enable us to estimate the MRF efficiently
without the help of a more elaborate MRF solver (Bazin et al., 2009a; Kolmogorov and
Zabih, 2004).

2.4. Anatomical constraints
Even with a limit of two overlapping tracts per voxel, the number of possible pairs grows
quickly when including more white matter tracts. However, it is well known from anatomy
that certain pairs of tracts will not overlap, even in the presence of deforming pathology or
trauma. For instance, it is clear that the superior longitudinal fasciculus (SLF) should not
interact with the uncinate tract (UNC), or the cortico-spinal tract (CST) with the frontal
forceps (CCF). From this observation, we restrict the possible label pairs to a list set a priori
from anatomical information. The list may depend on image resolution, as more tracts will
overlap in a voxel of coarser resolution.

To obtain such information from atlases and anatomy experts is challenging when the
number of tracts to be estimated grows. We define an overlap probability for each pair of
tracts in the atlas as follows:

(13)

where pm(x), pl(x) are the spatial probabilities for tracts m, l. We then restrict the possible
label pairs to those such that PO > 1/2.
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Similarly, we make the assumption that our blurred atlas priors should fully include the
corresponding tracts, thus estimating only probabilities for tracts with non-zero prior at each
voxel. These two modeling constraints greatly reduce the combinatorial increase and
computational burden when additional tracts and potential crossings are added to the atlas,
which allowed the method to scale well from an initial atlas of 10 tracts to our current atlas
of 39 tracts.

2.5. Handling WM pathology
Despite the development of many diffusion MRI processing algorithms in recent years,
studies of the WM structures have been difficult when pathology is present. In diseases like
multiple sclerosis, Alzheimer’s disease, or even in normal aging, lesions appear inside the
WM, changing the diffusion properties of the tissue (Reich et al., 2010; Wheeler-Kingshott
and Cercignani, 2009).

Our approach is already robust to most lesions as it combines information coming from
multiple directions around the area of lesion, however lesions with a sharp decrease in
anisotropy will likely be segmented as isotropic regions rather than tracts. If we have an
estimate of the lesion location from co-registered structural MRI (using (Shiee et al., 2010)
in our case), we can use that information as an additional prior: to compensate for the low
anisotropy inside lesions, we simply update the indices in all lesion voxels i by:

(14)

This update enforces that DOTS segments lesions as part of at least one tract, provided that
the local diffusion direction matches the atlas. Note that DOTS includes a tract label for
unidentified WM regions and allows isotropic regions to spread to their neighborhood, so
the lesions are not forced to merge with a nearby tract if their tensor directions are not
compatible.

2.6. Algorithmic Details
The complete segmentation process is performed as follows. First we register the shape and
direction atlas to the skull-stripped tensor image to be segmented with a multi-scale gradient
descent method that maximizes ER = ∑x ∑l ‖a(x)pl(T(x))‖2, where a(x) is the fractional
anisotropy and T a rigid transform. The direction atlas is rotated accordingly. Next, the
estimation algorithm is initialized with U(x, l) = V1(x, l), and then refined using iterated
conditional modes and registration until convergence. Convergence is measured by the
proportion of changed labels for each iteration.

To reduce computational overhead, we only record the energy function for the NB labels
with highest energy at a given voxel, and approximate the others to zero. In our experiments,
no significant differences could be observed in the results for NB ≥ 8. Also note that the
connectivities sT(x, x+), sT(x, x−), sO(x, x+), sO(x, x−) are functions of the data alone, and can
be precomputed to improve computation speed. A 181×217×181 voxel image (1mm cubic
resolution) is processed with this method in less than 30 minutes, and a more typical
256×256×60 voxel image takes about 10 minutes to converge on a modern workstation with
8GB of available memory.

Once the algorithm has converged, we obtain a hard segmentation by selecting the labeling
of highest energy, and attributing the voxel to the underlying tract or tracts in case of
overlap; see Fig. 3. The corresponding membership function is given by:
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(15)

where g0 is a parameter controlling the sharpness of the membership.

The DOTS algorithm has been implemented as a plug-in for the MIPAV software package
(McAuliffe et al., 2001) and the JIST pipeline environment (Lucas et al., 2010). The
software is freely available on the NITRC repository2.

3. Experiments
We present here a simple synthetic experiment as well as real data experiments on clinical-
quality data sets using our 39 tract labels atlas. Additional experiments performed with
preliminary atlases have been reported in (Bazin et al., 2009b).

3.1. Synthetic Crossing Experiments
We first investigate the ability to recover crossing fibers with a simulated image depicting
crossing fiber tracts with various levels of noise; see Fig. 4. The noise increases the number
of voxels treated as isotropic as they diverge from the directions learned in the atlas. The
crossing is correctly estimated as belonging to both fiber tracts, although with lower
certainty. Note that the tensors from the crossing region were not included in the atlas, as
would be expected from a simple tractography-based delineation.

3.2. Reproducibility study
Segmenting tracts in a way that is consistent for repeated scans of a given subject is a
requirement for clinical studies. We tested the reproducibility of our segmentation on the
publicly available Kirby21 dataset (Landman et al., 2010b), which consists of two sets of
MR scans taken on the same day for 21 healthy subjects, following a “Jones 30” protocol
(Jones et al., 1999). The scans for each subject were processed separately with DOTS before
co-registering their FA maps for comparisons. Figure 5 gives the average and standard
deviation of the Dice overlap, average boundary surface distance and volume difference
ratio. We also report the fiber tract volumes, as the volume difference ratio and Dice
coefficient become more variable for smaller structures (in particular, WM tracts are much
smaller than GM structures for which volume measurements and Dice coefficients are
usually reported).

This experiment indicates that DOTS is robust to changes in patient position and scanning
noise. Most notably, the tract overlap is above 0.7 for the larger tracts, and stays above 0.6
even for the optic tract, the cerebellar peduncles and the uncinate fasciculus, despite their
small sizes. The distance between estimated tract boundaries is about half the imaging voxel
size of 2.2 mm.

The segmentations from the two separate scans are very similar for each subject, while the
labels adapt well to different anatomies; see Figure 6. It is also noticeable that there is a
large amount of overlap between estimated labels, confirming the need for modeling overlap
at the current resolution of clinical DTI.

2http://www.nitrc.org/projects/dots/
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3.3. Integration with fiber tractography
Although DOTS labels give a reliable representation of the white matter tracts, they are
quite different from the segmentation one would obtain from manual bundling of
tractography results. Because our MRF model does not require long range interactions
between voxels, the DOTS labels are more inclusive. On the other hand, one can
independently reconstruct individual sample paths through the white matter (generally
referred to as “fibers,” although the term is misleading) with any appropriate tractography
technique (Mori et al., 1999; Koch et al., 2002; Behrens et al., 2007; Reisert et al., 2011).

Given a set of fibers computed by any tractography method, we can associate a fiber f to a
tract l using the following method:

where l0 is a minimum length parameter set to 20 mm, bl a binary function equal to 1 inside
tract l and 0 otherwise, and r a minimum inclusion ratio set to 75%.

We performed fiber tractography on the Kirby21 dataset using the FACT algorithm (Mori et
al., 1999) with the following parameters: FA start 0.2, FA stop 0.1 and maximum angle 60
degrees, and labeled the generated fibers with the above method. As shown on Fig. 7, the
labeled fibers form compact bundles with many fibers. It is notable that the fibers extend
further toward the outer boundaries of the WM than the corresponding DOTS labels, as the
deterministic tractography procedure extends fibers until they reach a FA of 0.1, whereas the
DOTS model assigns lower probability to these regions of lower FA and higher variability.
Note that DOTS labels can easily be extended to always include such regions if necessary
using a white matter mask to define a priori the boundaries of the isotropic regions.

3.4. Robustness to pathology
Finally, we assessed the application of DOTS on white matter lesions on a data set of 10
multiple sclerosis subjects. We identified white matter lesions on co-registered structural
MRI (MPRAGE and FLAIR) with (lesion)TOADS, an automated brain and lesion
segmentation tool (Shiee et al., 2010). DOTS was run with and without the prior lesion map,
to measure the impact of lesions on the labeling.

We measured average fractional anisotropy (FA) and volume for the tracts, two measures of
interest when assessing the impact of lesions on white matter. When comparing uncorrected
and corrected measures with a t-test, we find small but significant differences (generally a
decrease) in FA for ATRR, CCS, FNXL, PTRL and more important differences in volume
(either increasing or decreasing by up to 5% with the correction) for CSTL, ICPL, MLR,
OPTL, PTRL, SCPR, SLFL, SLFR, TAP and UNCL (p < 0.05). These results clearly show
that the presence of lesions confounds DTI measurements unless they are properly
accounted for in the model.

The individual segmentations, as depicted in Fig. 8 highlight the accumulation of lesions
along the peri-ventricular tracts (especially the optic radiation) for subjects with large lesion
loads, while the interplay of focal lesions with other tracts appears more complex. DOTS
handles well the damaged regions on clinical quality DTI, and we hope it will offer a more
systematic way to study the relationship of WM lesions with cerebral circuits and their
relative impairment.
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4. Discussion
We presented here an atlas-based segmentation technique to reliably extract known
anatomical tracts from clinical quality diffusion tensor MRI. As in the work of (Hagler et al.,
2009), the method combines global statistical priors of shape and direction with the local
connectivity information extracted from the tensors. The prior direction information in
particular is important to disambiguate many possible tracts. However, we also noticed that
the atlas alone was only partially successful, and that many parts of the tracts were not
directly identified where eigenvector directions were not well aligned with the atlas. The
MRF model plays a central role in solving this problem, as it propagates well-defined labels
to the neighboring voxels along the tracts of the subject, reinforcing label probabilities.

The explicit modeling of crossings and overlapping regions is also a key element, as many
tracts overlap at the current resolution. The algorithm is presently limited to crossings
between two tracts, which may be a source of error in regions of triple-perpendicular
crossings (Jeurissen et al., 2011). The main limitation resides in the tensor representation:
because these crossings would be indistinguishable from isotropic regions, adding the extra
degrees of freedom needed for triple intersection may reduce the accuracy of the results.
However, the model could be extended easily from pairwise to multiple overlaps, given a
more elaborate model of diffusion at higher angular resolution or even using regular DTI
sequences (Landman et al., 2010a). Finally, the regions of multiple crossings are not
necessarily estimated as isotropic in the current model, because neighboring regions from
the converging tracts can propagate their labels into the crossing (sT and SO are usually
lower but non-zero in isotropic voxels), and we did not observe any clear mislabeling in
regions of multiple overlap.

Our experiments show that the DOTS segmentation is highly reproducible, even for small
and variable tracts. The tracts segmented can be used readily as regions of interest for
localized analysis of specific white matter pathways. Tract based statistics can be extracted
separately for each tract, and effects of lesions or atrophy on anisotropy measures are less
likely to confound the results. The segmented regions are somewhat larger than ones
obtained through bundling tractography results, inherently because the MRF model does not
require each voxel of the tract to be part of a complete path. On the other hand, a larger
region of interest can be beneficial when computing statistics of the white matter. The
results of DOTS can also be combined with any tractography technique to generate labeled
fiber bundles in a fully automated fashion as well.

The atlas currently includes 39 separate tracts, covering most of the deep white matter
pathways. Additional tracts can easily be added provided they can be identified reliably
enough on diffusion MRI. Anatomical constraints are however important in order to avoid
combinatorial explosion of the number of possible labels to estimate, and the atlas would
benefit from incorporating high resolution anatomical delineations (Bürgel et al., 2006). The
diffusion properties of a given tract are not fully captured by the principal eigenvector
directions, and a more elaborate representation of the expected tensor (or higher order
model) shape might further increase accuracy at the cost of higher computational demands
and possibly a lowered robustness to noise and lesions.

Even with the few limitations discussed above, essentially inherited from the underlying
tensor model of DTI, the DOTS software provides a novel and practical tool for DTI
analysis in routinely acquired sequences, and we hope that making this method available to
the community will help neuroscientists study in more detail individual white matter tracts
in larger cohorts.
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Figure 1.
Examples from the WM tract atlas: maximum intensity projection along the sagittal
direction (except for MCP in the axial direction, and FNX, CPT in sagittal and coronal
directions) of the shape prior multiplied by the color-coded direction prior.
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Figure 2.
Example data set depicting diffusion type and connectivity functions for single (top) and
overlapping tracts (bottom): a) original image color map, b) dT, dO, c) sT, sO in the X
direction, d) sT, sO in the Y direction, e) sT, sO in the Z direction. The diffusion functions are
defined in [0, 1], whereas the connectivity functions are defined in [−1, 1]. Although the
functions for single and overlapping tracts appear very similar, there are some subtle
differences: dT is darker in regions of crossing (e.g. the junction between ATR, IFO and
CCF), and the single tract connectivity maps sT appear sharper because they include more
negative values (it is more likely to find similar directions when using first and second
eigenvectors, as in sO).
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Figure 3.
DOTS segmentation example for one subject of our reproducibility study in axial, coronal,
sagittal views and 3D rendering. Regions of overlapping tracts are displayed as a
checkerboard pattern of the tracts’ colors in the 2D views. It is notable that many regions of
overlap are found in practice. The recovered tracts boundaries are also somewhat irregular,
as such boundaries are poorly defined on the tensor images.
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Figure 4.
Simulated crossing experiment at SNR 25 (top) and 5 (bottom). From left to right: a
simulated image, the manual “fiber” delineation used in the atlas, the hard segmentation,
showing the intersection in white, and the two membership functions for the tracts. Note that
the memberships decrease smoothly inside the crossing, as both tracts can have membership
values above 0.5 with our model.
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Figure 5.
DOTS segmentation results for two successive acquisitions. Mean (bar) and standard
deviation (line) for 21 subjects of the following measures (from top to bottom): Dice
overlap, average boundary surface distance, volume difference (as a percentage of the
average volume), and average volume.
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Figure 6.
DOTS segmentation examples for three different subjects in coronal views for two separate
acquisitions (top and middle). The bottom row displays selected regions of overlap, which
are indicated with a checkerboard pattern of the tracts’ colors. Regions of unlabeled white
matter are indicated in red. Note that the labeling is very consistent even in the regions of
overlap where the tensors are more likely to be influenced by noise.

Bazin et al. Page 22

Neuroimage. Author manuscript; available in PMC 2012 September 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Tractography results automatically labeled with DOTS for the three subjects of Fig. 6 in
coronal view and 3D rendering. The bundles are overall rather homogeneous, and the
included regions are similar in size to the original DOTS labels, indicating that the
reconstructed fibers follow quite closely the DOTS segmentation.
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Figure 8.
DOTS segmentation examples for three different subjects with multiple sclerosis. The white
matter lesions segmented from the co-registered structural images (T1 and FLAIR) are
indicated with a white outline. Although the lesions do not follow given tracts, it is clear that
certain tracts are largely spared while others are strongly affected.
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Table 1

Tract Labels

Acronym Name

ATRL
ATRR

Anterior thalamic radiation (left, right)

CCF
CCP
CCS

Corpus callosum (frontal, posterior and superior)

CGL
CGR

Cingulum (left, right)

CPTL
CPTR

Cortico-pontine tract (left, right)

CSTL
CSTR

Cortico-spinal tract (left, right)

FNXL
FNXR

Fornix (left, right)

ICPL
ICPR

Inferior cerebellar peduncle (left, right)

IFOL
IFOR

Inferior fronto-occipital fascicle (left, right)

ILFL
ILFR

Inferior longitudinal fascicle (left, right)

MCP
MLL
MLR

Middle cerebellar peduncle Medial lemniscus (left, right)

OPRL
OPRR

Optic radiation (left, right)

OPTL
OPTR

Optic tract (left, right)

PTRL
PTRR

Posterior thalamic radiation (left, right)

SCPL
SCPR

Superior cerebellar peduncle (left, right)

SFOL
SFOR

Superior fronto-occipital fascicle (left, right)

SLFL
SLFR

Superior longitudinal fascicle (left, right)

STRL
STRR

Superior thalamic radiation (left, right)

TAP Tapetum

UNCL
UNCR

Uncinate fascicle (left, right)
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