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Abstract
Complex sentence processing is supported by a left-lateralized neural network including inferior
frontal cortex and posterior superior temporal cortex. This study investigates the pattern of
connectivity and information flow within this network. We used fMRI BOLD data derived from
12 healthy participants reported in an earlier study (Thompson, C. K., Den Ouden, D. B.,
Bonakdarpour, B., Garibaldi, K., & Parrish, T. B. (2010b). Neural plasticity and treatment-induced
recovery of sentence processing in agrammatism. Neuropsychologia, 48(11), 3211-3227) to
identify activation peaks associated with object-cleft over syntactically less complex subject-cleft
processing. Directed Partial Correlation Analysis was conducted on time series extracted from
participant-specific activation peaks and showed evidence of functional connectivity between four
regions, linearly between premotor cortex, inferior frontal gyrus, posterior superior temporal
sulcus and anterior middle temporal gyrus. This pattern served as the basis for Dynamic Causal
Modeling of networks with a driving input to posterior superior temporal cortex, which likely
supports thematic role assignment, and networks with a driving input to inferior frontal cortex, a
core region associated with syntactic computation. The optimal model was determined through
both frequentist and Bayesian model selection and turned out to reflect a network with a primary
drive from inferior frontal cortex and modulation of the connection between inferior frontal and
posterior superior temporal cortex by complex sentence processing. The winning model also
showed a substantive role for a feedback mechanism from posterior superior temporal cortex back
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to inferior frontal cortex. We suggest that complex syntactic processing is driven by word-order
analysis, supported by inferior frontal cortex, in an interactive relation with posterior superior
temporal cortex, which supports verb argument structure processing.

Keywords
Neural mechanisms of syntactic processing; Connectivity; Network modeling; fMRI; inferior
frontal gyrus; superior temporal gyrus

1. Introduction
Processing of complex syntactic structures demands more cognitive resources than the
processing of relatively simple constructions, and this is associated with locally increased
neuronal activation (Just et al., 1996; Stromswold et al., 1996; Caplan et al., 1998).
Although reported patterns of activation foci modulated by experimental factors vary
between studies, it appears that an important role in sentence processing is played by left-
hemisphere inferior frontal cortex, in particular Broca’s area (for a comprehensive and
critical overview, see Rogalsky & Hickok, 2011). Debate on the precise functional role of
(different parts of) this area is ongoing and hypotheses range from relying on specific
structure-building or linearization operations (Bornkessel-Schlesewsky et al., 2009;
Grodzinsky & Friederici, 2006) to those relying on more general cognitive processes of
representational conflict resolution (Novick et al., 2005) or the integration/unification of
different types of information into the sentence context (Hagoort, 2005). It has also been
claimed that Broca’s area supports a working memory component that may underlie any of
the above-named processes (Fiebach et al., 2005; Kaan & Swaab, 2002), though this appears
to be specifically plausible for the pars opercularis (Rogalsky & Hickock, 2011). Whatever
its precise functional role(s), inferior frontal cortex does not operate in isolation, but is part
of a larger network involved in sentence processing (Keller, Carpenter, & Just, 2001). The
form of this network, as well as its modulation through syntactic complexity, is still under
investigation (see Friederici, 2009).

In addition to inferior frontal cortex, another important role in syntactic processing is played
by left-hemisphere posterior superior temporal cortex, where activation has also been shown
to increase with syntactic complexity in sentence processing, from early functional imaging
studies onwards (e.g. Just et al., 1996; Ben-Shachar et al., 2003). It is quite possible that the
specific contribution of the posterior superior temporal cortex to syntactic parsing is in
thematic role assignment, based on verb argument structure, the extraction of ‘actorhood’,
and/or order preferences with respect to the animacy of potential arguments (Bornkessel et
al., 2005; Grewe et al., 2007; Shetreet et al., 2007). This is in line with effects of verb
argument structure complexity observed in this area (Den Ouden et al., 2009; Thompson, et
al., 2007; Thompson et al., 2010a). It has been suggested that Broca’s area and posterior
superior temporal gyrus together form a network that is responsible for thematic role
assignment, a crucial aspect of complex sentence processing which, in English, relies on
both the processing of word order and verb argument structure (Friederici 2009; Friederici,
Fiebach, Schlesewsky, Bornkessel, & Cramon, 2006).

In an fMRI study examining the neural correlates of syntactic processing and recovery from
aphasia, Thompson et al. (2010b) showed a pattern of left-hemisphere activation associated
with processing of complex syntactic structures, viz. object-cleft constructions (OC; 1a)
compared to subject-cleft constructions (SC; 1b). Using an auditory verification task, in
which auditory sentences and visual scenes were presented simultaneously, participants
indicated by button-press (yes/no) whether or not the two matched. Sentence types included
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OC, SC, and simple actives (ACT) (60 trials per condition), pseudorandomly distributed
over 4 runs (see Thompson et al., 2010b for details).

1. a. It was the groom that the bride carried. (OC)

b. It was the bride that carried the groom. (SC)

Unlike subject-clefts, object-cleft constructions have a noncanonical word order (in English,
an order other than subject-verb-object), and are deemed to be more complex based on
formal syntactic theory (e.g. Chomsky, 1977, 1995; Bresnan, 2001), as well as on more
general cognitive theories in which object clefts make greater demands on working memory
(e.g. King and Just, 1991; Caplan & Waters, 1999; Gibson, 1998; Gordon et al., 2002).
Whereas the contrast subtracting object-cleft activation levels from subject-cleft activation
only revealed a small cluster of voxels in the left posterior insula, the opposite contrast
revealed robust differential activation in a number of perisylvian left-hemisphere areas,
including the inferior frontal, middle frontal and precentral gyri, the anterior insula, as well
as the middle temporal, posterior superior temporal and angular gyri.

The areas identified by Thompson et al. (2010b) to be involved in processing complex
sentences were similar to those reported in other studies (Just et al., 1996; Stromswold et al.,
1996; Caplan et al., 1998, 2001; Caplan, 2001; Cooke et al., 2002; Ben-Shachar et al.,
2003). However, the BOLD signal subtraction analysis performed in this and similar studies
does not provide insights about connectivity and information flow between these areas.
Functional and effective connectivity analyses are required to map the network structure
between activated areas, that is, to ascertain which network nodes interact during complex
syntactic processing. One particular purpose of the current investigation was to determine
which of two cortical areas is a better candidate to provide the driving input to the ‘syntactic
network’: (i) posterior superior temporal cortex, likely involved in verb argument structure
processing, or (ii) inferior frontal cortex, with its suggested prime role in supporting
sequential processing, complex structure building and decomposition, either directly or
indirectly through a working memory component. If activation throughout the network turns
out to be principally driven by posterior superior temporal cortex, this corroborates the view
that sentence processing occurs bottom-up, starting with the lexico-syntactic analysis of
prime components, viz., verbs. On the other hand, if the network is driven primarily by
inferior frontal activation, this suggests that sentence processing starts from the analysis of
the linear order of its lexical components into a hierarchical structure. Ultimately, these
processes have to team up, in order to achieve a correct parse for complex sentences.

In this paper we reanalyzed the raw data from Thompson et al. (2010b) by performing a
two-stage connectivity analysis: We first used directed partial correlation (dPC) analysis as a
hypothesis-free method to limit the model space and we then applied dynamic causal
modeling (DCM) to look at driving inputs and modulatory influences on the connections
within the preselected models. dPC is a method that in principle allows for detecting
effective connectivity, as discussed in Mader et al. (2009). This method has been used
successfully by Saur et al. (2010), to investigate the networks underlying different aspects of
auditory comprehension. Due to the comparably low temporal resolution of fMRI data the
information about the connectivity structure has to be assumed to be contained in the
instantaneous interactions. dPC does not depend on prior knowledge about the underlying
network structure. It can be applied without assumptions about the network topology under
investigation. The statistics that come with dPC analyses “decide” about the presence or
absence of interactions, which can be used for the formulation of hypotheses about the
network structure, as in the present study.

As a second step in our reanalysis of the Thompson et al. (2010b) data, we used Dynamic
Causal Modeling (DCM; Friston et al., 2003) to further specify the preselected models.
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Through inference from local activation levels, DCM provides parameter estimates that
reflect the effective strength and context-dependent modulation of connections between
clusters of neurons (Stephan et al., 2010). The method has been used to investigate effective
connectivity in areas such as task-related modulations of the network supporting speech
comprehension (Leff et al., 2008), developmental changes within the phonological
processing network (Booth et al., 2008), modulations of inferior frontal gyrus connectivity
associated with lexical and phonological processing (Heim et al., 2009a) and altered
connectivity in patients with primary progressive aphasia (Sonty et al., 2007).

One major concern in DCM is the a priori selection of models to be tested. The primary
challenge is to reduce the number of relevant models that will be compared, based on
theoretical, practical or other data-external considerations, beforehand. Without such a
reduction, the number of possibilities is essentially unlimited, due to boundless
combinations of different driving inputs, self-modulating nodes and multiple modulations on
different connections. For this reason, we raised the cluster size threshold in the subtraction
reanalysis of the Thompson et al. (2010b) data, in order to select only the most strongly
activated peaks in the potential network, and we let our competing models be constrained by
the outcome of the dPC functional connectivity analysis. Further restrictions on the model
shape are discussed in the Methods section.

Through serial application of these three methods of data analysis (BOLD subtraction, dPC
and DCM), we investigated (i) which of two competing hypotheses about the driving input
to the network provided a better fit to the data, viz., models with driving input from posterior
superior temporal cortex or from inferior frontal cortex, and (ii) which of the directional
connections in the syntactic network is crucially modulated by the processing of complex
syntactic structures.

2. Material and methods
2.1 Time series

The background to the fMRI experiment, as well as the participant, task and imaging
information, have been published in detail in Thompson et al. (2010b). For further
background, we refer the reader to that publication. The data of twelve right-handed
volunteers ranging in age from 32 to 79 years (7 females, mean age 54), presented in
Thompson et al. (2010b), were used to identify participant-specific activation peaks within a
sphere of a 9 mm radius of the group activation peaks (based on the elevated cluster
threshold). All second-level statistics were evaluated at a voxelwise significance threshold
of p < .05, corrected for multiple comparisons per false discovery rate (FDR: Benjamini &
Hochberg, 1995; Genovese et al., 2002). We used a cluster size threshold of 15 contiguous
voxels (405 mm3), which was higher than the threshold used in the original analysis of the
data, reported in Thompson et al. (2010b) (viz., 3 contiguous voxels (81 mm3)). Time series
from these peaks were extracted and served as input for the dPC and DCM analyses.
Importantly, for the network analyses, we created new models in which we (i) concatenated
the scans from the four separate runs and (ii) modeled the main effect of TASK (all three
conditions, collapsing over matched and mismatched trials), parametrically modulated by
the conditions OC and SC. In addition, main effects of the different runs were covaried out
through the addition of three session regressors, including explicit modeling of the
transitions between runs1. From these models, time-series were extracted within a volume of

1One participant only completed three of the four fMRI runs. For the analysis of this participant’s results, we adapted the statistical
model, as well as the computation of time series for dPC and DCM, to include the correct number of runs (3) and regressors (2).
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interest of 6 mm radius from the participant-specific activation peaks and averaged over
voxels.

2.2 dPC Analyses
For computational details on the dPC method we refer to recent publications by Mader et al.
(2008) and Saur et al. (2010). In short, dPC is an approach in the time domain quantifying
Granger-causality, which enables a hypothesis-free exploration of networks in the sense that
once the network nodes are defined, no further prior assumptions about the functional
network structure are necessary (Eichler, 2005). Granger introduced the concept of
instantaneous causality or instantaneous interaction. These interactions are bidirectional as
the cause cannot be distinguished from the effect based on predictability. Owing to the
temporal characteristics of the fMRI time series, with the dPC method we investigate such
instantaneous interactions by using vector autoregressive processes. To eliminate scanner
drift, a 3rd degree polynomial was fitted to each of the averaged time series. To allow
comparison across the group of participants, resultant dPC values were divided by their
levels of significance resulting in normalized dPC (dPCnorm) values. Group networks were
computed by averaging these dPCnorm values across participants (mean dPCnorm). An
interaction on group level was considered significant if the following condition was
fulfilled: (mean dPCnorm− 2 * stdv[mean]) > 1.

2.3 Dynamic Causal Modeling
The result of the dPC analysis served as the basis for the models that were tested with DCM.
That is, the intrinsic connections in our DCM models were defined by the results of the dPC
analysis. We limited our comparisons to models with equal basic complexity, i.e. with equal
bidirectional connectivity within the dPC output network, one driving input and one
modulation of a unidirectional condition per model.

Based on earlier findings with respect to the different cortical areas involved in syntactic
processing and the results from Thompson et al. (2010b), we tested two sets of models (in
the same comparison): (1) those with a driving input onto posterior superior temporal cortex
(posterior superior temporal sulcus (pSTS)) and (2) those with a driving input onto inferior
frontal cortex (IFG). Our research interest was specifically aimed at the network modulation
involved in the processing of syntactically complex sentences, hence we modeled
modulations by the object-cleft condition only. Together, these considerations left us with
12 models that could be directly compared as to their model goodness (see Figure 2).

For model selection, we used two methods that are often contrasted with each other (Stephan
et al., 2009), but which each have their own merits. First, we performed a classic frequentist
repeated measures ANOVA, with a 12-level factor model, using the subject-specific
negative free energy (F) as log-evidence ratio approximations for each model. In order to
directly investigate the effect of the driving input node, we also conducted a 2 × 6 repeated
measures ANOVA, with factors input and modulation.

Second, we used variational Bayesian Model Selection (BMS), a recent version of BMS
currently implemented in SPM8, to present the ‘winner’ among our twelve competitors. The
output of this comparison is a value for the exceedance probability and the posterior model
probability of each model, each summing to 1 (or 100%). The exceedance probability value
for a model k reflects the probability that k is a better fit to the data than any other model, of
those tested. The posterior probability for a model k stands for the expected likelihood of
obtaining model k, for any randomly selected subject. Because we basically compared two
groups of models, with driving inputs onto two different network nodes, we also performed
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a family-level inference based on model space partitioning, using the SPM routine
spm_compare_families (Stephan, et al., 2010).

Though both the frequentist (classical) and the Bayesian are based on the same single-
subject model evidence approximation, i.e. the F-value (negative free energy, F), they
consider the problem of model selection from two different analytical points of view. In the
frequentist approach we used an analysis of variance to test for differences in log-evidences
over models relative to intersubject differences. In contrast, the Bayesian approach describes
a hierarchical model, which is optimized to furnish a probability density on the models
themselves by treating the model as a random variable. The frequentist approach tries to
reject the null hypothesis that there are no differences in model evidence across models,
whereas the Baysian approach estimates the models’ probabilities and enables inference in
term of exeedance probabilities. Consequently, results between these methods might differ.
On the other hand, if both methods converge in the same winning model, this may further
underline the significance of the result.

Subject-specific estimates for the 8 parameters in the winning model were entered into eight
one-sample t-tests, to test difference from zero. These parameters were the driving input, the
strengths of the intrinsic connections between the nodes and the impact of the modulation
onto the relevant connection.

We also performed post-hoc investigations into the relation between parameter estimates
and our individual participants’ preference for the group’s winning model (G). In a first
analysis, we calculated difference scores between each individual’s negative free energy (F)
values for G and for either that participant’s winning model (if other than G), or the second-
best model (in case G was optimal). The resulting F-difference scores are positive for
individuals for whom model G is better than any other, and negative for those who have an
alternative winner, i.e. it reflects the strength of that individual’s preference for group’s
winning model G. We then performed Pearson correlations separately for each parameter
estimate, as well as a regression analysis, between parameter estimates and F-difference
scores. Secondly, we split up the participants into those for whom G was the optimal fit,
versus those for whom one of the other 11 models was the winner. We then performed
Mann-Whitney U-tests to see if these groups differed in the parameter values for each of the
eight model variables.

3. Results
3.1 fMRI

The factorial re-analysis of Thompson et al.’s (2010b) fMRI data, with an elevated cluster-
size threshold (k=15), revealed a significant main effect of sentence type, with no main
effect of sentence-picture matching and no interaction of sentence type and sentence-picture
matching. In further analyses, therefore, matched and mismached stimulus trials were
collapsed. The effect of sentence type was solely driven by the contrast of OC>SC, yielding
four clusters of differential activation. Plotting of the data confirmed that for all these
clusters, the effect was driven by OC sentences showing increased activation relative to SC
sentences, rather than by decreases of activation in the SC condition relative to baseline (see
Table 1 and Figure 1A). The four clusters were centered around peak activations in the
triangular part of the IFG , the posterior superior temporal sulcus (pSTS), premotor cortex
(PM) and the anterior middle temporal gyrus (aMTG). The opposite contrast of SC>OC
yielded no significant differential activation.
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3.2 dPC
Within a 9 mm radius of the four group activation peaks for the contrast OC>SC, we
determined participant-specific peaks for the same contrast (see Table 2). Although the
activation peak in IFG for the group analysis was located in the pars triangularis (BA 45), it
must be noted that in five of the twelve participants the individual IFG peaks within a 9 mm
radius of these coordinates where located in the pars opercularis (BA 44). Likewise, the
activation cluster with a peak in pSTS extended into the superior and to a lesser extent the
middle temporal gyrus, while for five participants, the peak closest to the anterior MTG
group peak was actually located in the temporal pole (BA 38). The raw data were extracted
from these individual peaks, averaged over voxels within a 6 mm radius, and entered into
the dPC analysis. Figure 1B shows the results, with significant connectivity between aMTG-
pSTS, pSTS-IFG and IFG-PM. These significant interactions defined the intrinsic
connections in the 12 models that were compared using Dynamic Causal Modeling.

3.3 DCM
For each participant, the twelve models given in Figure 2 were estimated. The average
negative free energy (F) values for each model are plotted in Figure 3. A repeated measures
ANOVA, comparing these values across models, failed to meet the assumption of sphericity,
as assessed with Mauchly’s test (χ2 = 672.3; p<.05). Therefore, the degrees of freedom were
corrected using Greenhouse-Geisser estimates of sphericity (€=.143). The ANOVA
(corrected for degrees of freedom) revealed a trend towards a main effect of model
(F(1.57,17.27) = 3.111; p=.08). Follow-up pairwise comparisons show that the model with
the highest (i.e. less negative) F value, model #12, differed significantly from models #2, #3,
#7, #8 and #9 (all p<.05).

In the 2 × 6 ANOVA on the F values, the 6-level factor modulation and the interaction
between input and modulation failed to meet the assumption of sphericity as well (χ2 =
186.4 and χ2 = 173.1; p<.05), so degrees of freedom were again corrected using
Greenhouse-Geisser estimates of sphericity for these effects (€=.207 and €=.208,
respectively). Results showed a trend towards a main effect of input (F(1,11) = 3.816; p=.
077), driven by higher F values for the models with driving input onto IFG.

Variational Bayesian Model Selection showed model #12 to be the winner, with an
exceedance probability of 84.8% (see Figure 4) and a posterior model probability of 30%
(see Figure 5). The Bayesian comparison between the two groups of models with different
driving inputs showed that the models with driving input onto IFG generally fit better to the
data, with a group exceedance probability of 86.7% and a posterior model probability of
64%.

In summary, from the models that were tested, model #12, with driving input onto the IFG
and modulation by object cleft processing of the connection between IFG and the pSTS, is
the model that best fit our data. Also, between models with different modulations, those with
driving input onto IFG provide the better fits to the data, as compared to models with pSTS
driving input.

Figure 6 shows the winning model with the mean parameter estimates alongside the
connections. The only parameter values that differed significantly from zero were for the
connections from pSTS to IFG (+0.13; p<.05) and from pSTS to aMTG (+0.35; p<.05) .
Under an alpha level that is corrected for multiple comparisons (α = 0.00625), none of the
connections are significantly different from zero (see also Table 3).

Visual observation of the subject-specific estimates for the various parameters revealed
variation between subjects, not merely in the size of parameter estimates, but more crucially
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in the signs of the estimates. Where a particular connection between nodes was excitatory
for some participants, it was inhibitory for others. The different ‘directions’, reflected in
different estimate signs, lead to a mean that is relatively close to zero. In order to probe
further into what may drive this variance between subjects, we investigated the relation
between parameter estimates and our individual participants’ preference for model #12, as
expressed by difference scores in F-values between individual’s winning model and their
‘runner up’. In all, #12 emerges as the optimal model for six of our twelve participants, with
three showing an optimal data-fit with model #3, and another three showing preferences for
models #6, #9 and #11, respectively (for models, see figure 2). Separate Pearson correlations
show significant positive correlations between preference strength for model #12 and the
parameter estimates for IFG-pSTS (r(10) = .66, p =.01), modulation of IFG-pSTS by OC
(r(10) = .42, p = .009) and driving input onto IFG (r(10) = .66, p = .009), but a regression
analysis shows that model preference for #12 is primarily driven by the parameter estimates
reflecting the driving input onto IFG, without the other variables adding significant
explanatory power. Driving input significantly predicted preference for model #12, (β = .
664, t(10) = 2.81, p < .05), and it explained a significant proportion of the variance in the
strength of this preference (R2 = .44, F(1, 10) = 7.88, p < .05).

Mann-Whitney U-tests were used to compare parameter values between the subjects for
whom #12 was optimal and the subjects that had alternative winners. There was a significant
positive effect for the parameter estimates reflecting the strength of the connections IFG-PM
(p = .037), IFG-pSTS (p = .037), modulation of IFG-pSTS by the object-cleft sentence
condition (p = .004), and the driving input onto IFG (p = .01). Only the positive effect of
modulation of IFG-pSTS by OC survives correction for multiple comparisons (α = 0.00625).

4. Discussion
As reported by Thompson et al. (2010b), conventional fMRI analysis contrasting object-cleft
and subject-cleft sentence processing revealed a left-lateralized group of ofperisylvian
regions that showed increased activation associated with complex syntactic processing.
Refined analyses of these data revealed four regions of significant activation located in the
inferior frontal gyrus (IFG), premotor cortex (PM), posterior superior temporal sulcus
(pSTS) and anterior middle temporal gyrus (aMTG), largely replicating results from earlier
studies on the neural correlates of syntactic processing (Just et al., 1996; Stromswold et al.,
1996; Caplan et al., 1998, 2001; Caplan, 2001; Cooke et al., 2002; Ben-Shachar et al.,
2003).

It should be noted that, although the individual participants’ seed points in IFG were
centered around the group activation peak in the pars triangularis (BA 45), the group
activation cluster extended to and included the pars opercularis (roughly, BA 44) and for
some participants, the local activation peak was indeed in the pars opercularis. We therefore
refrain from making specific claims about the functional roles of the triangular versus the
opercular part of Broca’s area in complex sentence processing here. For the same reason, we
exercise restraint with respect to specific claims about our posterior superior temporal sulcus
seed point; this focal point was also part of a larger activation cluster, which extended over
the posterior superior temporal cortex. As such, these seed points should perhaps better be
considered as ‘representative’ of their larger regions, which is why we have continued to
refer to these larger regions as inferior frontal cortex and posterior superior temporal cortex
in the interpretation of our modeling results.

Subsequent dPC analysis of participant-specific time-series showed a pattern of functional
connectivity along the route aMTG-pSTS-IFG-PM, without specifying the direction of
information flow, nor its locus of origin, in this network. We postulated bidirectional
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intrinsic connectivity throughout the network, while with respect to the locus of origin, we
compared models in which the driving input of activation to the network was located in
pSTS with models that had their driving input onto IFG. As noted in the introduction, the
posterior superior temporal cortex shows activation associated with verb argument structure
complexity and thematic role assignment, making this region a viable candidate for serving
as a gateway to the complex syntactic processing network. Alternatively, activation in such a
specialized network might be driven principally from inferior frontal cortex, which appears
to support either the computation of complex/hierarchical syntactic constructions or at least
the syntactic working memory component this involves. The models with IFG as the origin
of driving input indeed turned out to fit better to the data than their rival models.

The model that best fit the data was the model that allowed for object-cleft processing to
modulate the flow of information from the inferior frontal gyrus to the posterior superior
temporal cortex, reflecting the importance of this connection in the parsing of complex
syntactic structures. Within that model, group parameter estimates showed that the only
connections with an independently significantly strong flow of activation both originated in
the posterior superior temporal cortex (although these did not survive correction for multiple
comparisons). With respect to the connection from pSTS to IFG, this likely reflects the
interactive nature of the parsing process, with information flowing first from IFG to pSTS
(based on the Bayesian identification of model #12 as optimal among its competitors), and
on to anterior middle temporal gyrus from there, but certainly also flowing back to IFG,
even resulting in strengthened effective connectivity. Connections between the IFG and
premotor cortex appear to be inhibitory more than anything else, based on the negative mean
parameter estimates in the winning model. With one of the smallest mean parameter
estimate values, there is only very weak evidence for information flow from the PM region
(back) to the IFG.

These data, then, suggest that the driving force in the complex syntactic processing network
is the syntactic computation that is supported by inferior frontal cortex. In this scenario, the
sequence of lexical items, primarily asyntactic in nature, is fed to inferior frontal cortex and
it is there that structure is assigned and syntactic complexity starts to be analyzed. The full
parsing process is interactive between syntactic deconstruction and lexico-semantic
operations (Tanenhaus & Trueswell, 1995; Ferreira, 2003; Kim & Osterhout, 2005).
Crucially, sentence-structural information is conveyed to posterior temporal areas that
support retrieval of verb argument structure information, so that thematic roles can be
assigned on the basis of both these sources of information (Keller et al. 2001). At the same
time, there is interaction between posterior temporal cortex and anterior temporal cortex,
which has been associated with a role in morphosyntactic comprehension and the analysis of
syntactic structure in sentence processing in lesion as well as functional neuroimaging
studies (Dronkers, Wilkins, Van Valin, Redfern, & Jaeger, 1994; Humphries, Love,
Swinney, & Hickok, 2005; Newman, Supalla, Hauser, Newport, & Bavelier, 2010). By
contrast, there is some reason to assume that the premotor cortical activation observed in this
network is perhaps less specific to syntactic complexity analysis. Hanakawa et al. (2002)
report premotor cortex activation associated with tasks that involve general rule-based
manipulations, similar to those likely involved in the parsing of complex syntactic stimuli
(Christensen, 2010), or to those involved in “incongruency detection”, as suggested by Heim
et al. (2009b). It is therefore conceivable that the premotor activation reported here, though
functional within the network particularly involved in object-cleft processing, is more task-
related than the activation in other parts of the network.

Both dPC and DCM are multivariate methods, so both methods might indeed be expected to
provide identical results. The fact that the dPC analysis detects connections that are not
detected by DCM is most likely due to the fact that DCM makes more assumptions about
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the system under investigation. Particularly, DCM discriminates between the direction of
information flow. If this direction differs between subjects, as is the case in the present
study, it is possible that a connection cancels out by averaging over the subjects.

Note that there are potential issues with respect to the sequential application of dPC and
DCM on the same dataset. Kriegeskorte (2009) addresses various pitfalls in systems
neuroscience, related to using the same dataset for selection and testing of hypotheses and
the danger of presenting circular results.2 We have been careful to use dPC only as a means
of constricting the number and type of possible models based on the four activation clusters.
Crucially, all DCMs are equally in line with the output of the dPC analysis, so none of the
models inherently fits the dPC outcome better than any of the others. The internal
competition between the models is thus fought on an equal basis and the resulting winner is
simply the one that forms the best fit to the data, better than any of the competitors we
tested. Nevertheless, the models’ actual parameter estimates are statistically correlated with
the statistics used in the selection process, because the noise is correlated between the two
analyses (since it is the same data). Although the exact magnitude of this effect is not
known, it should ideally be corrected for in the DCM statistics, as also suggested by
Kriegeskorte (2009). Again, such a correction would not lead to a different winner from
among the 12 models we tested, as they were all equally correlated with the dPC outcome,
but it would raise the statistical threshold for acceptance of the parameter values. This
further accentuates that our winning model is not perfect or complete.

Considerable between-subject variation was found in the ‘directionality’ of information flow
between the model connections. In any case, the interpretation of ‘directionality’ based on
these parameter estimate signs is controversial, as the connections themselves are already
specified in terms of a specific directionality. In the present case, we only tested models that
have full interactivity between the connected nodes, but the picture that emerges is one in
which this interactivity varies between individuals. Follow-up investigations into the relation
between individual participant’s model preference and parameter estimates for the variables
in model #12 show positive effects of the parameter estimates for the driving input onto
IFG, the connection IFG-pSTS and for the modulation of this connection by the complex
OC sentences.

One related issue that needs to be addressed is the overall relatively weak evidence for the
individual winning model compared to its closest competitors, as revealed by the absence of
a strong main effect of the factor model in the frequentist analysis and by the low posterior
probability value obtained through the Bayesian model selection, as well as by the
considerable variance shown with respect to connection strengths in this group of
participants. It should be clear that the DCM approach we have adopted in this study only
reveals the best model from among a group of similar models that are inherently all
imperfect. For example, the models of the network supporting complex syntactic processing
tested here do not include associations with subcortical structures, while there is much
evidence that such areas also play a functional role in the computation of sentence meaning,
particularly in inhibitory and excitatory control of cortical networks (Ullman, 2001; Kotz et
al., 2003; Snijders et al., 2010; David et al., 2011).

At this point, no paper model can truly reflect the highly extensive, complex and interactive
neural network that underlies a higher cognitive function such as syntactic processing in the
human brain. What one can do, however, is to limit the search space for the models and test
specific hypotheses. We have done the first by limiting ourselves to strong activation peaks
for a crucial syntactic fMRI contrast and by using a functional connectivity analysis to map

2We are grateful to an anonymous reviewer for bringing this reference to our attention.
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the most likely basic network infrastructure between these peaks. We have done the second
by testing whether the driving input to the resulting network was in one of two logically
possible locations, based on previous activation studies and theoretical models of syntactic
processing. As to which connection is primarily modulated by the processing of relatively
complex sentences, we did not have an a priori hypothesis, hence we tested all possibilities
within the infrastructure of our basic model. The reader should note that there is no
mathematical or logical end to the degree of complexity that can be postulated in the models
that are compared in a DCM analysis and we are fully aware that the network we present as
the winning model is far from complete. In the present paper, we have chosen to be
restrictive, rather than expansive, with respect to the model space investigated.

5. Conclusions
Successive application of three methods of neuroimaging data analysis was used to
investigate the infrastructure of a neural network supporting complex syntactic processing,
as well as the information flow within this network. A conventional BOLD fMRI
subtraction paradigm investigating increased activation associated with the processing of
object-cleft sentences relative to subject-cleft sentences revealed four major left-hemisphere
peaks of activation, viz. in the inferior frontal gyrus, the premotor cortex, posterior superior
temporal sulcus and anterior middle temporal gyrus. Directed partial correlation modeling
showed evidence of functional connectivity between these four regions, such that the
inferior frontal gyrus connected to premotor cortex and the posterior superior temporal
sulcus, which in turn connected to the anterior middle temporal gyrus. Finally, using
dynamic causal modeling, with both frequentist and Bayesian model selection, the driving
input to this network was found to be located in the inferior frontal gyrus, rather than in the
posterior superior temporal sulcus, while the primary modulation by complex sentence
processing was on the connection between inferior frontal to posterior superior temporal
cortex.

With no pretension to being either conclusive or exhaustive, these results add to current
insights into the nature of the neural system that underlies complex sentence processing. The
primary drive to this interactive system now appears to come from inferior frontal cortex,
with a substantive role for its connection with posterior superior temporal cortex and a
feedback mechanism from posterior superior temporal cortex back to inferior frontal cortex.
In line with earlier research into the respective roles for these separate areas in syntactic
processing, we suggest that syntactic structure-building and decomposition operations are
supported primarily by the inferior frontal cortex, in an interactive relation with posterior
superior temporal cortex, which supports thematic role assignment. Sentence processing
does not start from analysis of pivotal verbs and their argument structure subcategorizations,
but with structure building based on word order.
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Research highlights

• Complex syntactic processing activates a left-hemisphere cortical network.

• The inferior frontal gyrus provides the driving input to the syntactic processing
network.

• Complex syntactic processing relies on interaction between the frontal and
posterior temporal cortices.
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Figure 1.
(A) Rendering of the four clusters of voxels showing increased activation associated with
processing of object-cleft sentences, relative to subject-cleft sentences (N = 12; p<.05, FDR
corrected, k>15). (B) Functional connectivity between four activation peaks, based on
directed partial correlation (dPC) analysis. Mean dPC values are given for each significant
interaction; two standard deviations of the mean (SDM) are given in brackets. An interaction
was defined significant if the mean dPC value minus two SDM were larger than 1.
Note: PM = premotor cortex; IFG = inferior frontal gyrus; aMTG = anterior middle temporal
gyrus ; pSTS = posterior superior temporal sulcus.

den Ouden et al. Page 16

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The 12 DCMs that were compared. All have bidirectional connectivity between PM-IFG,
IFG-pSTS and pSTS-aMTG. Models 1-6 have driving input on pSTS, while models 7-12
have driving input on IFG. Modulation by object clefts (OC) is tested on all connections.
Note: PM = premotor cortex; IFG = inferior frontal gyrus; aMTG = anterior middle temporal
gyrus ; pSTS = posterior superior temporal sulcus.

den Ouden et al. Page 17

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Mean negative free energy (F) values, with standard errors (SE), for the 12 models. The left
six models are those with driving input from posterior superior temporal sulcus (pSTS). The
right six models have driving input from the inferior frontal gyrus (IFG).

den Ouden et al. Page 18

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Exceedance probabilities for the 12 models compared with variational Bayesian Model
Selection.
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Figure 5.
Posterior model probabilities for the 12 models compared with variational Bayesian Model
Selection.

den Ouden et al. Page 20

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
The winning model #12, with driving input on the IFG node and modulation of the
connection between IFG and pSTS by object-cleft processing. Mean parameter estimates are
given alongside the connections and the modulation. Values that exceed the statistical
threshold (p<.05, uncorrected) are listed in bold print.
Note: PM = premotor cortex; IFG = inferior frontal gyrus; aMTG = anterior middle temporal
gyrus ; pSTS = posterior superior temporal sulcus.
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Table 3

Mean parameter estimates and their probability of being different from zero for model 12.

parameter
estimates

connection/parameter Mean p

PM_triIFG −0.078 .302

pSTS_aMTG 0.349 .024

pSTS_triIFG 0.131 .027

aMTG_pSTS 0.182 .152

triIFG_PM −0.113 .365

triIFG_pSTS 0.012 .947

Modulation OC triIFG-pSTS 0.093 .199

Driving_input 1.235 .060
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