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Abstract
Most analysis of multi-subject fMRI data is concerned with determining whether there exists a
significant population-wide ‘activation’ in a comparison between two or more conditions. This is
typically assessed by testing the average value of a contrast of parameter estimates (COPE) against
zero in a general linear model (GLM) analysis. However, important information can also be
obtained by testing whether there exist significant individual differences in effect magnitude
between subjects, i.e. whether the variance of a COPE is significantly different from zero.
Intuitively, such a test amounts to testing whether inter-individual differences are larger than
would be expected given the within-subject error variance. We compare several methods for
estimating variance components, including a) a naïve estimate using ordinary least squares (OLS);
b) linear mixed effects in R (LMER); c) a novel Matlab implementation of iterative generalized
least squares (IGLS) and its restricted maximum likelihood variant (RIGLS). All methods
produced reasonable estimates of within- and between-subject variance components, with IGLS
providing an attractive balance between sensitivity and appropriate control of false positives.
Finally, we use the IGLS method to estimate inter-subject variance in a perfusion fMRI study (N =
18) of social evaluative threat, and show evidence for significant inter-individual differences in
ventromedial prefrontal cortex (VMPFC), amygdala, hippocampus and medial temporal lobes,
insula, and brainstem, with predicted inverse coupling between VMPFC and the midbrain
periaqueductal gray only when high inter-individual variance was used to define the seed for
functional connectivity analyses. In sum, tests of variance provides a way of selecting regions that
show significant inter-individual variability for subsequent analyses that attempt to explain those
individual differences.
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INTRODUCTION
Multi-level models have been a mainstay in the social, behavioral, and agricultural sciences
for several decades (Harville, 1977; Raudenbush and Bryk, 2002), and they are now gaining
in popularity in the neuroimaging community (Friston, et al., 2002; Beckmann et al., 2003;
Woolrich et al., 2004). This class of models includes several forms of ‘mixed effects’
modeling in which data are conceptualized as coming from two or more levels of analysis
(e.g., within-person and between-persons). Multilevel models are particularly appropriate for
analyzing hierarchically structured data, in which repeated measures are collected on first-
level units, such as individual persons, and the analyst wishes to make population inferences
about 1st-level, within-unit effects and 2nd-level variables that might predict variation across
the units. For example, a longitudinal behavioral study might assess the effects of age on test
performance, with each individual person tested across 4 successive years. Researchers
might be interested in population inference on effects of age at the 1st level, and whether
improvements with age are predicted by 2nd-level variables such as educational
interventions. Group fMRI data have a similar structure: Task manipulations influence brain
activity within-persons (at the 1st level), and these within-person effects are often predicted
by 2nd-level explanatory variables such as individual differences in behavioral performance
or [Patient vs. control] differences.

Multi-level models are advantageous when data have a multi-level structure setting because
they a) allow for valid population inferences on within-subject effects; b) test within-subject
effects controlling for sources of variation across individuals, potentially increasing
sensitivity; c) consider potential differences in error variance across individuals, often
providing more precise estimates of population-level parameters; and d) provide valid and
efficient tests when the designs and error variances are different for different individuals
(Raudenbush and Bryk, 2002; Pinheiro and Bates, 2000).

Most analyses of multi-subject fMRI data involve two separate models. A first-level General
Linear Model (GLM) analysis is performed on each subject’s data, which provides within-
subjects contrasts across parameter estimates (COPEs; e.g., activity magnitude estimates for
[visual stimulation vs. rest]). A second-level analysis provides population inference on
whether COPEs are significantly different from zero and assesses the effects of 2nd-level
predictors (e.g., group status, behavioral performance). Mixed-effects implementations exist
for popular software packages, including FSL (FSL’s Linear Analysis of Mixed Effects;
Woolrich et al., 2004) and SPM (spm_mfx.m; Friston et al. 2005). These methods can
improve estimation accuracy and increase power in some cases, particularly with
dramatically unbalanced designs and/or heterogeneous variances across subjects (Mumford
and Nichols, 2009).

These existing methods, and virtually all fMRI results of which we are aware, have been
designed primarily to estimate and make inferences about group mean COPEs and thus test
regional activation levels. However, a real qualitative strength of multilevel models is that
they can provide tests of inter-individual variances as well as means, and thus provide tests
of whether there are true individual differences in brain activity (or brain connectivity,
brain-behavior relationships within-subject, etc.). Tests of inter-individual variance could,
for example, allow researchers to determine appropriate regions of interest in which to use
as seed regions in a subsequent functional connectivity analysis and to test for brain-
behavior correlations or between-group differences in patient studies. Such tests are
important because correlating behavioral or other variables with fMRI COPEs has become a
mainstay of fMRI analysis, and brain-behavior correlations are often taken as stronger
evidence than activation alone that brain activity is related to psychological processes of
interest. However, brain-behavior correlations are particularly susceptible to several
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problems that have led to recent criticism of the approach (Vul et al., 2009; cf. Lindquist and
Gelman, 2009 and Lieberman et al. 2009). Such correlational analyses are massively
underpowered and likely suffer from high false positive rates (Yarkoni, 2009), due primarily
to two factors: a) most studies test correlations across tens or hundreds of thousands of brain
voxels, and b) correlations are much more sensitive than group means to outliers, and
typically require much larger sample sizes to achieve stability. These factors combine to
limit sensitivity: Voxel-selection bias will cause observed effect sizes to be larger than true
effect sizes (Vul et al., 2009; Lieberman et al. 2009; Lindquist and Gelman, 2009), and
violations of assumptions often result in high false positive rates, even for relatively large
samples (Wager et al., 2005; Wager at al., 2007; Loh et al., 2008). Tests of variances in
mixed-effects models could be used to provide statistical maps of brain regions in which
true inter-individual differences are large and reliable, without biasing voxel selection
towards correlation with any particular behavioral measure (Kriegeskorte et al., 2009) as the
estimated variances are independent of the estimated regression parameters used to compute
the correlations (e.g., Neter et al., 1996). Thus, the number of multiple comparisons tested in
brain-behavior correlation analyses could be reduced from thousands of voxel to a few
regions of interest [ROIs], reducing both the need for multiple-comparisons correction and
effect-size inflation due to voxel selection.

Significant inter-subject variability can alternatively be driven by other sources of between-
subjects error, such as individual differences in gray-matter density or inter-subject
alignment. The latter might be important particularly at the boundaries between anatomical
structures, as even the best nonlinear registration methods cannot perfectly align all these
boundaries. Hence, tests of inter-subject variability also have the potential to be an important
tool for diagnosing problems with inter-subject alignment and preprocessing in general.

It is important to contrast tests of variance components with the standard approach of testing
for significant group differences between conditions. Tests of group means tell us whether
the mean is significantly different from 0 in the population, not whether there are individual
differences between subjects. In fact, such differences may exist even if the mean is 0 on
average in the population. In contrast, tests of the variance components allow us to directly
determine whether there exist individual differences in the means and identify regions
correlated with individual differences in behavior or showing differences in inter-subject
alignment.

This paper describes the statistical development of a multi-level model fit using iterative
generalized least squares (IGLS) and its implementation in Matlab software. We first
describe the model and several candidate procedures for making inferences about both
means and variances. We also describe why, though the implementation of variance tests
initially appears straightforward, the problem is more subtle than is apparent at first glance.
Next, we use simulations to validate that a) estimates are unbiased, and b) inferential tests
control false positive rates at the appropriate level. Third, we compare sensitivity to true
effects and false positive rates for two variants of the model (IGLS and its restricted-
maximum likelihood cousin, RIGLS), the standard two-stage ordinary least squares (OLS)
approach typical in fMRI studies, and Linear Mixed Effects in R (LMER), a model widely
considered a leading standard. Finally, we apply the IGLS model to mapping inter-
individual differences in a perfusion fMRI study of social evaluative threat (SET), a robust
psychological stressor whose effects vary considerably across individuals.
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METHODS
Model formulation: A multi-level model for fMRI

We begin by setting up the standard multi-level model used in fMRI data analysis. Suppose
we are performing a GLM analysis on m separate subjects using the model:

[1]

Here Yi is a vector of length T representing the fMRI time series data for subject i and Zi is
a subject specific design matrix of size T × p. The subscript i will always refer to subject,
and subscript G to group or population effects. For simplicity, we assume that the data have
been pre-whitened prior to analysis and that the within-subject covariance matrix can be
expressed as  where IT represents the T × T indicator matrix and  is a subject
specific variance; autocorrelation could easily be accommodated, however, without affecting
the current results.

If using the OLS approach (often called ‘random effects’ in the fMRI literature because
subject is treated as a random effect), the analyst would then subject the estimates β1 … βm
to a second-level analysis (without covariates, this would be a one-sample t-test).
Alternatively, in a multi-level formulation, the data from all m subjects is combined into a
single GLM as follows:

[2]

where  and Z and V are block-diagonal
matrices with blocks Zi and Vi, respectively, on the main diagonals. This arrangement is
shown in graphical form in Figure 1.

Next, we assume that the βi values for each subject i are a random draw from a distribution
centered on βG, following a N (βG, UG) distribution. The population covariance matrix can
be expressed as

[3]

Here  represents the covariance between the jth and kth element of βi(i.e., correlations
between first-level parameter estimates). If UG is diagonal, within-subject effects are
uncorrelated. Using this notation we can formulate our full multi-level model as follows:

[4]

The deviation η reflects the person-level deviation from the group parameter values βG. U is
a block-diagonal matrix representing the between-subject variation in the β parameters for
each individual, such that U = Im ⊗ UG, where the symbol ⊗ represents the Kronecker
product. In other words, U is the tensor product between an m × m identity matrix and the

Lindquist et al. Page 4

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



group covariance matrix UG. Because U is block diagonal, the subjects are assumed to be
independent of one another. ZG represents the second level design matrix (e.g. separating
cases from controls; see Figure 1). In addition, Table 1 provides a short description of all the
vectors and matrices defined throughout the paper and their sizes.

As a final step, we can re-express the model described in [4] in single-level format as
follows:

[5]

where X = ZZG, the combined individual and group design matrices, and ζ = Zη + ε, the
combined error vector including within-subject and between-subject components. We
denote the covariance matrix of ζ as

[6]

Here the first term captures the between-subjects covariance, and the second term (V) the
within-subjects covariance.

Model Estimation: Iterative Generalized Least Squares (IGLS)
The first goal of the analysis is to obtain maximum likelihood estimates of βG, as well as of
the unknown variance components contained in U and V (the between-subjects and within-
subjects variance components, respectively). The IGLS method estimates these, under the
assumption the data are multivariate normal (Goldstein, 1986; Browne, 1984), by
constructing a second linear model whose unknown parameters are the between-subject

( ) and within-subject ( ) variances.

To estimate these variances in a linear modeling framework, we begin by expanding Eq. [6],
re-expressing the combined covariance matrix Σ as a linear combination of the individual

between-subjects variance components  and the residual variances , which are
embedded in U and V. This will allow us to subsequently formulate a general linear model

with unknown parameters to be estimated for  and . We first define H, a matrix that

selects the elements of U and V corresponding to individual variance parameters (e.g., ).
Let H jk be a p × p indicator matrix which is 0 in every element except the (j, k)th where it

equals 1 (e.g., j = 1 and k = 1 for ). We can now write Σ in the following manner:

[7]

Note that since  the model generally contains a total of p(p + 1)/2 + m unknown
variance components that need to be estimated. Figure 2 shows a pictorial representation of
Eq. [7] for the special case with two within-subject regressors (i.e., p = 2), a random
intercept and slope model. Here we define
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This implies that the regression parameters are uncorrelated (off-diagonals of UG are 0), the
data is pre-whitened, and the within-subject variance is constant across subjects (σi≡σ for all

i). In this restricted case, there are only p + 1 unknown variance parameters (  and
σ2) that combine additively to yield Σ, as shown in Figure 2. If within-subject variances
were allowed to differ, as is the default in practical data analysis and in our simulations, the
last term in Figure 2 would be expanded into separate, additional terms for each subject’s
error variance. Similarly, additional terms would typically be included to model covariance
between first-level regression parameter estimates.

The next step in IGLS is to formulate the linear model that estimates the variance
components. This is done based on Eq. [7], by vectorizing the lower triangular and diagonal
elements of the matrix corresponding to each unknown variance term. This can be done
using the vech operator, which when applied to a matrix stacks its columns after removing
all supra-diagonal elements (e.g., Harville, 1997). Using this notation, the summands in Eq.
7 can be written vech(Z(Im ⊗ H1,1)ZT) and vech(Hii ⊗ Vi). These become regressors in the
new design matrix X* (where * will be used to indicate the linear model for variance
components, following the notation of Goldstein, 1986). The response variable Y* in this
model is based on the residual covariance matrix R = (Y − Xβ ̂G)(Y − Xβ ̂G)T, so that Y* =
vech(R). Y* and X* are used to estimate the variance components

, and thus predict the combined covariance matrix Σ̂.

Now that we have a model for estimating βG (Eq. [4]) and a model for estimating Σ (Y* =
X*β* + ε* based on Eq. [7]), the IGLS procedure alternates between estimating βG and β*

until convergence. The specific steps are as follows:

1. Start with OLS estimates of the covariance, i.e., Σ̂ = I.

2. Estimate fixed effects. Use the current estimate of Σ̂ to calculate β̂G via the
standard generalized least squares solution: β̂G = (XT Σ̂−1X)−1XT Σ̂−1Y.

3. Estimate variance components. Use the residuals to form Y* and update β̂*,
estimates for the within- and between-subjects variance components, again using
generalized least squares. Following Goldstein (1986), the covariance of the
variance components can be shown to be: Σ* = Σ ⊗ Σ. This result, which follows
from the theory of the matrix normal distribution, holds if and only if the data are
multivariate normal or if the sample variance matrix is Wishart distributed
(Bilodeau & Brenner, 1999). Thus, the GLS solution is given by β̂* =
(X*TΣ*−1X*)−1X*TΣ*−1Y*. If negative estimates are obtained for the variance

components  and , they are truncated at 0. However, covariance terms ( , j
≠ k) are allowed to be negative. Re-form Σ̂ from β̂*.

4. Repeat steps 2–3 until convergence.

Model Estimation: Restricted Iterative Generalized Least Squares (RIGLS)
As with all MLEs of variance components, the results will be biased due to the fact that they
are estimated with reduced degrees of freedom because they are conditioned on β̂G. This
problem will be more severe when dealing with small sample sizes. By making a simple
modification to the IGLS algorithm, we can instead obtain restricted maximum likelihood
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(ReML) estimates (Goldstein, 1989) using a procedure called restricted iterative generalized
least squares (RIGLS). These estimates are unbiased since they take into consideration the
loss in degrees of freedom resulting from the estimation of the regression parameters and are
the preferred estimates for variance components. The modification of the algorithm involves
altering the term on the left hand side of Eq. [7] as follows:

[8]

Proceeding in an analogous manner as in the IGLS algorithm, while using this modified
equation, gives us the unbiased RIGLS estimates.

Statistical inference: Hypothesis tests for variance components
Once model parameters are estimated, it is desirable to make inferences about the likely
population values of estimated variance components. Inference on fixed effects (i.e., within-
subject effects of time or condition in the examples above) can be performed in the
traditional manner within the GLM framework, by calculating either t or F statistics on
linear combinations of the elements in the vector βG (Lindquist, 2008). However, inferential
procedures for testing the statistical significance of the variance components contained in
the vector β* are less straightforward. There are several types of hypothesis we may be
interested in testing. For example, in the case of a single between-subject variance

component  we may want to test the hypothesis  against the alternative that it
is a non-negative scalar. That is, we may want to test whether the variance is significantly
different from zero. Alternatively, in the case where multiple variance components are
included in the model, we may want to test the hypothesis:

[9]

where D is a (p − 1)×(p − 1) positive definite matrix, against the alternative hypothesis that
UG is a general p × p positive definite matrix. That is, we may want to test whether a single
between-subject variance component is statistically different from zero, conditional on
estimates of the other variance components. For example, suppose that

In order to test whether there is significant variation attributable to the parameter β2, we can

use the hypothesis stated in Eq. [9] with .

The Likelihood Ratio Test (LRT) and restricted LRT (RLRT)—In each of the
situations outlined above we are interested in testing a null hypothesis H 0, with parameters

(β̂0, ), against an alternative H A that involves fitting additional parameters, (β̂,β̂*). That is,
the null model is nested within the alternative (full) model. A likelihood ratio test can be
derived for comparing nested models with different covariance structures. The likelihood
ratio test statistic can be written:
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[10]

Here LML denotes the likelihood function where

[11]

and the parameters (β̂0, ) and (β̂,β̂*) are the MLEs obtained from maximizing L ML under
the null and full model, respectively. These values can be obtained using the IGLS
algorithm.

If using RIGLS, a valid restricted likelihood ratio test (RLRT) for the variance components
can be performed using ReML estimation. Here the general format of the test statistic
remains the same, but the term L ML is replaced by the ReML likelihood function
(Lindstrom and Bates, 1988) LRe ML where:

[12]

In order to perform the RLRT one must also assume that the fixed effects do not vary across
the two models and only allow the variance components to differ. The appropriate estimates
of the variance components can be estimated using the RIGLS algorithm.

Distributions for the LRT and RLRT: chi-square and chi-square mixtures—
Standard statistical theory states that the asymptotic distribution of the likelihood ratio
statistic is distributed as  where k is the difference in the number of parameters included in
the full and reduced models. However, this result only holds under certain regularity
assumptions, one being that H 0 does not lie on the boundary of parameter space. Since
variances are by definition non-negative, the H 0 value of zero will indeed lie on the
boundary, invalidating the distributional assumptions of the LRT. It can be shown that under
certain conditions (described below) the asymptotic null distribution for the likelihood ratio
test is instead a mixture of chi-square distributions (Self & Liang, 1987; Stram & Lee,

1994). When testing the hypothesis  against the alternative that it is a non-negative
scalar, they suggest defining the limiting distribution as a mixture of a  distribution with a

 distribution with equal weight 0.5. Here a  distribution is defined as having probability

mass 1 at the value 0. The intuition for this result becomes clear if we assume that . In
this situation the probability is 0.5 that this expression would have been negative had this
been allowed and therefore truncated at 0. The null distribution is therefore a mixture with
probability 0.5 taking the value 0 and 0.5 taking the standard  distribution. When testing

the hypothesis in Eq. [9], the asymptotic variance will instead be a mixture of a 

distribution with a  distribution with equal weights of 0.5. While both these results were
originally derived for the maximum likelihood case, they have also been shown to hold for
the ReML case (Morrell, 1998).
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One caveat is that these results are asymptotic large-sample approximations (i.e., the number
of subjects are assumed to approach infinity). Crainiceanu and Ruppert (Crainiceanu &
Ruppert, 2004) provide an alternative, simulation-based method that produces more accurate
results for a single variance component. However, similar results are not easily obtainable
for models with multiple variance components, which is the scenario most likely to occur
while analyzing fMRI data. Thus, we assessed bias, power, and false positive rates for the
chi-square mixture with multiple variance components, to assess its validity and usefulness
as an inferential test.

Simulations
We assessed the validity and efficiency of our approach for estimating and testing the
significance of variance components in a multi-level GLM. Simulation 1 compares the bias
and efficiency of OLS, IGLS, RIGLS, and LMER (in the R software) for estimating both
fixed effects and variance components. Simulation 2 assesses the use of the mixture of chi-
square statistics as the limiting distribution of the likelihood ratio test under the null
hypothesis. Finally, Simulation 3 studies the efficiency and power of the likelihood ratio test
for determining the significance of variance components under the alternative hypothesis.

In all simulations, the response for each subject was assumed to be yi = β0i + β1ixi + εi where
xi is an indicator function of length 200 time units, taking the values 1 at time points [1, 41,
81, 121, 161] and 0 otherwise, convolved with a canonical hemodynamic response function
(Friston et al., 1998). Both the intercept and slope were random draws from populations with

distributions  and , respectively. Finally the error term
consisted of independent and identically distributed normal random variables, i.e.

. Though we chose particular values for these design and variance parameters,
the conclusions from these simulations are not expected to depend on these particular
analysis choices.

Simulation 1—Simulated data were generated for 20 subjects (m = 20) for two different
event-related fMRI designs (though these results apply equally to multi-level designs from
any field). In Simulation 1a, the true within-subject standard deviation was σi = 1 for all
subjects. In Simulation 1b, it was a random draw from a population with a chi-square

distribution with 1 degree of freedom. In both simulations the value of  was set to either 0

or 0.4, and the value of  was set to either 0 or 0.5, with all combinations of these values
tested. These values were chosen to correspond with results observed in real data (Mumford
and Nichols, 2008).

We fit the data using OLS (the ordinary least squares approach typically employed by the
neuroimaging community), IGLS, RIGLS, and LMER, from the statistical software package
R (R v.2.11.1, GNU General Public License). LMER is a generic function for fitting a linear
mixed-effects model using the EM-algorithm, following the framework of Lindstrom and
Bates (1988). The OLS procedure begins by fitting individual regression coefficients for
each subject using Eq. [1]. Thereafter group estimates of the slope and intercept are obtained
by averaging across subjects. Group-level variance components are obtained by computing
the variance of the estimates across subjects. Since this analysis is performed on the
estimated regression coefficients, the variance will contain contributions from both the
standard error of the estimates and the between-subject variance components. Using the
standard errors estimated in the first-level of the analysis, the within-subject variance
components can be computed by taking the difference between the variance of the estimates
and the mean standard error. If the values are negative, they are set to zero. This method is
included as it is the most popular method in the neuroimaging community for estimating the
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parameters of a mixed-effects model. Though it has been shown to be effective for
estimating the slope and intercept (Mumford and Nichols, 2010), its efficacy in estimating
variance components has not yet been explored to date.

1,000 iterations of dataset generation and fitting all models were performed for each of the

four unique values for  for each of Simulations 1a and 1b. We assessed whether each
model yielded estimates equal to the true values, on average (i.e., was unbiased) and
compared the method-related variance by comparing the variances in parameter estimates
across models. As a final step, to access the methods ability to handle model
misspecification we repeated the analysis of the data from Simulation 1a using an incorrect
first-level design matrix. In Simulation 1c we incorrectly assumed that xi was an indicator
function of length 200 time units, taking the values 1 at time points [1, 81, 161] and 0
otherwise, convolved with a canonical hemodynamic response function. This was done to
study how robust the methods are to potential model misspecification.

Simulation 2—In Simulation 2 we sought to study the distributions of the LRT and RLRT
statistics under two different types of null hypotheses. In Simulation 2a both variance

components  (corresponding to the intercept) and  (corresponding to the slope) were
set to 0, and all other values are set as outlined above. We tested a random slope model, in
which the intercepts are assumed to be fixed (the same for all subjects) and we are interested

in testing whether the value of the slope differed across subjects (i.e. ). For IGLS
analyses, the LRT was computed for each of 10,000 iterations (more iterations were
included to obtain stable P-values in the tails of the distribution) using the standard 
distribution, the 50:50 mixture of  and  distributions, and the simulation-based
approximation of Crainiceanu and Ruppert (Crainiceanu & Ruppert, 2004). For RIGLS
analyses, the same tests were performed, yielding RLRT tests.

In Simulation 2b,  was set to 0.4 and  was set to 0. This simulation gives us null-
hypothesis data for the case when the intercept is random and we are interested in testing for
a significant random slope. This corresponds to a random intercept, random slope model, in
which both intercept and slope are modeled as random effects and variances are estimated.
As above, we test the null hypothesis that the between-subject variance of the slope is zero:

The alternative hypothesis is that UG is a general positive definite matrix. The likelihood
ratio statistic for testing this hypothesis is calculated at each of 10,000 iterations. In standard
likelihood ratio testing the commonly used limiting distribution for the statistic would be the

 distribution, as there are two additional parameters in the full model (  and ). The
resulting empirical distribution of the statistic is compared with a  distribution, a 
distribution, and a 50:50 mixture of the two. Note that in this situation, an approximation of
the finite null distribution of the LRT does not exist. The simulations are repeated using
RIGLS, to yield RLRT tests.

Simulation 3—In the third simulation the efficiency and power of the LRT for
determining the significance of variance components was studied in a variety of situations.
The general outline for the simulations was equivalent to those described above with slight
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alterations. In Simulation 3a, the between-subject variance components ( ) are set to
the fixed values (0, 0) and the value of the within-subject variance σ was allowed to vary
from 0.2 to 4. This corresponds to within-subject signal-to-noise ratios (SNR, equivalent to
Cohen’s d) ranging from 0.25 to 5. For each value, 1,000 repetitions are simulated. For each
repetition both IGLS (and RIGLS were fit and LRT/RLRTs were performed (using the
50:50 mixture and the Crainiceanu and Ruppert method) on the inter-subject variance of the
slope. For each value of σ we estimated the false positive rate at the nominal α =0.05. In
Simulation 3b, the simulation was repeated using a fixed value of σ = 1 and allowing the
number of “subjects” included in the study to vary between 2 and 36. In Simulation 3c, we

assessed efficiency under the alternative hypothesis by letting  vary between 0.05 to 0.55
in steps of 0.10 (m = 20 subjects and σ = 1, 1000 iterations).

In Simulations 3d–3f, we generated and fit data according to the random intercept, random

slope model (with ) and tested the hypothesis that  conditional on estimates of

the intercept. In Simulations 3d–3e, we tested false positive rates ( , with SNR varying
as in Simulation 3a and m varying as in Simulation 3b), and in Simulation 3f, we tested

efficiency (  varied as in Simulation 3c).

Experimental Data
The method was applied to cerebral blood flow (CBF) measures collected with continuous
arterial spin labeling (CASL) fMRI while participants (n=18) performed a social evaluative
threat (SET) task, allowing us to detect regions exhibiting significant individual differences.
CBF images were computed as described in detail in Asllani et al. (Asllani et al. 2009).
Briefly, preprocessing was implemented using SPM software (Wellcome Department of
Cognitive Neurology) and other in-house code written in MATLAB (Mathworks, Natick
MA). For each subject, images were preprocessed as follows: (1) all EPI images were
realigned to the first acquired. (2) GM, WM, and CSF posterior probability images were
obtained from SPGR image using SPM99’s segmentation algorithm. (3) The SPGR and
posterior probability maps were co-registered to the first acquired EPI using the mutual
information co-registration algorithm. (4) An analysis mask was made for each subject by
summing subject’s posterior probability images; only voxels within this mask were included
in the analysis. (5) SPGR and average CBF images were transformed into the Talairach
standard. The spatially normalized control/label pairs were used to calculate percent change
maps, which were subsequently used to compute CBF using the two-compartment formula
derived by Alsop & Detre (Alsop and Detre, 1996) and later modified by Wang et al. (Wang
et al., 2005).

The SET task was administered using a variant of the Trier paradigm (Kirschbaum et al.,
1993) and 8 blocks of CASL images were acquired in the following order: Pre-stress
Baseline (5.3 minutes), Practice Math (5.3 min), Fun Math (5.3 min), Anticipation (2.7 min)
Speech Preparation (2.4 min), Stress Math (5.3 min), Recovery (2.7 min) and Post-stress
Baseline (5.3 min). Following Anticipation and prior to the Speech Preparation block,
participants were introduced to two confederates posing as professors over what they were
told was a live video feed (they remained in the same position in the scanner). The
confederates were paid actors, and they instructed participants to silently prepare an 8
minute speech in a period of 3 minutes, a speech that would be delivered to the professors
after the scanning portion of the study. Participants were then told that the speech topic
would be their strengths and weaknesses as a candidate for their dream job, and the Speech
Preparation period began immediately thereafter. Before the Recovery block, participants
were told that they were randomly selected not to deliver the speech, so speeches were never
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actually delivered. Data shown are for the contrast [Speech Preparation – Pre-stress
Baseline].

RESULTS
Simulations

Simulation 1—Figures 3 and 4 show results of 1,000 repetitions of the simulated event-
related designs assuming constant and random within-subject variance, respectively. Figure
5 shows equivalent results assuming constant within-subject variance and a misspecified
first-level design matrix. The different rows of the figures correspond to the estimates of the

slope and intercept parameters (β0, β1) and their between-subject variances (  and ).
The different columns correspond to the 4 different pair-wise combinations of ground truth

values for the parameters ( ). For each combination, box plots of the estimates over
the 1,000 repetitions are shown for LEMR, OLS, IGLS and RIGLS.

It is clear that all four methods provide almost equivalent estimates of the slope and
intercept parameters, and that these estimates are unbiased (i.e., they center around the true
values shown by dashed horizontal lines). In addition, the estimates of the variance
components are similar for the four methods except for OLS which appears to have a
negative bias. The bias of the OLS makes theoretical sense, and often n/(n − p) is used as a
correction factor (Hinkley, 1977; Mumford & Nichols, 2009). However, it does not appear
that this correction factor alone is sufficient to remove the amount of bias observed in the
simulations. Of note, the estimates obtained using IGLS and RIGLS are comparable to those
obtained using LMER, which has been extensively validated in the statistical community.
The estimates of the variance components obtained using IGLS show a slight bias, but
interestingly appear to have slightly smaller variance that those obtained using RIGLS. In
addition, the estimated between-subject variance appears to be robust to model
misspecification even when the sample size is relatively small. The within-subject variance
is however effected and the introduction of robust estimation techniques (e.g., Waldorp,
2009) is an important topic for future research.

Simulation 2—Figure 6A shows the empirical distribution of the likelihood ratio statistic
for testing the variance component associated with the slope assuming the intercept is fixed
(i.e. the random slope model). It is clear that the  distribution used in standard likelihood
ratio testing is overly conservative. In addition the 50:50 mixture distribution suggested by
Stram and Lee (1994) also appears to be somewhat conservative. However, the
approximation of the finite sampling distribution (denoted LTRCR) appears to accurately
reflect the behavior in the tail of the distribution as it more or less lies on top of the
empirical LRT. Figure 6B shows the equivalent results for the RLRT. Here the difference
between the 50:50 mixture distribution and the approximation of the finite sampling
distribution is less pronounced, with both distributions taking roughly the same shape.

Figure 6C–D shows the empirical distribution of the LRT, and RLRT, statistic computed for
testing the variance components associated with the slope in a random intercept, random
slope model. From the plot it is clear that the  distribution used in standard likelihood
ratio testing is overly conservative while the  distribution is anti-conservative. It would
therefore appear that a 50:50 mixture of these distributions would accurately reflect the
behavior in the tail of both distributions.
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In sum, these simulations together these simulations indicate that using a mixture of χ2

distributions give a sensible approximation of the null distribution for both tests even for
relatively small sample sizes.

Simulation 3—Figure 7A shows the performance of the LRT and RLRT, for testing the

significance of  in a random slope model, as a function of the within-subject variance. It
shows the proportion of false positives when the likelihood ratio test is thresholded at the
standard p < 0.05 level. Though both are close to the nominal level of 0.05, the results based
on the LRT are slightly more conservative than those based on the RLRT, which shows a
slightly inflated false positive rate. This finding is consistent with results in the literature
(Morrell, 1998). In general, it appears that the size of the within-subject SNR (x-axis in
Figure 7A) does not significantly impact the results. Figure 7B shows equivalent results
when the sample size is allowed to vary (x-axis in Figure 7B). Again, both IGLS (LRT) and
RIGLS (RLRT) give values close to the nominal values. The RLRT again shows a slightly
inflated false positive rate, whereas the LRT is particularly conservative for small samples
(false positive rates are lower than the nominal accepted rate), but are accurate at about N =
20 and above. Figure 7C shows the true positive rate plotted as a function of σ1. The RLRT
gives a marginal increase in power compared to the LRT, but this is likely a function of its
increase in false-positive rate, so there is no clear advantage over the computationally
similar LRT.

Figure 7D–F shows equivalent results for testing  in a random slope, random intercept
model. The results are similar to those presented in Figure 7A–C. Again, there is a slightly
inflated false positive rate for the RLRT (Figure 7D), though less pronounced than before
and thus there is no clear advantage in power for the RLRT vs. the LRT (Figure 7E). In
addition, for small sample sizes (N < 10), there appears to be a large increase in the number
of false positives with both models.

For completeness we also performed t-tests on the regression parameters (fixed effects) for a
variety of settings. The results (not presented here) show that while both IGLS and RIGLS
adequately control for false positives, the latter tends to give slightly more powerful results.

Experimental Data
We focused on the inter-subject variance in the [Speech – Preparation] contrast, which has
identified areas of increased activity related to social evaluative threat (SET) in previous
studies (Wager et al., 2009a; 2009b). We focus on inter-subject variance parameter testing
as it is the focus of interest in the current paper. Activation data (i.e., COPE estimates) will
be discussed in a separate report.

Regions with significant variation across subjects (p < .005) are shown on axial brain slices
in Figure 8. These regions include circumscribed parts of the midbrain, parahippocampal
cortex, amygdala, ventromedial prefrontal cortex, insula, lateral prefrontal cortex, and pons.
The significance of inter-individual variation is unbiased with respect to other predictors of
individual variation (e.g., perceived threat or anxiety), and so these regions can be used to
define ROIs for tests of these other effects. Such ROIs can also be used to assess functional
connectivity across the brain. For example, ROI can be used as seed regions and a voxel-
wise search employed to find regions that correlate with the seed.

Here, a functional connectivity analysis was performed by identifying a significant region in
the left ventromedial prefrontal cortex (vMPFC; see Fig. 9A) and using it as a seed region in
a correlation study. For each subject, time series data was extracted from this region and
used to compute correlations with other voxel’s time series in a whole brain seed analysis.
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Using robust regression techniques (Wager et al., 2005) a between-subject t-test was
performed on the Fisher transformed correlations at each voxel. Fig. 9B shows regions of
significant positive correlation in the right vMPFC and negative correlation in the
periaqueductal gray (PAG). We selected PAG as a region of particular a priori interest
because it is a region with strong anatomical connections with vMPFC and an extensive
animal literature relates vMPFC-PAG function to the generation and regulation of threat
(e.g., Amat et al., 2005; Bandler et al., 2000). In our previous work and others’ (Mobbs et
al., 2007; Wager et al., 2009a), vMPFC-PAG relationships have been thought to be key
mediators of experienced threat states such as those evoked in this experiment, with inverse
coupling between the vMPFC and PAG as found here. The procedure was repeated using a
nearby seed region based on significant COPE estimates, the current standard way of
generating regions of interest (see Fig. 9C). No correlation was found with PAG activity; as
shown in Fig. 9D, among midline regions, only vMPFC and hypothalamus were positively
correlated with the seed.

We next turn to the issue of using regions of high inter-subject variability to diagnose other,
potentially artifactual sources of between-subjects error, such as individual differences in
gray-matter density or inter-subject alignment. The latter might be important particularly at
the boundaries between anatomical structures, as even the best nonlinear registration
methods cannot perfectly align all these boundaries. Figure 10 shows detail for several brain
regions (top panels) compared with maps of the inter-subject variability in gray-matter
intensity as assessed from anatomical T1-weighted images (bottom panels). Anatomical
variability is expressed in terms of the coefficient of variation (CV), the standard deviation
in T1-intensity after nonlinear registration divided by the mean intensity across subjects.
Variation in the midbrain and parahippocampal cortex are co-localized with areas showing
high anatomical CV, shown by lighter blue and orange regions in the bottom panels of
Figure 10. This suggests that inter-subject anatomical alignment may play a large role in the
functional COPE inter-subject variability in these areas. However, other areas of theoretical
interest in SET show large COPE variability without markedly large inter-subject
anatomical variability. These include the hippocampus, amygdala, and ventromedial
prefrontal cortex. All of these have been linked to SET in previous human studies
(Critchley, 2005; Eisenberger et al., 2007; Gianaros et al., 2008, 2009; Preussner et al.,
2010; Wager et al., 2009a, b), and so are promising ROIs for investigating correlations
between brain activity and psychological correlates of SET. In sum, the inter-subject
variance maps can be useful for both diagnosing problems with alignment and for
identifying potential sources of individual differences in behavior.

DISCUSSION
In the current fMRI literature, multi-level models have primarily been used to estimate and
make inferences about group mean COPEs and thus test regional activation levels. In this
paper we introduce the concept of testing inter-individual variances as well as means, thus
providing tests of whether there are true individual differences in brain activity. We believe
that inter-subject variance maps can be useful for diagnosing problems with alignment in the
preprocessing stage of the analysis, identifying sources of individual differences in behavior
and choosing seed regions for functional connectivity studies.

Researchers are often interested in finding brain regions that are highly correlated with some
behavioral measure of interest and with other brain regions. However, often these regions
are chosen by searching through the brain for voxels that correlate with the same measure of
interest, and only those that lie above a certain threshold are reported. This selection process
will lead to the creation of radically inflated and spurious correlations due to the relationship
between the selection process and the result of interest. In this work we suggest an analysis
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technique that allows one to determine important regions for which to calculate the
correlation of interest. Our technique is based on detecting regions which show significant
individual differences between subjects. Hence our approach towards defining regions of
interest is independent of the measure in which we want to calculate correlations. This is
increasingly important as studies that use the behavioral measure both to determine regions
and thereafter calculate correlations may give severely inflated correlations (Vul et al., 2009;
Lieberman et al. 2009; Lindquist and Gelman, 2009).

In this work, we suggest a complete framework for determining voxels that have significant
variance components. Our framework consists both of an estimation and inference step. Our
estimation technique is base on the use of IGLS/RIGLS. Both are intuitive and easily
implemented techniques which we show in a series of simulations give accurate results. In
addition, IGLS can be shown to be equivalent to the Fisher scoring technique used in SPM
(Friston et al., 2002). The choice between using IGLS or RIGLS ultimately depends on the
goal of the analysis. If one is interested in performing inference on COPEs then RIGLS is
preferred as it provides unbiased estimates of the variance components. However, if the
primary interest is performing inference on variance components, it appears that IGLS
though biased, provides more powerful analysis.

Our inference technique consists of using likelihood ratio tests. We show that while
calculating the test statistic itself is straightforward, finding the appropriate limiting
distribution to calculate p-values is subtle. In this work we present asymptotic results that
appear to give reasonable results. In addition, we discuss an approximation of the finite
limiting distribution that is valid when the model contains a single between-subject variance
component. As this is a rather limited case, we often rely on the asymptotic results in
practice. Choosing the appropriate mixture of chi-square distributions can be tricky and
some results point to that it should depend on the number of subjects. Though we use a
50:50 mixture in our simulations it may be more appropriate to weight the 0 degrees of
freedom distribution somewhat higher, for example a 60:40 mixture. As an alternative one
could use resampling techniques (e.g. the Bootstrap) to find the appropriate p-values, but we
find that this approach is too time consuming to be a serious alternative in neuroimaging
studies.
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Figure 1.
A pictorial representation of the multi-level general linear model typically used in functional
neuroimaging; mathematically described in Eq. [4]. The top panel shows the first-level
(subject-specific) parameters and the bottom panel the second-level (group) parameters.
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Figure 2.
A pictorial representation of Eq. [7] for the special case when p = 2 (e.g., a random intercept
and slope model), where the slope and intercept are uncorrelated, the data is pre-whitened
and the within-subject variance is constant across subjects.
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Figure 3.
Box plots of the parameter estimates from 1,000 repetitions of the simulation study
performed assuming constant within-subject variance are shown for the LEMR, OLS, IGLS

and RIGLS methods. The different rows correspond to the different parameters β0, β1, 

and , and the different columns to the 4 different pair-wise combinations of values for the

parameters ( ). The results show that while all four algorithms give equivalent results

for the fixed effects β0 and β1, the estimates of  and  differ with the OLS method
giving negatively biased results.
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Figure 4.
Box plots of the parameter estimates from 1,000 repetitions of the simulation study
performed assuming randomly varying within-subject variances are shown for the LEMR,

OLS, IGLS and RIGLS methods. The different rows correspond to the parameters β0, β0, 

and , and the different columns to the 4 different pair-wise combinations of values for the

parameters ( ). The results coincide with those shown in Fig. 3 for the constant
variance case.
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Figure 5.
Box plots of the parameter estimates from 1,000 repetitions of the simulation study
performed assuming constant within-subject variance but misspecified first-level design
matrix, are shown for the LEMR, OLS, IGLS and RIGLS methods. The different rows

correspond to the different parameters β0, β1,  and , and the different columns to the 4

different pair-wise combinations of values for the parameters ( ). The results are
consistent with those shown in Figures 3 and 4.
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Figure 6.
(A) The empirical null distribution of the LRT statistic computed for testing the significance
of the slope in a random slope model. This distribution acts as our ground truth in this
simulation. The distribution used in standard likelihood ratio testing (χ2

1) is overly
conservative. The 50:50 mixture distribution also appears to be somewhat conservative.
However, the approximation of the finite sampling distribution (LTRCR) appears to
accurately reflect the behavior in the tail of the distribution. (B) Equivalent results for the
RLRT. Here the difference between the 50:50 mixture distribution and RLTRCR is less
pronounced. (C–D) Equivalent results for testing the slope in a random slope, random
intercept model (see Eq. [9]). The distribution used in standard likelihood ratio testing is
overly conservative, while a 50:50 mixture accurately reflects the behavior in the tail of both
distributions. Note that LTRCR and RLTRCR are not defined when there are more than one
between-subject variance component.
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Figure 7.
(A) The proportion of false positives, when testing the slope in a random slope model, for
the LRT and RLRT when thresholded at the 5% level, as a function of within-subject SNR.
Though both are close to the nominal level of 0.05, the results based on the LRT are slightly
more conservative than those based on the RLRT. In general, the size of the within-subject
SNR does not significantly impact the results. (B) Equivalent results for varying number of
subjects. Both the LRT and RLRT give values close to the nominal values. (C) The true
positive rate plotted as a function of σ1. The RLRT gives a marginal increase in power
compared to the LRT. Hence, it appears ReML does not offer much benefit; a slight power
increase, but also an increase in false positives. (D–F) Similar results for testing the slope in
a random slope, random intercept model. For small number of subjects (<10) there appear to
be a large increase in the number of false positives.
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Figure 8.
Inter-subject variance maps for the [Speech Preparation - Baseline] contrast estimated using
IGLS. Regions with significant variation across subjects (p < .005) are shown on axial brain
slices.

Lindquist et al. Page 25

Neuroimage. Author manuscript; available in PMC 2013 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
(A) A seed region in the left vMPFC chosen because its variance was significantly different
from 0. (B) Results of the seed analyses shown for a single sagittal slice. (C) A seed region
in the left vMPFC chosen because the COPE was significantly different from 0 and it lies in
close proximity to the region shown in (A). (D) Results of the seed analysis shown for the
same slice as in (C). Notably, the seed with significant variance was significantly correlated
with the PAG while the seed with significant COPE was not.
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Figure 10.
Inter-subject variance maps for the [Speech Preparation - Baseline] contrast estimated using
IGLS. Details of some significant regions (top panels) compared with inter-subject
variability in gray-matter intensity as assessed from anatomical T1-weighted images
(bottom). Variation in the midbrain and parahippocampal cortex may be caused by variation
in inter-subject image registration (nonlinear warping), because the areas with significant
inter-subject variance shown on the top are co-localized with areas showing a high
coefficient of variation (CV) across subjects in gray-matter intensities. Inter-subject
variability in the hippocampus, amygdala, and ventromedial prefrontal cortex do not show
unusually large anatomical variability, and these results are more likely to reflect individual
differences in functional brain processes.
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Table 1

Symbol Description Dimensions

Subject i

Yi fMRI time series data T × 1

Zi Design matrix T × p

βi Regression parameters p × 1

Vi Covariance matrix T × T

Subject-specific variance after pre-whitening 1 × 1

First-level
All subjects

Y fMRI time series data – concatenated across subjects mT × 1

Z First-level design matrix - Block diagonal matrix with Zi in the blocks. mT × mp

β Regression parameters – concatenated across subjects mp × 1

V Covariance matrix - Block diagonal matrix with Vi in the blocks. mT × mT

Second-level

ZG Group-level design matrix mp × p

βG Group-level regression parameters p × 1

UG Group-level covariance matrix p × p

Covariance between the jth and kth element of βG. 1 × 1

Single-level
X Design matrix for single-level model - Can also be expressed as ZZG. mT × p

Σ Covariance matrix mT × mT

VC Estimation

R Residual covariance matrix mT × mT

Y* Vectorized version of R. (mT)2 × 1

X* Design matrix for variance components estimation (mT)2 × (p2+m)

β* Vector containing all variance components (p2+m) × 1

Σ* Covariance matrix of Y* (mT)2 × (mT)2

Note. The table contains a list of all vectors and matrices defined in the paper, together with a short description and information about their
dimensionality.
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