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Abstract
Accurate measurement of longitudinal changes of brain structures and functions is very important
but challenging in many clinical studies. Also, across-subject comparison of longitudinal changes
is critical in identifying disease-related changes. In this paper, we propose a novel method to meet
these two requirements by simultaneously registering sets of longitudinal image sequences of
different subjects to the common space, without assuming any explicit template. Specifically, our
goal is to 1) consistently measure the longitudinal changes from a longitudinal image sequence of
each subject, and 2) jointly align all image sequences of different subjects to a hidden common
space. To achieve these two goals, we first introduce a set of temporal fiber bundles to explore the
spatial-temporal behavior of anatomical changes in each longitudinal image sequence. Then, a
probabilistic model is built upon the temporal fibers to characterize both spatial smoothness and
temporal continuity. Finally, the transformation fields that connect each time-point image of each
subject to the common space are simultaneously estimated by the expectation maximization (EM)
approach, via the maximum a posterior (MAP) estimation of the probabilistic models. Promising
results have been obtained in quantitative measurement of longitudinal brain changes, i.e.,
hippocampus volume changes, showing better performance than those obtained by either the
pairwise or the groupwise only registration methods.
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1. Introduction
Longitudinal study of human brains is important to reveal subtle structural and functional
changes due to brain diseases (Crum et al., 2004; Toga and Thompson, 2001; Toga and
Thompson, 2003; Zitová and Flusser, 2003). Although many state-of-the-art image
registration algorithms (Ashburner, 2007; Beg et al., 2005; Christensen, 1999; Rueckert et
al., 1999; Shen and Davatzikos, 2002; Shen and Davatzikos, 2003; Thirion, 1998;
Vercauteren et al., 2009; Wu et al., 2010) have been developed, most of them, regardless of
feature-based or intensity-based methods, tend to register serial images independently when
applied to longitudinal studies. However, such independent registration scheme could lead to
inconsistent correspondence detection along the serial images of the same subject, and thus
affect the accuracy of measuring longitudinal changes, especially for the small structures
with tiny annual changes (e.g., development of atrophy in hippocampus due to aging
(Cherbuin et al., 2009; Chupin et al., 2009; Leung et al., 2010; Scahill et al., 2002; Schuff et
al., 2009; Shen and Davatzikos, 2004)).

Several methods have been proposed to capture temporal anatomical changes. For instance,
in order to consistently segment hippocampus on a sequence of longitudinal data, Wolz et.
al. (Wolz et al., 2010) extended the 3D graph-cut to 4D domain and achieved more
consistent segmentation results on ADNI dataset. In image registration area, Shen and
Davatzikos (Shen and Davatzikos, 2004; Shen et al., 2003) proposed a 4D-HAMMER
registration method to cater for the longitudinal application. The 4D-HAMMER approach
adopts the 4D attribute vector to establish the correspondences between the 4D atlas and the
4D subject. Also, it incorporates both spatial smoothness and temporal smoothness terms in
the energy function to guide the registration. Recently, Qiu et. al. (Qiu et al., 2009) extended
LDDMM to time sequence dataset by first delineating the within-subject shape changes and
then translating the within-subject deformation to the template space via parallel transport
technique. These methods have demonstrated the capability of detecting consistent structural
changes in hippocampus, and achieved better results than the conventional pairwise
registration method. However, one limitation of these methods is that the specific template is
required in registration, which may introduce bias in longitudinal data analysis. The second
limitation of these methods is that the longitudinal registration is performed independently
across different subjects, instead of simultaneous groupwise registration of all 4D subjects.

Davis et al. (Davis et al., 2007) use the kernel regression method to construct the atlas over
time. It is assumed that human brains are distributed on a Riemannian manifold (see Fig. 1
(a)). In this way, a weighted average image can be computed at any time point by registering
all other images to the space of that particular time point and adaptively measuring their
contributions according to the distance metric defined on the manifold. However, the
subject-specific longitudinal information is never considered in this method, and the
registration of each time-point image is independently performed, regardless of its temporal
consistency with respect to other time-point images.

Durrleman et al. (Durrleman et al., 2009) presented an interesting spatial-temporal atlas
estimation approach to analyze the variability of longitudinal shapes, as demonstrated in Fig.
1 (b). Their method does not require the subjects to be scanned at the same time points or
have the same number of scans. To obtain the longitudinal information, they first infer the
shape evolution within each subject (as indicated by the solid curves in Fig. 1(b)) by a
regression model. Then, spatial-temporal pairwise registration is performed between each
subject sequence and the atlas sequence, mapping not only the geometry of evolving
structure but also the dynamics of shape evolution by using the time-related
diffeomorphism. Finally, the mean image as well as its shape evolution can be constructed
after aligning all subjects to the template space. They have tested their method on 2D human
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skull profiles and the amygdale of autistics, but no result reported on real human brain. Also,
one limitation of this method is that an explicit template is still required in the registration.

Recently, groupwise registration becomes more and more popular due to its attractiveness in
unbiased analysis of population data (Balci et al., 2007; Jia et al., 2010; Joshi et al., 2004;
Wang et al., 2010; Wu et al., 2011). Compared to the traditional pairwise registration
algorithm, groupwise registration aims to simultaneously estimate the transformation fields
of all subjects without explicitly specifying an individual subject as the template, in order to
avoid any bias introduced by the template selection for the subsequent data analysis (Fox et
al., 2011; Thompson and Holland, 2011; Yushkevich et al., 2010). Metz et al. proposed the
B-Spline based nD+t registration method (Metz et al.) which combines the groupwise and
longitudinal registrations together. Thus, more accurate and consistent registration results
can be achieved on 4D-CT data of lung and 4D-CTA data of heart. However, their method
only investigates the temporal motion for one subject.

With the increasing number of longitudinal dataset, e.g., ADNI project (ADNI), the disease-
related longitudinal studies become popular to discover the subject-specific anatomical
patterns due to longitudinal changes (Davatzikos et al., 2011; Driscoll et al., 2009) and inter-
group structure differences in hippocampus (Wolz et al., 2010) or through cortical thickness
(Li et al., In press). Meanwhile, the research on young brain development is an area of
intense interest since last decade (Knickmeyer et al., 2008). In these studies, all the images
(from a series of longitudinal image sequences) need to be mapped to the common space,
with each subject-specific longitudinal change well delineated. Motivated by these
requirements, we propose a novel groupwise image sequence registration method to
simultaneously register longitudinal image sequences of multiple subjects, each of which
can have a different number of longitudinal scans. Taking all the images as a whole, our
method is able to simultaneously map them to the hidden common space by establishing the
spatial correspondences between each image and the mean shape/image defined in the
hidden common space. Then, for each subject, its subject-specific spatial-temporal
consistency is modeled by the temporal fiber bundles (as shown by the dashed curves in Fig.
1(c)), which are constructed by mapping the mean shape to each image domain. It is worth
noting that the temporal fiber bundles we proposed here are totally different from the fibers
in DTI image (Mori and Zijl, 2002). Our proposed temporal fiber bundles over time are
artificially constructed by the spatial transformation fields from the mean shape, and they
are used to embed the temporal smoothness for each subject. In this way, both inter-subject
spatial correspondences and intra-subject longitudinal changes can be considered jointly in
our proposed registration framework.

The spatial correspondences used to map each image to the common space are established
by taking the mean shape as reference. However, instead of establishing the correspondence
between each image and the mean shape for each voxel, only a small number of voxels,
called driving voxels (Shen and Davatzikos, 2002), are used to identify their
correspondences since they are more reliable to determine the correct correspondences than
other voxels. Other non-driving voxels only follow the transformations of those driving
voxels in the neighborhood. Therefore, the procedure of estimating correspondences
between each image and the mean shape in the hidden common space consists of two steps.
In the first step, we only select a small number of driving voxels to identify the
correspondences toward the mean shape by themselves. Here, both shape and appearance
similarities are considered in the matching criteria: 1) the shape of deformed driving voxel
set should be as close as possible to the mean shape, and 2) the appearances of all deformed
subjects should be as similar as possible in the common space after registration. In the
second step, we employ thin-plate splines (Bookstein, 1989; Chui and Rangarajan, 2003) to
interpolate the dense transformation fields based on the sparse correspondences established
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on the driving voxels. With the progress of registration, more and more voxels will be
qualified as the driving voxels by simply relaxing the driving-voxel selection criterion. By
iteratively repeating these two steps, all image sequences will be gradually aligned to the
common space.

Modeling the temporal change or motion is a challenging issue in both computer vision and
computational anatomy. In (Frey and Jojic, 2000; Jojic et al., 2000), the authors use the
transformed hidden Markov model to measure the temporal dynamics of the entire
transformation fields in video sequences. However, these methods can only deal with some
predefined transformation models such as translation, rotation, and shearing. Miller (Miller,
2004) proposed a large deformation diffeomorphic metric mapping (LDDMM) (Beg et al.,
2005) method for modeling growth and atrophy, in order to infer the time flow of geometric
changes. This method is mathematically sound, but it considers only the diffeomorphism
between two separate time points and is computationally expensive in solving the partial
differential equation. In contrast, our idea here is to model the temporal continuity within
each subject by using temporal fiber bundles, rather than entire transformation fields.
Specifically, non-parametric kernel regression is used for regularization on each fiber (Davis
et al., 2007). Therefore, our method is efficient and data-driven, without using any prior
growth model (Miller, 2004), and thus more generalized.

We formulate our registration method with an expectation maximization (EM) framework
by building a probabilistic model to regularize both spatial smoothness and temporal
continuity along the fiber bundles. The final registration results are obtained by the
maximum a posterior estimation (MAP) of the probabilistic model. Our groupwise
longitudinal registration method has been evaluated in measuring longitudinal hippocampal
changes from both simulated and real image sequences, and its performance is also
compared with a pairwise registration method (diffeomorphic Demons (Vercauteren et al.,
2009)), a 4D registration method (i.e., 4D-HAMMER (Shen and Davatzikos, 2004)), and a
groupwise-only registration method (i.e., our method without temporal smoothness
constraint). Experimental results indicate that our method can consistently achieve the best
performance among all four registration methods.

In the following, we first present our registration in Section 2. Then, we evaluate it in
Section 3 by comparison with pairwise, 4D, and groupwise registration methods. Finally, we
conclude the paper in Section 4.

2. Method
Given a set of longitudinal image sequences,I = {Is,t|s = 1,…,N,t = 1,…,Ts} where Is,t
represents the image acquired from subject s at time point t, our goal is to achieve:

1)
Unbiased groupwise registration, i.e., map all  images to a common
space C by following the transformation fields F = {fs,t|s = 1,…,N,t = 1,…,Ts},
where fs,t = {fs,t(x)|x = (x1,x2,x3) ε C, and C ε R3};

2) Spatial-temporal consistency, i.e., preserve the warping consistency from Is,1 to
Is,Ts in the temporal domain for each subjects.

Here, we use τ as the continuous variable of time and then τs,t denotes the discretely-
sampled time of subject s being scanned at time point t. It is worth noting that different
subjects might have different numbers of scans Tsin our method. Also, for each subject s, the
time span between two consecutive scans are not required to be equal.
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2.1 The Framework of our Groupwise Longitudinal Registration Method
The scenario of our groupwise longitudinal registration algorithm on sets of longitudinal
image sequences of different subjects is demonstrated in Fig. 2. For all the images, their
transformation fields to the hidden common space (blue curves in Fig. 2) are simultaneously
estimated by the unbiased groupwise registration strategy. Meanwhile, the temporal
evolution of anatomical structures of each subject, i.e., due to aging or neural diseases, is
jointly modeled and required to be smooth over time in our method.

The key to achieve the above two goals is to tackle the registration problem in both spatial
and temporal domains. A simple scheme is to first determine the spatial correspondence for
all the images and then perform the temporal smoothing for each subject separately.
However, the major disadvantage of such scheme is the error propagation effect in the
registration. More specifically, the possible false spatial correspondence will be propagated
to the procedure of temporal smoothing and then the errors will turn back to undermine the
spatial correspondence detection in the next iteration.

In this paper, we propose a novel probabilistic model to jointly consider both spatial
smoothness and temporal continuity constraints for determining the correspondence of each
image to the common space. The probabilistic model is built upon the fiber bundles in each
subject (see the dashed curves in Fig. 3 for examples of the fiber bundles). Inspired by (Chui
et al., 2004), the shape of each registered image Is,t in the common space can be represented
by a set of sparse points which are generated from a Gaussian mixture model (GMM). The
centers of GMM, called mean shape in this paper (as shown in the top row with the red box
in Fig. 3), are denoted as Z = {zj|zj εR3, j = 1,…,K}, where each zjdenotes the position of the
j-th point of the mean shape in the common space, and there are totally K points on the mean
shape. Then, for each zj, its transformed positions in the space of subject s along different
time points t can be regarded as the landmarks in a continuous temporal fiber , where

 at the scanning time τs,t. Thus,  can be considered as a continuous
trajectory function of time τ in subject s, which maps the j-th point of mean shape zj to the
subject space at arbitrary time τ. We will make it clear in the next section that the constraint
of temporal continuity is deployed along these temporal fibers. As shown in Fig. 3, the mean
shape Z in the common space will be first mapped to each individual image's space Is,t by
the corresponding deformation field fs,t (solid curves in Fig. 3). Next, the longitudinal
changes within each subject s are captured by the temporal fiber bundles

 (i.e., dash curves with different colors for different subjects in Fig.
3). Therefore, given the mean shape Z, all the images within each subject s(i.e., Is,1…,Is,Ts),
are artificially connected by the embedded temporal fibers Φs, i.e., deformed instances fs,t(Z)
shown in the middle row of Fig. 3.

In order to establish the anatomical correspondences between each image Is,t and the mean
shape Z in the common space, only the most distinctive voxels, called driving voxels

, are used to establish correspondence between each image Is,t and
the mean shape Z by robust feature matching, where Ms,t denotes the number of the driving
voxels selected in the image Is,t. Examples of the driving voxels are shown at the bottom of
Fig. 3 as the red points, overlaid on the brain slices. As we will make it clear later, each
transformation field fs,t is entirely steered by the sparse correspondences determined
between Xs,tand Z by TPS interpolation (Bookstein, 1989).

Accordingly, the spatial and temporal domains are unified by the mean shape Z defined in
the common space. All zjs in the mean shape Z are regarded as hidden states, while the
driving voxels Xs,t of all images are the observations. On one hand, by mapping Z to each
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image space Is,t, the transformation field fs,t of each Is,t is steered by the spatial
correspondences of Z w.r.t the driving voxels Xs,t. On the other hand, given a set of
estimated fs,t of each subject s, temporal fiber bundles Φs can be setup to afford the
exploration on temporal continuity along these fibers.

In the rest of the section, we will first propose the probabilistic models for capturing both
shape and appearance information contained in the driving voxels during registration, and
also the spatial-temporal heuristics (based on the kernel regression technique) for the fiber
bundles to construct a unified probabilistic model for registration of longitudinal sequence
sets in Section 2.1. Then, we will present an approach to estimate the optimal model
parameters based on the maximum a posterior (MAP) estimation for these probabilistic
models in Section 2.2. The whole method is finally summarized in Section 2.3.

Before we introduce the probabilistic models in the next section, important notations used in
this paper are summarized in Table 1. Hereafter, we use (s,t)to denote the subject at scan
time point t, while (s′,t′)is used to denote all possible subjects and scan time points in the
image dataset.

2.2 Probabilistic Model for Registration of Longitudinal Image Sequences
Our registration algorithm aims to simultaneously minimize the anatomical variabilities of
all images after registration, while at the same time preserve the temporal continuity within
the longitudinal sequence of each subject. In general, the transformation field fs,t (defined in
the common space) is used to pull each image Is,t from its own space to the common space.
The bending energy (Bookstein, 1989; Chui and Rangarajan, 2003) is used as the
smoothness term to regularize each fs,t. In this paper, the thin-plate splines (TPS)
(Bookstein, 1989) is adopted as it is efficient to give the optimal transformation field fs,t
with minimal bending energy. In the following, we will use the operator Ls(fs,t) to denote the
bending energy of each transformation field fs,t in the spatial domain, which is defined as:

(1)

It is clear that the bending energy term LS(fs,t) is the sum of the squared second order
derivatives in the direction of axes x1, x2, and x3 (Chui and Rangarajan, 2003).

Attribute vectors have been widely used as morphological signatures to guide image
registration (Shen and Davatzikos, 2002; Xue et al., 2004). Without loss of generality, we

follow the method in (Shen and Davatzikos, 2002) to calculate the attribute vector 

at each location  of each image Is,t. Specifically, the attribute vector  consists
of image intensity, edge type, and the geometric moment invariants on whiter matter (WM),
gray matter (GM), and the cerebrospinal fluid (CSF). It is worth noting that other image
features, such as local histograms (Shen, 2007) and SαS filters (Liao and Chung, 2008), can
also be used here to establish the correspondence. According to the prior knowledge on
brain anatomy (Shen and Davatzikos, 2002), a small set of driving voxels Xs,t (displayed in
the bottom of Fig. 3) with the most distinctive attribute vectors in the image Is,t can be first
selected to drive the registration procedure. The advantage of only using the driving voxels
to guide the registration process in the early stage is that they can provide more reliable
anatomical correspondences between images and thus reduce the risk of being trapped at
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local minima during the registration. It can be observed that they are generally located at the
most salient positions in the brain, e.g., gyral crowns, sulcal roots, and ventricular
boundaries. We will further demonstrate in the following sections that our registration
method gains a lot of benefits from the use of the driving voxels for establishing reliable
correspondences and thus making the registration procedure efficient and effective.

Shape Model on the Driving Voxels—Here, we consider each driving voxel 
selected from subject s at time t as a random variable drawn from the Gaussian mixture
model with its centers located at a deformed point set fs,t(Z), which is the map of the mean
shape Z warped from the common space C to the individual image domain Is,t. We then

introduce the hidden variables  (where K is the number of temporal fibers) to

indicate the spatial assignment of a specific GMM center in generating . Hereafter, we

use  to denote the collection of all hidden

variables . The probability density function of  can thus be given by:

(2)

where μz = fs,t(zj) and  denotes the mean and the covariance matrix of the

normal distribution , respectively. Id3×3 denotes the 3 × 3 identity matrix since
we deal with 3D image. For sake of simplicity, the isotropic covariance matrix Σz is
assumed, as widely used in the field of image/point-set registration.

Appearance Model on the Driving Voxels—In this paper, the appearance information
of each driving voxel is represented by its corresponding attribute vector, which embeds rich

anatomical information around the driving voxel. Given the association  between  and

zj, the attribute vector  of the driving voxel  can also be regarded as the random
variable generated from the Gaussian mixture model (GMM), where the centers of this

GMM are the collection of attribute vectors  in

the whole image set. Note, each  is actually the attribute vector at location
fs′,t′(zj) in the image Is′,t′, with association of a particular. Given the latest estimated zj and
fs′,t′, the goal of our appearance model is to maximize the similarities between the underlying

 and all its counterparts . To simplify the problem, we here
assume that all elements in the attribute vector are independent with the standard deviation

ρj. Then, given F, zj, and the corresponding assignment , the conditional probability of

attribute vector  on the driving voxel  is defined as:

(3)
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By denoting the conditional probability of  as , the posterior probability

of  (given , the transformation fields F, and the mean shape Z) can be
formulated as:

(4)

As we will make it clear in Section 2.3, , termed as the local discrepancy, indicates

the likelihood of the particular driving voxel  being the correspondence of zj, which
consists of both shape and appearance discrepancies. In the implementation, we set ηj = 1.0
and ρj = 1.0.

Spatial-Temporal Heuristics on the Fiber Bundles—The shape and appearance
models proposed for the driving voxels above are aimed to establish reliable correspondence
between the mean shape and each image. However, the longitudinal information existing
within each subject is not clear so far. It is clear that the time-varying variables in our

method are the association  and the transformation field fs,t. Note that the transformation
field fs,t here is equipped only with the information of the spatial correspondences to map
each image Is,t to the common space C, with no piece of temporal information considered
yet.

Although it is challenging to describe the overall temporal motion from fs,t to fs,t + 1, the
motion on particular fiber can be easily modeled as the kernel regression problem (Wand
and Jones, 1995) where the objective is to fit the continuous motion trajectory (temporal

fiber ) based on the known landmarks at  (recalling that  in
Table 1). Therefore, the energy function of temporal smoothness on particular fiber  is
formulated as:

(5)

where ψ is the regression function and in this paper we use the Gaussian kernel with

bandwidth στ. In principle,  measures the residual energy after performing
temporal smoothing on each position of one fiber, which accounts for the smoothness in
temporal domain. Hereafter, we call  as the fibers after temporal smoothing. It is worth
noting that more sophisticated kernel-based regression methods (Comaniciu et al., 2003;
Davis et al., 2007) are also applicable here.

Unified Probabilistic Model for Registration of Longitudinal Image Sets—

Considering h = (Z, F, {Φs}, m) as the model parameters and  as the
observations, the joint probability P(h, ν) is given by:
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(6)

It is clear that P(h, ν) consists of four terms. The first term denotes the prior probability on
the mean shape Z, where P(zj) = 1/K since no prior knowledge is known on zj. The second

term measures the conditional likelihood probability 
given the transformation fields F and the temporal fibers {Φs}. The last two terms are the
probability functions of spatial transformation field P(fs,t) and the temporal fiber bundles

, which are defined as:

(7)

where λ1 and λ2 are the scales used to control the smoothness of the spatial transformation
field fs,t (Chui and Rangarajan, 2003) and the temporal fiber bundles Φs (Wand and Jones,
1995), respectively. In all our experiments, we set both λ1 and λ2 to 1. It is worth noting that

 is considered as the hidden variable, which guides the correspondence detection in
registration. More details will be given in the next section.

Now our registration problem is converted to the problem of inferring the model parameters
h which can best interpret the observation ν:

(8)

We will present the solution to  below.

2.3 Simultaneously Estimating the Transformation Fields for Longitudinal Image
Sequences

Here, we follow one of the variational Bayes inference approaches, called “free energy with
annealing” (Frey and Jojic, 2005), to formulate the energy function of statistical model in
Eq. 8 as (see Appendix I and II for details):

(9)

where r is the temperature which decreases gradually in the annealing scenario. The term

 denotes for the approximated discrete distribution of probability  in Eq.

6, which measures the likelihood of correspondence between zj and driving voxel . It is
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obvious that the first term in Eq. 9 describes the cost in correspondence detection, while the
second and third terms represent the smoothing constraints on the deformation fields and the
temporal fibers, respectively. Furthermore, the first term in Eq. 9 has been similarly defined
in (Chui and Rangarajan, 2003; Shen, 2009; Wu et al., 2010) that minimizes the weighted

discrepancy ξ on each driving voxel  with respect to the mean shape point zj and the

associated correspondence likelihood . The entropy term

 measures the fuzziness on correspondence assignments of  to
all possible zjs. Thus, the small degree of this entropy term encourages the exact binary

correspondence between each  and all zjs in registration. On the contrary, multiple
correspondences are allowed when the entropy term is large. As we will see below, the
temperate r dynamically controls the correspondence assignment from fuzzy to binary,
which is very important to achieve the robust registration as demonstrated in (Chui and
Rangarajan, 2003; Shen, 2009; Wu et al., 2010). Next, we will give the solution to optimize
the energy function Eq. 9.

Optimization of Energy Function—First, the spatial assignment  can be

obtained by only minimizing E w.r.t. :

(10)

It is clear that , defined in Eq. 4, acts as the potential energy which indicates the

likelihood of establishing correspondence between  and zj. As mentioned in Eq. 9, r
denotes the temperature in the annealing system, which will gradually decrease to encourage
the assignment changing from fuzzy to binary. Notice that the variable r is the denominator
of the exponential function in Eq. 10. Therefore, at the beginning stage of the registration,

when the degree of r is very high, although the discrepancy  (the nominator of the

exponential function in Eq. 10) between zj and  is large, that  still might have the
chance to contribute in calculating the correspondence of zj in image Is,t. As the registration
proceeds, the specificity of correspondence will be encouraged to increase the registration

accuracy by decreasing the temperature r. Finally, only the  with the smallest discrepancy
will be considered as the correspondence of .

The remaining optimization on F, Z, and {Φs} can be solved in two relatively simple sub-

problems. Recall that  is the particular landmark on the temporal fiber 
at time τs,t, our idea is that we first minimize E(Q, F,{Φs}, Z) w.r.t  by regarding 

as a whole, then find the  and  which achieve the optimal  by solving the fitting

problem. In this way, we have a relationship . Then the objective functions
in the two sub-problems (SP1 and SP2) are given as:

(11)
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(12)

SP1 aims to solve the correspondence at time τs,t for a particular fiber  as well as to
estimate the longitudinal continuous fiber  by kernel regression (Wand and Jones,
1995). SP2 is the groupwise registration problem where we need to interpolate the dense
transformation field  (to simultaneously deform each image Is,t to the common space C)
and the update of mean shape Z. The solutions to SP1 and SP2 are explained below.

SP1: Estimation of Longitudinal Continuous Fibers—To this point, we are facing
two coupled optimization problems in Eq. 14. One is the correspondence determination
problem on zjs and the other is the estimation of longitudinal continuous fiber , which
boils down to the kernel regression problem. The combination of these two optimization
problems is difficult to solve, however, the optimal solution to the correspondences at

 is much easier to compute if the entire fiber  is fixed. Here, we adopt an
alternative optimization scheme as the solution. First, the spatial locations of the landmark

points  in fiber  can be obtained by optimizing the first term in Eq. 11

w.r.t.  as:

(13)

Obvious,  is the weighted mean location of all driving voxels in image Is,t. After that,

the continuous fiber  can be calculated by minimizing the energy  defined in
Eq. 5, which is known as the Nadaraya-Watson estimator (Nadaraya, 1964):

(14)

Here, the adaptive kernel-based smoothing is performed along each fiber of each subject, to

preserve the temporal smoothness as well as minimize the residual error between 

before regression and  after regression. In general, large value of σ results in the
smoother result at the expense of registration accuracy. In our implementation, we
dynamically set the value of σ in the hierarchical way. In the beginning, σ is relatively high
(e.g., σ = 2.0) to roughly determine the correspondences. With the progress of registration,
we gradually decrease the value of σ, in order to achieve better registration accuracy.

SP2: Groupwise Registration—In this step, by considering {zj} as the source point set

and  as the target point set, TPS (Bookstein, 1989; Chui and Rangarajan, 2003) is
used to efficiently interpolate the dense transformation field , which satisfies

 and achieves the minima of Ls(fs,t) (see Eq. 1).
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Finally, by minimizing the energy function in SP2 with respect to zj, each point zj in the
mean shape Z is updated as:

(15)

where  is the inverse transformation field of  (the calculation of inverse transformation
field can be referred to (Christensen and Johnson, 2001)). It is worth noting that we use the
driving voxels xs,t on a particular image Is,t, with the overall minimal distance to all other
images, as the initialization of the mean shape Z.

2.4 Summary of our method
Our method is briefly summarized as follows:

1. Calculate the attribute vector (Shen and Davatzikos, 2002) for each image Is,t;

2. Initialize the mean shape Z;

3. Select the driving voxels Xs,t of each image Is,t by setting threshold on attribute
vectors  (Shen and Davatzikos, 2002);

4. For each driving voxel  in each image Is,t, calculate the spatial assignment

 according to Eq.10;

5. For each subject s, compute the spatial correspondence on each mean shape point zj
w.r.t. each image Is,t (by Eq. 13) and then apply the kernel-based regression step on
each temporal fiber, thus obtaining  (Eq. 14);

6. Interpolate the dense transformation field fs,t one-by-one with TPS interpolation
(see the description of SP2);

7. Update the mean shape Z with Eq. 15;

8. Relaxing the threshold for selecting driving voxels to incorporate more image
voxels into registration;

9. If not converged (or not reaching the number of predetermined iterations), go to
step 4.

3. Experiments
The ultimate goal of our groupwise longitudinal registration algorithm is to consistently
reveal the subtle anatomical changes for facilitating the diagnosis (or early prediction) of
brain diseases, i.e., dementia. The proposed method is evaluated on both simulated and real
datasets in this paper. For the simulated dataset, three subjects with simulated atrophy in
hippocampus are used. For the real dataset, 9 elderly brains with manually-labeled
hippocampi at year 1 and year 5 and also the longitudinal ADNI dataset (10 normal controls
and 10 AD patients imaged 3 times over 12 months). All the subjects in all experiments have
been linearly aligned using the method described in (Shen and Davatzikos, 2004) before
conducting the non-rigid image registration process. The proposed method is also compared
with three other approaches: 1) Diffeomorphic Demons registration method †(Vercauteren et
al., 2009) (Here, we first register all follow-up images to the individual baseline image and
then register all baseline images to the template); 2) 4D-HAMMER registration method (a
feature-based registration method to align the subject sequence with the template sequence)
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(Shen and Davatzikos, 2004); and 3) Groupwise-only registration method (i.e., our whole
method without temporal smoothing step) to simultaneously align all images to the common
space.

3.1 Experiments on Simulated Data
Experiment Setup—In this experiment, all the images are T1-weighted MR images, with
image size of 256 × 256 × 124 and voxel size of 0.9375 × 0.9375 × 1.5mm3. Three subjects
with manually labeled hippocampus regions at year 1 are used as the baseline data (t = 1) to
simulate atrophy on their hippocampi. It has been reported in (Henneman et al., 2009) that
the annual hippocampus atrophy ratio is 4.0±1.2% for AD patient. Thus, we use a simulation
model (Karacali and Davatzikos, 2006) to simulate <5% shrinkage on hippocampi from the
current time point image (t = 1) and thus generating a simulated image with hippocampus
atrophy as the second time point image (t = 2). By repeating this procedure, we finally
obtain 3 sets of longitudinal data with hippocampal volume shrinking at an annual rate of
<5% through the five time points. Considering the possible numerical error in simulation,
the total simulated atrophy is 15.71% within the five years. All three baseline subjects and
their follow-ups are shown in Fig. 4, with the simulated atrophy ratio on hippocampi (w.r.t.
the baseline image) displayed on the top of each follow-up image.

We first apply our groupwise longitudinal registration method to these 5 × 3 images to
simultaneously estimate their transformation fields from their own spaces to the hidden
common space. In order to compare the accuracy in measuring longitudinal changes, we also
employ Diffeomorphic Demons, 4D-HAMMER, groupwise-only registration method, and
our registration method on these 15 images. For the groupwise-only registration method and
our method, all 15 images will be mapped to the common space; but the common space
estimated by the groupwise-only registration method might be not necessarily the same as
the one estimated by our method. For the Diffeomorphic Demons and 4D-HAMMER, we
need to first specify the template before registration. For Diffeomorphic Demons, we use the
median image of three baseline images as the template, which has the overall minimal SSD
in terms of intensity w.r.t. all other images. For 4D-HAMMER, we repeat the selected
median baseline image as 5 different time-point images to construct a template sequence
with 5 time points (Shen and Davatzikos, 2004). In the following, we evaluate the
performance of these four different registration approaches.

Result 1: Quantitative Measurement of the Hippocampal Volume Change—
Since there is no template used in the groupwise-only registration method, we need to vote
the hippocampus mask as the reference and then map it back to each individual space to
measure the subject-specific longitudinal changes. For all four registration methods, we
quantitatively measure the hippocampus volume loss for each subject in two steps: 1) vote a
hippocampus mask by majority voting strategy either in a particular template space (for
Diffeomorphic Demons and 4D-HAMMER) or in the common space (for the groupwise-
only registration method and our method), based on the observation of all aligned
hippocampus images; 2) map the voted hippocampus mask back to each individual subject
space. Fig. 5 (a) shows the curves of the estimated hippocampus volume loss in a typical
subject (i.e., subject 1 shown in Fig. 4) by Diffeomorphic Demons, 4D HAMMER,
groupwise-only registration method, and our groupwise longitudinal registration method in
black, blue, green and red, respectively. The ground truth of hippocampus volume loss is
also displayed with pink solid curve in Fig. 5 (a). The averaged hippocampus volume losses
estimated by the four methods are also shown in Fig. 5 (b), with the same legend of Fig. 5
(a). The final estimated mean and standard deviation of hippocampus volume loss is 7.50%
±1.03% by Diffeomorphic Demons, 15.26%±0.55% by 4D-HAMMER, 14.59%±0.82% by
groupwise-only registration method, and 15.67%±0.51% by our method.
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Discussion 1—It is clear that our method achieves the highest accuracy in measuring of
anatomical changes, albeit the result by the 4D-HAMMER method is comparable with ours.
Both of these two longitudinal methods outperform the Diffeomorphic Demons and
groupwise-only registration method since they do not have the constraint on temporal
smoothness. It is worth noting that the estimated hippocampus volume loss ratio (15.26%)
by 4D-HAMMER is slightly different from that (15.9%) reported in (Shen and Davatzikos,
2004) since different template image sequences are used.

Since all voxels are equally considered in Diffeomorphic Demons and only the image
intensity is used for registration, the deformation on hippocampus areas might be dominated
by their surrounding large but uniform anatomies, which leads to the inaccurate registration
on hippocampus and thus inaccurate longitudinal measurement on hippocampus volume
loss. On the contrary, the other three registration methods use the attribute vector to
establish the anatomically-meaningful correspondence. Also, the driving voxels help reduce
the ambiguity in registration by letting the voxels with distinctive features to drive the
deformations of other less-distinctive voxels. All these explain why the performance in
measuring shrinkage of tiny hippocampus volume by Diffeomorphic Demons is much worse
than the other three methods.

Result 2: Evaluation of Temporal Continuity—Next, we will observe the
performance of the proposed method in preserving temporal continuity within the same
subject, by visually inspecting the fiber bundles and quantitatively measuring the velocity
along fibers. Taking one subject as the example, Fig. 6 (a) shows one cross section slice,
overlaid with the remaining part of hippocampus after 5-years shrinkage (red color) and the
shrinkage part of the hippocampus during the 5 years (green color) compared to the baseline
data. Fig. 6 (b)–(i) visually demonstrate the temporal fibers by the four registration methods,
where the x1, x2, and x3 axes denote the 3D coordinate system.

Since our method explicitly uses the temporal fiber bundles to achieve spatial-temporal
continuity, it is straightforward to display the temporal fibers  in Fig. 6 (h) and (i) whose
zjs are happened to be located in the color region (i.e., hippocampal area at that cross-section
view) in Fig. 6 (a). To distinguish the temporal order in Fig. 6 (h), we display the landmarks
on these selected temporal fibers with pink `x' for year 1, cyan `o' for year 2, green `Δ' for
year 3, red `+' for year 4, and blue `*' for year 5, respectively. Fig. 6 (i) shows these
temporal fibers by connecting the landmarks of consecutive years in Fig. 6 (h) with different
color (pink for the fiber segment between year 1 and year 2, cyan for the fiber segment
between year 2 and year 3, green for the fiber segment between year 3 and year 4, and red
for the fiber segment between year 4 and year 5), according to the time order. It can be
observed that all the fibers across the color regions in Fig. 6 (a) are smooth and the temporal
orders are well preserved as expected by our method.

Similarly, we investigate the temporal smoothness by the Diffeomorphic Demons, 4D-
HAMMER, and the groupwise-only registration method by mapping the same mean shape Z
in our method to the domain of each image, according to the transformation field produced
by these three methods, since neither of them used the concept of temporal fibers during
registration of all subjects to the template (by the Diffeomorphic Demons and 4D-
HAMMER) or the common space (by the groupwise-only registration method). The pseudo
temporal fibers with the same zjs by Diffeomorphic Demons, 4D-HAMMER, and the
groupwise-only registration method are shown in Fig. 6 (b)–(c), (d)–(e), and (f)–(g),
respectively. It can be observed that, since no temporal continuity within each subject is
considered during the registration, the temporal landmarks produced by Diffeomorphic
Demons and groupwise-only registration method, from year 1 to year 5, have no time order
information as shown in Fig. 6 (h) and (i). However, 4D-HAMMER enforces temporal
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smoothness in its energy function and results in temporal trajectory almost as smooth as our
method.

Given the temporal fibers, we can further quantitatively measure the temporal smoothness
by calculating the magnitude of the changing velocity along each fiber. Fig. 7 (a)–(d) show
the velocity magnitude along fibers (with the associated zjs located in the color region of
Fig. 6 (a)), produced by Diffeomorphic Demons, 4D-HAMMER, groupwise-only method,
and our groupwise longitudinal registration method, respectively. Since the simulated data
has only 5 time-point scans, we can calculate the velocity magnitudes for 4 segments. The
yellow lines in Fig. 7 (a)–(d) denote the average evolution curves of the velocity magnitudes
by the four methods. As shown in Fig. 7, the changes of velocity magnitude among all the
fibers obtained by 4D-HAMMER in (b) and our method in (d) are much more consistent
over time than Diffeomorphic Demons in (a) and the groupwise-only method in (c).

Discussion 2—With explicit constraint of temporal continuity, our groupwise longitudinal
registration method and 4D-HAMMER are able to achieve better performances over the
Diffeomorphic Demons and groupwise-only registration method, in terms of registration
consistency along time.

3.2 Experiments on Real Elderly Brain Data
Experiment Setup—Nine elderly subjects, each with annual MR scans in 5 years, are
used in this experiment and shown in Fig. 8. All the images are T1-weighted MR images,
with image size of 256 × 256 × 124 and voxel size of 0.9375 × 0.9375 × 1.5mm3. The actual
ages of 9 subjects when taking the MR scan are shown in Table 2. For each subject, we have
the manually labeled hippocampus only for year 1 and year 5. For the Diffeomorphic
Demons registration method, we first select a median image of all baseline images that has
the overall smallest distance to other images as the template (as pointed by the red arrow in
Fig. 8). For 4D-HAMMER, we use the selected median image to repeat it as 5 different
time-point images for constructing the template sequence with 5 time points (Shen and
Davatzikos, 2004), to which the subject sequence is registered. For the other two methods
(the groupwise-only method and our groupwise longitudinal registration method), all 45
images will be simultaneously deformed to the common space.

Result 1: Quantitative Measurement of the Hippocampal Volume Change—
Here, the procedure of measuring hippocampus volume change for each registration
approach consists of two steps. First, we need to vote a reference hippocampus mask by
using the majority voting strategy, based on the already aligned hippocampus labels. Since
we only have the manual labeled hippocampus in year 1 and year 5 for all 9 subjects, the
reference hippocampus mask is voted among these 2 × 9 = 18 warped hippocampus regions
after we align all images to the same space. Second, we apply the inverse transformation
fields to map the voted hippocampus mask back to each individual image space. Next, we
measure the annual hippocampus volume changes subject-by-subject. Since we have the
manually labeled hippocampus area at year 1 and year 5 for each subject, we can calculate
the average percentage of hippocampus volume loss during these 5 years, which is
5.65±1.58% by manual labeling. For the four different registration methods, the estimated
average hippocampus atrophy and standard deviation detected in 5-year span is 2.60%
±0.67% by the Diffeomorphic Demons, 5.23%±0.42% by 4D-HAMMER, 4.39%±0.59% by
the groupwise-only registration method, and 5.38%±0.35% by our groupwise longitudinal
registration method. The curves reflecting the averaged percentage of hippocampus volume
changes w.r.t. the baseline, estimated by these four methods, are also shown in Fig. 9, where
curves in black, blue, green, and red are used to represent the results estimated by
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Diffeomorphic Demons, 4D-HAMMER, the groupwise-only method, and our groupwise
longitudinal registration method, respectively.

Discussion 1—In this experiment, we only report the estimated atrophy ratio between
time point 1 and time point 5 since we have only the manually-labeled hippocampi at these
two time points. Compared with the atrophy ratio (5.65%) measured by manual raters, the
results estimated by both 4D-HAMMER (5.23%±0.42%) and our groupwise longitudinal
registration method (5.38%±0.35%) are closer than other two methods. In terms of temporal
continuity, the estimated curves of annual hippocampus atrophy by 4D-HAMMER and our
groupwise longitudinal registration method are also much smoother than those of other two
methods.

Result 2: Evaluation of Registration Consistency—Besides observing the
accuracies of different approaches in estimating the annual hippocampus changes in the
previous paragraph, we also evaluate the registration consistency of different approaches in
this section. To compare the registration results, we use the 1d+t (Metz et al.) (with d
denoting the sagittal view and t denoting the time) image around hippocampi in Fig. 10 to
show the registration consistency over time. It is worth noting the common spaces are
different in these four different registration methods. Therefore, the registered images shown
in Fig. 10 might be different. However, the registration accuracy can be evaluated for each
registration method by inspecting registration result of each subject across time. Therefore,
in Fig. 10, we focus on the intensity transition on the three points: ① the interface point
between brain and background in vertical line A (denoted by `Δ'); ② the intersection of
vertical line A and horizontal line B (denoted by `□'); and ③ the ventricle boundary in
horizontal line B (denoted by `∘'). All through Fig. 10 (a)–(d), the 1d+t results of line A and
B are shown in the right hand, with the horizontal representing the view along the line and
the vertical denoting for the time (from year 1 in the bottom to year 5 in the top).

In general, the registration approaches with temporal smoothness constraint (4D-HAMMER
(Fig. 10(b)) and our groupwise longitudinal registration method (Fig. 10 (d))) outperform
their counterparts (Diffeomorphic Demons (Fig. 10(a)) and groupwise-only registration
method (Fig. 10(c))), as designated by the blue arrows.

Discussion 2—Since the intensity contrast is very poor in hippocampal area, the 1d+t
images shown in Fig. 10 seem not consistent across time in the uniform regions (due to
partial volume effect) along either line A or line B. Hence, we have to inspect the
consistency only on the 3 transition points in Fig. 10. Although 4D-HAMMER has the
comparable performance in delineating the subject-specific anatomical changes, our
longitudinal groupwise registration method achieves better performance in the next
experiment in measuring the registration accuracy when considering all longitudinal
sequences as a whole.

Result 3: Quantitatively Measure the Registration Accuracy—The registration
performance can be further evaluated by computing the overlap ratio on different types
(WM, GM, and VN (ventricles)) of brain tissues. Considering that the pairwise based
method has the template during registration while the groupwise based method does not, we
use a very strict overlap measurement strategy by calculating the overlap ratios between all
possible pairs of aligned images, for each tissue type. Here, the Jaccard Coefficient metric
(Jaccard, 1912) is used to measure the overlap of two regions with the same tissue type. For
the two registered regions A and B, its overlap ratio is defined as:
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(16)

Before non-linear registration, the average overlap ratio of WM, GM, CSF is 46.7±8.8%,
37.4±8.3%, and 40.9±15.5%, respectively. Then, by considering all 45 aligned images
together, the average overlap ratios of WM, GM and VN are 59.6±5.5%, 49.6±5.3%,
71.8±5.5% by Diffeomorphic Demons, 60.6±4.9%, 50.7±4.6%, 72.3±5.6% by 4D-
HAMMER, 63.8±4.9%, 51.2±5.3%, 71.2±5.0% by the groupwise-only registration method,
and 65.6±5.1%, 52.5±5.4%, and 73.9±5.2% by our groupwise longitudinal registration
method, which are all reported in Table 3. Furthermore, we perform the two-sample t-test
(paired and two tailed) between the overlap ratios of our groupwise longitudinal registration
method and all other three registration methods, which shows that our method achieves
significant improvement in all three tissue types with p < 0.01.

Next, by measuring the tissue overlap for the 5 aligned images of the same subject and then
averaging across 9 subjects, the mean and standard deviation of the tissue overlap ratios are
78.3 ± 1.9%, 66.5 ± 2.9%, 82.2 ± 3.6% by the our method on WM, GM, and VN,
respectively, compared to 70.8 ± 3.0%, 60.1% ± 2.4%, 77.4 ± 3.5% by Diffeomorphic
Demons, 76.0 ± 2.4%, 64.7% ± 2.4%, 78.3 ± 2.9% by 4D-HAMMER and 77.2 ± 2.3%, 66.0
± 2.7%, 79.7 ± 3.5% by the groupwise-only registration method. The lower quartiles,
medians, and upper quartiles of the tissue overlap ratios on WM, GM, and VN are also
shown in Fig. 11 (a)–(c), respectively, for the four different registration approaches.

Discussion 3—Our method consistently outperforms the other three methods in accurately
aligning all 45 images to the common space (Table 3), as well as better preserving the
registration consistency among each subject (Fig. 10). Although we propose to
simultaneously register all images to the common space, the alignment of particular
longitudinal subject is very important in many clinical applications. Therefore, we further
evaluate the registration results (i.e., the overlap ratios on WM, GM, and VN by the four
methods in Fig. 11) by considering longitudinal data of each subject as the group, where our
method also achieves the best overlap ratios on all tissue type over the other three methods.

Although 4D-HAMMER has the similar performance with our groupwise longitudinal
registration method in measuring the longitudinal subject-specific hippocampus changes, the
tissue overlap ratio of all aligned images in the template domain is worse than our method
because 4D-HAMMER registers the subject sequence only with the template sequence and
does not consider the matching of all aligned subject sequences. On the contrary, our
method jointly considers all images during registration and aligns them to the hidden
commons space that is close to every image. Accordingly, the overall overlap ratio of every
possible pair of aligned images by our method is much higher than 4D-HAMMER.

3.3 Experiments on ADNI Data
Experiment Setup—In this experiment, we use the MR images from ADNI (Alzheimer's
Disease Neuroimaging Initiative) project to demonstrate the application of our longitudinal
groupwise registration method in the early detection of Alzheimer's disease (AD) by
tracking the longitudinal volume change of hippocampus.

It has been reported in (Schuff et al., 2009) that the AD patients usually have greater
hippocampus volume loss over time than normal subjects. Thus, we select 10 typical
longitudinal sequences from AD (Alzheimer's Disease) group and another 10 from the
normal control (NC) group. Since the goal of this experiment is to demonstrate the
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registration performance, we consider the hippocampus mask provided by the ADNI dataset
as the ground truth.

All images were acquired from 1.5T scanner, with image size 256×256×256 and voxel size
1×1×1 mm3. Each sequence has 3 time points, i.e., baseline, 6 and 12 months (0-6-12m)
with the hippocampus masks provided. For Diffeomorphic Demons, we choose the baseline
image of one subject as the template, which has the minimal overall intensity difference to
all other images. Then all follow-up images in each longitudinal sequence will be aligned
with its baseline image. Next, the baseline image of each longitudinal sequence will be
registered with the selected template image. The final deformation is the composition of the
deformation fields in these two steps. For 4D-HAMMER registration method, we first
construct the template sequence by repeating the selected 3D template as different time-
point images (Shen and Davatzikos, 2004). The 4D-HAMMER method will be performed to
align each longitudinal sequence with the constructed template sequence. For the groupwise-
only method and our groupwise longitudinal method, all the images will be simultaneously
registered to the common space, while the temporal smoothness is only enforced and
encoded in the temporal fibers of our method.

Result—After registration by four registration methods, we first vote a hippocampus mask
by majority voting in the common/template space as the reference. Then we map the voted
hippocampus mask back to each subject space at each time point. Considering the
hippocampus masks given in the ADNI dataset as the ground truth, the ground-truth
hippocampus volume shrinkage ratios (compared to the baseline image) of AD and NC
groups are shown in Fig. 12 (a). The estimated hippocampus volume shrinkage ratios by
Diffeomorphic Demons, 4D-HAMMER, groupwise-only, and our longitudinal groupwise
registration method are displayed in Fig. 12 (b)–(e), respectively. The red lines denote for
the results of AD group and blue lines for the NC group. The black line in each panel of Fig.
12 represents the mean change from 6 month to 12 month in each group. The statistics
(lower quartiles, medians, and upper quartiles) of the hippocampus shrinkage ratios on AD
and NC group by four registration methods are also shown in Fig. 13 (b)–(e), with statistics
of ground truth displayed in Fig. 13(a). It is obvious that the result by our method is closer to
the ground truth and also the temporal smoothness is better maintained than all other three
methods.

Discussion—In this experiment, we use the ADNI dataset to demonstrate the potential
application of our method in longitudinal study. As shown in Fig. 12 (a) and Fig. 13 (a),
hippocampus volumes generally decrease over time. However, we found some abnormal
cases (i.e., the hippocampus volume increases over time) by Diffeomorphic Demons and
groupwise-only registration method, since both methods do not consider the temporal
heuristics during the registration. The results by the 4D-HAMMER and our longitudinal
groupwise registration method are better in keeping temporal continuity, due to the use of
temporal smoothness constraint in the registration. Compared with the ground-truth data, the
estimated hippocampus shrinkage ratios by our method are closer to those by the 4D-
HAMMER.

3.4 Experiments on ADNI Test/Retest Dataset
Experiment Setup—In ADNI, each subject was scanned twice at each time point, in
order to obtain both MP-RAGE and repeat MP-RAGE data. Also, one of these two scans has
been further processed by ADNI with their developed image processing pipeline, including
intensity bias correction and hippocampus segmentation (Yushkevich et al., 2010). For
performing test-retest experiment, we regard those two originally-acquired MP-RAGE
images and the one post-processed image as three different images (acquired at the same

Wu et al. Page 18

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



time point) for the same subject. For the hippocampus, since its label mask is given only for
the post-processed image, we map it, respectively, to the two MP-RAGE images (by rigidly
registering the post-processed image with the two MP-RAGE images) to achieve the
ground-truth segmentations for the two MP-RAGE images as well. Particularly, we select 1
AD subject and 1 normal-control subject from ADNI dataset, and construct 4 different
image sequences for each subject by randomly ordering its respective three images. Table 4
show details on how we construct 4 image sequences for each subject. Then, at each
experiment, we perform image registration method upon these 2 randomly constructed
image sequences (one AD and one NC). Consequently, we repeat this procedure for 4 times
with the image sequence constructed w.r.t. Table 4 at each experiment.

Result—The estimated hippocampus shrinkage ratios by Diffeomorphic Demons, 4D-
HAMMER, groupwise-only, and our groupwise longitudinal registration method are shown
in the Fig. 14(a)–(d). Note that each panel in Fig. 14 corresponds to the hippocampus
shrinkage ratios for each subject, with red and blue denoting the results for the AD subject
and normal-control subject, respectively. Since we performed 4 experiments as mentioned,
we have 4 estimated hippocampus shrinkage ratios for each subject, as represented by the
four curves in each panel. The mean and standard deviation of the shrinkage ratios between
time points #1 and #3 can be computed, and they are (0.092±0.30)%, (0.035±0.18)%,
(0.088±0.35)%, (0.038±0.060)% by Diffeomorphic Demons, 4D-HAMMER, groupwise
only registration, and our groupwise longitudinal registration method, respectively.

Discussion—Since the groupwise-only method and our groupwise longitudinal
registration method are not biased by the template selection and also estimate the
deformation fields of all images simultaneously, the estimated hippocampus shrinkage ratios
are consistent across all 4 experiments as expected. (Note that the groupwise-only method
have the same result across different experiments and the results by our groupwise
longitudinal registration method are very close to each other. Therefore, we only observe
one curve in Fig. 14(c) and (d).) On the contrary, the Diffeomorphic Demons and 4D-
HAMMER need to specify a certain image as the template. For example, Diffeomorphic
Demons needs to first align images in time point #2 and #3 to the time point #1 for the intra-
subject longitudinal registration. Thus, when the image in time point #1 is changed in the
experiment, the final registration results could also change, as indicated by the inconsistent
estimated hippocampus shrinkage ratios shown in Fig. 14(a). 4D-HAMMER also needs to
explicitly initialize the temporal correspondence between two neighboring time points by a
pairwise registration algorithm before the sequence-to-sequence registration, thus obtaining
inconsistent results across 4 different experiments as shown in Fig. 14(b). In summary, these
results have demonstrated the capability of our groupwise longitudinal registration method
in capturing unbiased estimation for hippocampus atrophy.

3.5 Computation Time
Here we report the computation time of Diffeomorphic Demons, 4D-HAMMER, groupwise
only and our groupwise longitudinal registration method in Table 5. All the experiments are
run on our DELL computation server with 2 CPUs (4 cores, 2.0G Hz) and 32G memory. It
is clear that our groupwise longitudinal achieves similar computation time with groupwise
only registration method, but much faster than 4D-HAMMER.

4. Conclusion
In this paper, we have presented a novel method for groupwise registration of serial images.
The proposed method adopts both the spatial-temporal heuristics and the groupwise
registration strategy for registering a group of longitudinal image sequences. More
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specifically, the spatial-temporal continuity is achieved by enforcing the smoothness
constraint along fiber bundles within each subject. Moreover, we simultaneously estimate all
the transformation fields which map all the images to the hidden common space without
explicitly specifying any template, thus avoiding the introduction of any bias to the
subsequent data analysis.

Future work includes 1) investigating more powerful kernel regression methods to regulate
the temporal smoothness along the temporal fiber bundles; 2) integrating our groupwise
longitudinal registration method in consistent labeling of longitudinal dataset under the
framework of our previous developed 4D tissue segmentation algorithm (CLASSIC (Xue et
al., 2006)); 3) testing our method in clinical applications, e.g., measuring longitudinal brain
changes in mild cognitive impairment (MCI) study (Petersen, 2007).

Appendix I
It is usually intractable to optimize h directly according to P(h, v) in Eq. 8 since the
dimension of is high. Therefore, the actual inference of h in our method is the MAP
estimation on the posteriori distribution P(h|v). One of the variational Bayes inference
approaches, called “free energy with annealing” (Frey and Jojic, 2005), is used to obtain the
optimal parameter h by minimizing the distance between P(h|v) and P(h, v), which bounds
for maximizing the likelihood of the observation p(v).

However, the posteriori distributions of some variables (i.e., F, {Φs}, and Z) are hard to
compute. Instead, we estimate F, {Φs}, and Z by maximizing their expectations w.r.t. the

maintained posteriori distributions of hidden variables , which falls to the EM
principle. Following the notation in (Frey and Jojic, 2005), the Q-distribution approximating
the real posterior function P(h|v) is:

(17)

where the Q-distributions for {zj}, {fs,t} and  are the Dirac delta function δ(.) centered at

the latest estimations of ,  and , respectively. The constraint on the distribution of

 is:

(18)

In order to achieve robust registration result, the free energy with annealing (Frey and Jojic,
2005) is defined as:

(19)

where r is the temperature gradually decreasing from high to low in the annealing scenario.
By substituting P(h, v) (in Eq. 6) and Q(h) (in Eq. 17) to Eq. 19 and discarding some
constant terms, we obtain the free energy for our registration algorithm, as in Eq. 9. (Please
see Appendix II for the derivation of Eq. 9)
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Appendix II
The energy function in Eq. 9 is obtained from free energy in Eq. 19 by substituting Q(h) in
Eq. 17 and in Eq. 6 as follows:

By substituting  (uniform distribution),  (Eq. 7),  (Eq. 7), and

 (Eq. 4) to (Q, P, r), we get:

where ε = r · (K + W + KW) − 2 denotes the constant. Hereafter, by omitting the constant ε
and regarding the variable r as the temperature in the annealing system, we obtain the
energy function of our groupwise longitudinal registration algorithm, which is defined in Eq.
9.
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Research Highlights

Simultaneously register all longitudinal image sequences to the common space.

The intra-subject temporal consistency is well preserved during registration.
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Fig. 1.
Comparison of three different registration scenarios. The methods in Davis et al. (Davis et
al., 2007) and Durrleman et al. (Durrleman et al., 2009) are shown in (a) and (b),
respectively. Our method is illustrated in (c). In (a), kernel regression is performed to
construct the atlas at any time point. However, the longitudinal information from the same
subject is not considered. The method in (b) explicitly estimates the shape evolution in each
subject (as indicated by the solid curves) and then registers subject sequences to the atlas
sequence (at the bottom of (b)). For our approach, all the images are simultaneously mapped
to the hidden common space and the temporal consistency is also well preserved by the
implicit temporal fibers (as displayed by the dashed curves).
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Fig. 2.
The illustration of our groupwise longitudinal registration algorithm on subject image
sequences. In our algorithm, all images (from different subjects with different number of
scans) will be simultaneously aligned to the common space by their respective
transformation fields (as shown by the blue solid curves). Meanwhile, the temporal
consistency of each subject will be preserved during the registration by temporal fiber
bundles (as shown by the red dashed curves).

Wu et al. Page 27

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
The schematic illustration of the proposed method for simultaneous longitudinal and
groupwise registration. For each image, its driving voxels Xs,t (highlighted in red color on
the brain slice, with the enlarged views shown in the bottom) will be used to steer the
estimation of the transformation fields by establishing their correspondences with the mean
shape Z in the common space (as shown in the top row). Meanwhile, the temporal
consistency within each longitudinal sequence can be regulated along the temporal fiber
bundles, as displayed by the dash curves in the middle row (with different colors for
different subjects).
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Fig. 4.
Three baseline subjects and their follow-ups in four consecutive time points. The atrophy
ratios on hippocampi (w.r.t. the baseline image) are shown on the top of the follow-up
images.
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Fig. 5.
Experimental results on measuring simulated hippocampus volume loss through 5 time
points. (a) shows the results of estimating the hippocampus volume loss for a typical subject
through the 5 time points by four different approaches, and (b) shows the average estimated
hippocampus volume change through the 5 time points by four different approaches.

Wu et al. Page 30

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
The advantage of using temporal fiber bundles to enforce temporal smoothness. (a) shows
the simulated shrinkage of hippocampus in consecutive 5 years with the remaining parts of
the hippocampus shown in red and the shrunk parts in green. (c), (e), (g), and (i) show the
selected temporal fibers by diffeomorphic Demons, 4D-HAMMER, groupwise-only
registration method, and our registration method, with the landmarks on the corresponding
fibers displayed in (b), (d), (f), and (h), respectively.
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Fig. 7.
The changes of velocity magnitude along the fibers obtained by diffeomorphic Demons, 4D-
HAMMER, the groupwise-only method, and our groupwise longitudinal registration method
are shown in black, blue, green, and red, respectively. The yellow lines in (a)–(d) denote the
average evolution curves of the velocity magnitude, which are estimated from all individual
fibers produced by the four different methods.
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Fig. 8.
Nine real subjects used in the experiment. (a) Each subject has 5 images scanned at different
time points. The image resolution is 256 × 256 × 124 with voxel size of 0.9375 × 0.9375 ×
1.5mm3 The image pointed by the red arrow is used as the template for Demons and 4D-
HAMMER, with its transverse, sagittal, and coronal views shown in (b).
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Fig. 9.
The curves of the average hippocampus changes w.r.t. baseline for all 9 real subjects,
estimated by diffeomorphic Demons (black), 4D-HAMMER (blue), the groupwise-only
registration method (green), and our groupwise longitudinal registration method (red),
respectively.
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Fig. 10.
The 1d+t views (right panels in (a)-(d)) around hippocampi after registration by the four
different registration algorithms. The blue arrows denotes the points of interest as shown by
`Δ', `□' and `∘' in (a)–(d).
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Fig. 11.
The box plots of the overlap ratios on WM, GM and VN by diffeomorphic Demons, 4D-
HAMMER, the groupwise-only method, and our groupwise spatial-temporal registration
method are shown in (a), (b), and (c), respectively, which measure the tissue overlap
separately for each subject.
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Fig. 12.
The estimated hippocampus volume shrinkage ratios by Diffeomorphic Demons, 4D-
HAMMER, groupwise-only, and our longitudinal registration method are shown in (b)–(e),
respectively, with the ground truth displayed in (a).
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Fig. 13.
The statistics of hippocampus volume shrinkage ratios at 6 month and 12 month by
Diffeomorphic Demons, 4D-HAMMER, groupwise-only and our longitudinal groupwise
registration method is shown in (b)–(e), respectively, with the ground truth displayed in (a).
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Fig. 14.
The estimated hippocampus volume shrinkage ratios by Diffeomorphic Demons, 4D-
HAMMER, groupwise-only method, and our longitudinal groupwise registration method in
the four repeated experiments. In each panel, the red curves denote results for the AD
subject, while the blue curves denote for the normal subject. The meaning for each red (or
blue) curve is explained in Table 4.
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Table 1

Summary of important notations.

Symbol Description

I All images acquired from all subjects s at all time points t; I = {Is,t|s = 1,…N;t = 1,…,Ts}

Z The mean shape with K points; Z = {zj|j = 1,…, K}

fs,t The transformation field of each image Is,t toward the hidden common space C

F The collection of transformation fields fs,t; F = {fs,t|s = 1,… N;t = 1,…,Ts}

τ s,t The discrete scanning time of subject s at time point t

φs
j(τ) The trajectory function representing a particular temporal fiber in subject s; φs

j(τs,t) = f s,t(zj)
Φs The temporal fiber bundles in subject s; Φs = {φsj(τ) ∣ j = 1, …, K }
Xs,t The collection of all Ms,t driving voxels in image Is,t; Xs,t = {xs,ti ∣ i = 1, …, Ms,t}

a⇀(x, Is,t) The attribute vector on point x of image Is,t

ms,t
i The hidden variable indicating the assignment of zj for a particular driving voxel xs,t

i

m The collection of all ms,t
i ; m = {ms,t

i ∣ s = 1, …, N , t = 1, …, Ts, i = 1, …, Ms,t}
Ls(fs,t) The bending energy of transformation field fs,t

L T (φsj(τ)) The residual energy after performing kernel regression on a particular fiber φs
j(τ)
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Table 3

Overall tissue overlap ratios of WM, GM and VN, obtained by diffeomorphic Demons, 4D-HAMMER,
groupwise-only method, and our groupwise longitudinal registration method.

WM GM VN Overall

Before Non-linear Registration 46.7±8.9% 37.4±8.3% 40.9±15.5% 41.7±10.9%

Diffeomorphic Demons 59.6±5.5% 49.6±5.3% 71.8±5.5% 60.3±5.4%

4D-HAMMER 60.6±4.9% 50.7±4.6% 72.3±5.6% 61.2±5.0%

Groupwise-only registration method 63.8±4.9% 51.2±5.3% 71.2±5.0% 62.1±5.1%

Groupwise longitudinal registration Method 65.6±5.1% 52.5±5.4% 73.9±5.2% 64.0±5.2%
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Table 4

The composition and notation of the four constructed longitudinal image sequences.

Sequence 1 (solid line) Sequence 2 (dashed line) Sequence 3 (dash-dot line) Sequence 4 (dotted line)

Time Point #1 MP-RAGE MP-RAGE repeat Post-processed MP-RAGE repeat

Time Point #2 MP-RAGE repeat MP-RAGE MP-RAGE repeat Post-processed

Time Point #3 Post-processed Post-processed MP-RAGE MP-RAGE
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Table 5

The computation time by diffeomorphic Demons, 4D-HAMMER, groupwise-only method, and our groupwise
longitudinal registration method.

Experiment Data Image Size 5×3 Simulate Data
(256×256×124)

5×9 Real Data
(256×256×124)

3×20 ADNI data
(256×256×256)

Diffeomorphic Demons ~ 1.5 hour ~ 4 hour ~ 8 hour

4D-HAMMER ~ 4 hour ~ 18 hour ~40 hour

Groupwise-only registration method ~ 2.5 hour ~8.5 hour ~12 hour

Groupwise longitudinal registration Method ~ 2.5 hour ~ 8.5 hour ~12 hour
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