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Abstract
In this study functional Magnetic Resonance Imaging (fMRI) was used to evaluate cortical motor
network adaptation after a rehabilitation program for upper extremity motor function in chronic
stroke patients. Patients and healthy controls were imaged when they attempted to perform shoulder–
elbow and wrist–hand movements in a 1.5 T Siemens scanner. We perform fMRI analysis at both
single- and group-subject levels. Activated voxel counts are calculated to quantify brain activation
in regions of interest. We discuss several candidate regression models for making inference on the
count data, and propose an application of a generalized negative-binomial model (GNBM) with
structured dispersion in the study. The effects of inappropriate statistical models that ignore the nature
of data are addressed through Monte Carlo simulations. Based on the GNBM, significant activation
differences are observed in a number of cortical regions for stroke versus control and as a result of
treatment; notably, these differences are not detected when the data are analyzed using a conventional
linear regression model. Our findings provide an improved functional neuroimaging data analysis
protocol, specifically for pixel/voxel counts.
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Introduction
Functional Magnetic Resonance Imaging (fMRI) is one of few available techniques for
studying human brain function non-invasively and is widely used in basic science and clinical
research. In fMRI analysis, an almost unalterable step is to generate thresholded statistical
maps. The analysis may stop there for simple illustration purposes. However, for most purposes
further analysis of region of interest (ROI) is needed as it can be very difficult to detect the
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patterns of activity across conditions from an overall map in a complex factorial design
(Poldrack, 2007).

In ROI analysis, two types of measurements are often used to quantify brain activation: the
number of activated voxels (NAV, the number of voxels activated beyond a pre-determined
statistical threshold) in an ROI, and the averaged image intensity (AII) in an ROI. Both
measurements are subject to measurement error in data processing. The NAV is dependent
upon the pre-determined threshold; and AII may not be a good measure to represent the level
of brain activation if activation size (area or volume) is a strong interest or the distribution of
intensity values in an ROI is not symmetrical. The NAV provides a spatial measurement/index
to quantify the degree of activation in a cortical ROI (Luft et al., 2002), which is often used in
neuroimaging studies (e.g. Benwell et al., 2007; Brodtmann et al., 2007; Carey et al., 2002;
Chee et al., 2003; Liu et al., 2003; Pell et al., 2008). However, statistical methods widely used
for NAV analysis in past neuroimaging studies may not be appropriate for a number of reasons.

NAVs derived from neuroimaging (e.g., fMRI or positron emission tomography) analysis
represent discrete non-negative counts. It is, therefore, critical to consider the discrete nature
of the measure. Without that consideration, biased estimates could occur and erroneous
statistical conclusions might be reached. There have been wide applications of more
sophisticated regression models for count data in the fields of biometrics (McCullagh and
Nelder, 1989) and econometrics (Winkelmann, 2008). However, limited attention has been
paid to the question of how to more accurately model neuroimaging count data in medical and
clinical research.

The purpose of the current investigation is to apply a more sophisticated statistical model for
making inferences from fMRI NAV data regarding brain function in patients who had a stroke
and then were provided with stroke rehabilitation treatment.

Subjects and methods
Subjects and motor task

Data from 7 chronic (23.8±9.0 months from stroke onset) stroke patients (7 males, age=63.5
±3.5 years, right-hand-dominant, left-hand affected) and 7 healthy control subjects (6 males,
age=54.0±8.7 years, all right-hand-dominant) participated in the study. The experimental
procedures were approved by the Institutional Review Board at the Louis Stokes Cleveland
Veteran Affairs Medical Center. All subjects gave informed consent prior to the participation.
During the experiment, the subjects performed two upper extremity motor tasks using the non-
dominant hand (or affected hand in stroke patients) while the brain was imaged. Task 1 was a
reaching movement involving simultaneous shoulder flexion and elbow extension using a
wooden movement guide attached to the supporting frame of the scanner sliding board. Task
2 was a simultaneous forearm wrist–hand movement, in which subjects gently performed
movements of forearm supination, wrist extension and finger extension of all digits (see details
of the two tasks in Daly et al., 2008). Subjects practiced the tasks prior to the imaging
experiment to make sure that they fully understood and were able to accurately perform the
movements (Kimberley et al., 2008). Each task was repeated three times in each of three
movement bouts for a total of nine repetitions for each of the two tasks. The motor tasks were
standardized for pre- and post-treatment measurements for the stroke subjects. A strap system
was used to minimize movement of the body and head during the motor performance. Two
stabilization straps were secured across the chest in an X configuration, traveling from shoulder
diagonally across the chest to the waist level. Both ends of each strap were firmly secured to
the frame of the scanner sliding board (Daly et al., 2008).
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Motor training program for stroke patients
Patients received treatment for a total of 5 h/day and 5 days/week for a total of 12 weeks. The
intervention included training of coordinated movements of the shoulder, elbow, forearm, wrist
and hand, based on principles of motor learning (Winstein and Schmidt, 1990), and included
rest periods to ensure no difficulty in participation. Progression of exercises and task
component practice were finely incrementalized, according to a hierarchy of increasing
difficulty of coordination and dexterity.

fMRI data collection
Functional magnetic resonance images were collected on a SIEMENS Symphony 1.5 T system
using a circularly polarized head coil and an interleaved multi-slice gradient echo EPI pulse
sequence (repetition time=3 s; echo time=23 ms; flip angle=90°). The subjects lay supine in
the MRI chamber and were instructed to remain as still as possible. The head was stabilized
by padded restraints, and body movement was minimized by straps described previously. Both
T1-weighted anatomic images and functional images were collected in the same transverse
planes. Each brain volume consisted of 36 slices (3 mm slice thickness, 0.75 mm gap between
slices) that covered the entire cerebrum and cerebellum (the collection of one brain volume is
referred to as one scan hereafter). The in-plane resolution was 3 mm×3 mm for the fMRI images
and 1 mm×1 mm for the T1-weighted images.

During each experiment, the T1-weighted anatomical images were collected first followed by
the functional brain images collected alternately during rest (baseline) condition (OFF) and
task performance condition (ON). Each ON or OFF condition included 10 continuous scans
(lasted 30 s). Each set of continuous fMRI data collection included alternating 4 OFF and 3
ON conditions (OFF-ON-OFF-ON-OFF-ON-OFF) and 3 sets of such data were acquired for
each motor task. In each set, image collection started with a verbal command of “REST” and
near the end of 10 OFF scans, a “MOVE” command was given after which the subjects (patients
and controls) performed shoulder–elbow or wrist–hand movements; near the end of the
ONscans, the “REST” command was given to instruct subjects to rest, and so on, until the
image acquisition for the 4th OFF condition was completed. Subjects were trained to perform
each movement in 3 s and this resulted in 10 repetitions in each ON condition. Sufficient time
was provided for subjects to rest between sets and motor tasks to reduce chances of fatigue.
The first 2 scans in each set of scan series were excluded from the data analysis to avoid the
T1-saturation effects (Bandettini et al., 1998).

Statistical analysis of fMRI data
fMRI analysis

The fMRI data analysis was performed using the BrainVoyager software (QX Version 2.0;
Brain Innovation B.V., The Netherlands; www.brainvoyager.com). Before applying statistical
analysis, several preprocessing approaches were performed. First, head motion was corrected
three-dimensionally relative to the images of the third OFF scan (the reference scan for head
motion detection/correction and image registration). Temporal filtering and slice scan time
correction were performed using the default parameters provided in the software.

For single subject analysis, general linear models (GLM) were applied to identify activated
voxels. Brain activation maps were generated from the GLM in which fMRI signal was the
dependent variable and the task paradigm (block design, i.e. OFF–ON–OFF–ON–OFF–ON–
OFF) was the covariate. A predictor time course in the design matrix was obtained by
convolving the boxcar function representing the task paradigm with the hemodynamic response
function (Logothetis et al., 2001; Worsley et al., 2002). The3-D maps were automatically
registered into the standard Talairach space (Talairach and Tournoux, 1988). In all cases, we

Wang et al. Page 3

Neuroimage. Author manuscript; available in PMC 2012 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



applied a statistical threshold of p<0.05 corrected for multiple comparisons using the false
discovery rate (FDR) procedure (Genovese et al., 2002). This adaptive procedure provides an
appropriate combination of sensitivity to detecting patterns of activation, while also providing
stringent control of false positives where fMRI responses were absent. Brain activation was
then quantified by calculating the NAVs in each of the ROIs using a house-coded program
incorporated in BrainVoyager. This was done in the Talairach space so that the Brodmann
areas could be utilized automatically. The cortical fields (i.e., ROIs) being analyzed included:
primary motor cortex (Brodmann area 4, [BA4]), Brodmann area 6 (corresponding to premotor
and supplementary motor areas, [BA6]), cingulate gyrus (Brodmann areas 24 & 33, [BA24–
33]), primary sensory cortex (Brodmann areas 1, 2, & 3, [BA1–2–3]), and Brodmann areas 5
& 7 (corresponding to association parietal cortex, [BA5–7]). Brain activation was measured
from the left and right hemispheres separately.

For group analysis, brain activation maps were generated over all the subjects in control group
and pre- and post-treatment measurements in the patient group. Fixed effects analysis was
applied for the two tasks: shoulder–elbow and wrist–hand. Time courses from all subjects
within a group were concatenated and treated as coming from a single subject. Design matrices
were concatenated in the same fashion. Then the same linear model as described in single
subject analysis was estimated for each voxel. To correct for multiple comparisons, a uniform
probability threshold of 0.05 was used to control the FDR.

Statistical models for region of interest analysis
Activation maps from group analysis help visually identify activated locations in the brain.
However, in factorial designs with multiple levels, it can often be difficult to discern the pattern
of activity across conditions from an overall map. We expect to draw valid statistical
conclusions in addition to visually detect the difference. There are often needs to look further
into particular ROIs, such as in this stroke study. ROI analysis can help evaluate the differences
of activation sizes over multiple factors (experimental conditions, ROI locations etc.), using
formal statistical testing procedures.

Quantifying brain activation by the NAV in each ROI for each subject is common in
neuroimaging studies. Many studies, however, performed analysis of variance (ANOVA)
based on a GLM under a normal distribution assumption for the ROI analysis. In those cases,
however, the NAV count data were non-negative integers and their discrete nature was ignored.
Moreover, the counts often showed much greater variability (statistical dispersion) than would
be expected. This phenomenon is known as overdispersion in statistics (see more discussion
about the topic in Wang et al., 2007). Specifying an inappropriate probability distribution in
modeling the NAV data could cause biased estimates and further lead to erroneous statistical
conclusions.

Assume that we observe data (yi, xi), i=1, …, n, where the dependent variable, yi, is the NAV,
and xi =(x1i, …, xpi)T is a p-dimensional vector of covariates. One is interested in the
relationship between the response and the covariates. A typical GLM assumes that the response
yi conditional on xi is normally distributed. Statistical inferences are to be made based on

, where β=(β0, β1)=(β0, β1, …, βp) are the parameters to be estimated.

The assumption of normality of yi|xi is often invalid for the skewed non-negative integer
outcomes. A possible solution to improve the GLM is to perform a transformation of the
dependent variable. For count data, the log-transformation, log(yi + a), can be applied so that
the transformed data appear to close to the assumptions of the statistical inference procedure
that is to be applied. The a in the log-transformation is a pre-specified positive constant in order
to avoid calculation of the logarithm of zero, which is undefined. However, this GLM with log
transformation can perform poorly. It has been criticized by King (1989). For example, the
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selection of the constant a could be sensitive in a data analysis. The log transformation may
still result in a skewed distribution of the response, when the data are over-dispersed
(Winkelmann, 2008). Another transformation that can be used for count data is the square root
transformation, which stabilizes the variance of count data. It can avoid the problem of choosing
a in a logarithmic transformation since the square root of 0 is well-defined.

Transformation is sometimes hard for investigators to interpret. In statistics, the well-known
regression model for count data is Poisson regression, a special case of generalized linear
models (GLIM). It assumes that the dependent variable conditional on the predictive variables
follows a Poisson distribution, a discrete probability distribution that expresses the probability
of a number of events occurring in specified intervals such as area, volume or time. McCullagh
and Nelder (1989) discussed systematically the GLIM including logit models, Poisson models
and quasi-likelihood models. Using a distribution in the Poisson family can provide a much
better description of NAVs of ROIs than using a normal distribution. In a Poisson regression
model, yi given xi has the probability mass function

(1)

where yi is a non-negative integer, and the mean parameter μi is parameterized as

(2)

to ensure μi > 0. Eqs. (1) and (2) jointly define the Poisson regression model. However, the
Poisson model restricts the data distribution to be equal-dispersion (the conditional variance
equals the conditional mean). This stringent restriction cannot handle many real applications,
especially in analyzing active counts in an fMRI study. Observed counts in such a study are
often over-dispersed (conditional variance exceeds the conditional mean).

The compound Poisson models provide a natural generalization of the basic Poisson model.
They are often suitable to account for observed overdispersion in data and to provide a better
fit. To relax the restriction of equal-dispersion, a compound Poisson model allows for
unexplained randomness in μi by replacing Eq.(2) by the stochastic equation

(3)

where the random term νi = exp(εi) takes into account possible overdispersion. Let g(νi) denotes
the probability density function of νi, then the conditional probability mass function of yi given
xi becomes

(4)

The above expression (4) defines a compound Poisson distribution whose precise form depends
on the specification of g(νi). There are a few special cases of compound Poisson models that
could be suitable for over-dispersed count data.
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Poisson-log-normal model
A natural selection of the distribution of νi is a log-normal distribution with mean exp(σ2/2)
and variance exp(σ2)(exp(σ2)−1), where σ is the unknown parameter. When νi is log-normal
distributed as above, εi = log(νi) is normally distributed with mean 0 and variance σ2. In such
a case, β0 + εi in Eq. (3) can be interpreted as the random intercept, similarly as in a normal
mixed model. Estimating the parameters in this Poisson-log-normal model (PLNM) can be
performed using the method of maximum likelihood estimation (MLE). The log-likelihood of
the model is

(5)

The log-likelihood in Eq. (5) is the sum of independent contributions from each observation,
and each observation involves a single-dimensional integral. No closed form solution of
maximizing the log likelihood is available. However, numerical integration for calculating Eq.
(5) can be evaluated accurately using adaptive Gauss–Hermite quadrature techniques
(Molenberghs and Verbeke, 2005). This hierarchical model is often suitable for the case of
count data with mild or moderate over-dispersion.

Negative-binomial model
Another common choice for addressing the distribution characteristics of νi is a gamma
distribution. Suppose that νi has a one-parameter gamma distribution Gamma(1/δ, δ) with
density (for δ>0)

Using some algebraic transformation on the integral in Eq.(4), one can demonstrate that yi|xi
has a negative-binomial distribution with the mean parameter μi and the dispersion parameter
δ. Its probability mass function is given by

(6)

where . It can be shown that E(yi|xi)= μi and . The variance
is a quadratic function of the mean in the negative-binomial model (NBM). The parameter δ
plays a role to measure the overdispersion level. Note that the Poisson model is a special case
of the NBM (as δ>0).

The log-likelihood in the NBM is simply given by . There is no
integration involved in calculating the log-likelihood, so the MLE method is easier to be
implemented than that in the PLNM. In practice, the NBM performs better than the PLNM
when severe over-dispersion is present in a dataset.
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Generalized negative-binomial model with structured dispersion
In the NBM described previously, we have a single dispersion parameter δ. In some complex
real data applications, a single dispersion parameter may not be good enough to capture the
complex dispersion structure in the data. We can further generalize the NBM in order to model
the structure of dispersion. A generalized negative-binomial model (GNBM) with structured
dispersion allows the dispersion parameter to vary observation by observation, by modeling

(7)

where, zi =(z1, …, zk)T, i=1, …, n is a k-dimensional vector of covariates, which could be all
or a subset of the covariates xi or even completely different variables. α=(α0, α1)=(α0, α1, …,
αk) is the k + 1-dimensional vector of unknown parameters (associated with dispersion) to be
estimated. With this generalization, the relationship of the dependent variable yi with the
covariates xi can still be modeled via the conditional expectation of yi given xi:

(8)

while the variation of dispersion will be taken into account by Eq. (7) simultaneously. The
resulting log-likelihood of the GNBM is given by

It is straight-forward to apply the MLE method for the above log-likelihood, estimate the
parameters, and make the corresponding inferences. This generalized model gives flexibility
to account for heterogeneous dispersion in modeling count data.

A simulation study
We performed a simulation study to compare the models discussed previously for over-
dispersed count data. Two cases of simulated data were considered: (1) Poisson-log-normal
(PLN) data, where log μ i =β0 + β1ti + ui with β0 =1, β1 =2 and ui ~ N(0, 0.52) were generated
and followed by the responses Yi generated by Poisson with mean μ i (i=1, …, n); and (2)
negative-binomial (NB) data, where log μ i = β0 +β1ti with β0 =1, β1 =2 were generated and
followed by the responses Yi generated by a NB distribution with mean μi and the dispersion
parameter δ=2. In all cases, ti was generated from a uniform distribution between 0 and 1.
Clearly, both cases generated over-dispersed count data, while the data from the case one were
mildly over-dispersed and those from the case two were severely over-dispersed. The simulated
sample size n was set to 100 and the simulation was repeated 1000 times. We considered the
six types of models to fit the simulated data: NBM, Poisson model, PLNM, GLM, GLM with
log transformation (a=0.5), and GLM with square root transformation.
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Table 1 summarizes the average of parameter estimates (mean) and its standard deviations
(SD) as well as the average of the estimates of standard errors (Mean(^ se)) from independent
1000 times of simulations for each individual model. The true parameters here are β0 =1 and
β1 =2. A “well-fitted” statistical model expects that “Mean” is close to the true parameter and
“Mean(≿e)” is close to “SD”. Obviously, GLM gave totally wrong estimates for the parameters.
For example, the mean of β ̂1 for PLN data, 18.558, was far from β1 =2. For Poisson regression,
the estimates of parameters worked well but the standard errors were underestimated (far less
than the standard deviation of estimated parameters). For instance, SD of β ̂0, 0.354, was about
four times as large as the mean of se, 0.093, using the Poisson model for NB data. The
assumption in Poisson model that the variance equals the mean is not valid if overdispersion
exists, and thus the estimated standard errors were too low and statistical inference from
Poisson model would be mistaken. When overdispersion was small, both PLNM and NBM
performed well on estimating both the parameters and their standard errors. When
overdispersion was large, NBM still performed excellently but PLNM gave biased estimates
(e.g. the mean of β ̂0 was 0.463 using PLN model). GLM with square root transformation
performs very well for data with severe overdispersion. A square root transformation is a
variance stabilizing transformation for count data. The performance of GLM with log
transformation was similar to that of PLNM, where it worked for data with mild overdispersion
(e.g. the mean of β ̂0 was 1.006), but became inaccurate for data with severe overdispersion
(e.g. the mean of β ̂0 was 0.469). Given the accurate results of NBM and the natural
interpretation of a NB distribution for discrete count data, we used NBM/GNBM to analyze
the motor function fMRI count data and the results are reported below with comparisons to
results analyzed by GLM models.

Results
NAVs derived from analysis of single-subject activation maps were non-negative integers and
not normally distributed. Initial exploratory data analysis showed that the dispersion levels
from different groups (Pre vs. Post and Control vs. stroke) were very different. Thus, the GNBM
with structured dispersion was applied in ROI analysis of the stroke study. The covariates
incorporated in the linear mean function in Eq.(8) of the model were “Group” (control, pre- or
post-treatment in stroke), “Task” (shoulder–elbow or wrist–hand movement), and “ROI” (10
different ROIs); the covariate included in the dispersion function in Eq. (7) was “Group”.
Approximate F tests based on the fitted model were then conducted to evaluate the significances
of covariates (Molenberghs and Verbeke, 2005). In the model fitting, we tried to add the
interaction term of Group and Task. It turned out that the interaction term was not significant,
hence, the term was excluded in our final reported model. In addition, for the comparison
purpose, we also fit a GLM, a GLM with log transformation (a=0.5), and a GLM with square
root transformation for the NAVs.

Table 2 summarizes the sample means of NAVs and Talairach coordinates of ROIs per group,
task and region. Fig. 1 shows the boxplots of NAVs by different groups and tasks. The dots in
the plots are outliers, which have a greater distance from the median than 1.5 times the inter-
quartile range. The count data for each group and task are highly positively skewed. They are
severely dispersed and the dispersion levels vary for different groups.

Table 3 displays the statistical results in analysis of voxel counts using the GNBM. The
estimates of parameters and their standard errors are shown and the p-values of approximate
F tests for each factor are also presented. The GNBM unveiled that Group and Region were
significant factors, but Task was not a significant factor, according to, NAV. The results
supported that, although the brain activation was located in the same ROIs for the control, pre
and post patient groups, the volume of activations was significantly different across the three
groups (p<0.0001). In addition, the statistical test for the effect of dispersion structure as a
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function of Group was significant (p<0.0001). This supported our initial exploratory analysis
of heterogeneous dispersion over Group, and confirmed that the structured dispersion function
component was necessary in the GNBM.

To further evaluate the pairwise difference over groups, we performed contrast tests based on
the GNBM (Table 4). We found that there was a significant difference between pre and post
tests in the stroke group (p<0.0001). And there was a significant difference between stroke
pre-test and control group (p=0.0058). However, there was no significant difference between
stroke post-test and control group (p=0.2494). The results suggested that the training program
was effective since the stroke patients recovered cortical activation volume close to that in the
control group. Table 4 also lists the analysis results based on a standard GLM (GLM1), a GLM
with log transformation (GLM2), and a GLM with square root transformation (GLM3). For
the GLM1, the difference between stroke pre-test and control group was non-significant
(p=0.1202). This non-significant p-value may be questionable since the estimated parameters
and standard errors are biased using a GLM for count data. Although GLM2 and GLM3 also
detected the significant difference between pre and control, the parameter estimates and their
standard errors of these two models might be inaccurate. Our scientific findings in the paper
relied on the GNBM.

Figs. 2 and 3 show multi-subject statistical mapping illustrating the brain activation patterns
in control group and pre- and post-tests in stroke patients for shoulder–elbow (Fig. 2) and hand–
wrist (Fig. 3) tasks at Talairach coordinate (0, 0, 0). The activated areas (i.e. NAVs) were small
for the patient group before training but the volume of activation increased after training.
Statistical results of ROI analysis supported these graphical illustrations (Table 4).

Discussion
In this study, fMRI data were analyzed to evaluate brain activation adaptations after an upper
extremity movement rehabilitation program in stroke patients. A family of compound Poisson
models was discussed for analyzing the activated voxel counts in the ROI analysis. The results
suggest that erroneous statistical inferences could result from specifying an inappropriate
statistical model that ignores the nature of data.

Residual plots are very useful and are popular diagnostic tools for statistical regression models.
Fig. 4 displays the diagnostic residual plots from GLM and GNBM in the stroke study.
Typically, a residual plot shows the residuals on the vertical axis and the predicted mean value
on the horizontal axis. If the points in a residual plot are randomly dispersed around the
horizontal axis, a regression model is appropriate for the data; otherwise, one may question the
validity of the model. Conventionally, the studentized residual is used for normal linear models,
while the standardized deviance residual is used for compound Poisson models.

From the upper plot in Fig. 4, we can see that the residuals from GLM were not randomly
dispersed. The plot showed the heterogeneity, where the residual variance increased as the
predicted mean increased. Note that the predicted mean from GLM cannot ensure the voxel
counts are always positive. Some negative predicted values were identified from the GLM. In
contrast, the residual plot of GNBM displayed a random pattern around the horizontal axis,
which supports that the model was appropriate (the lower plot in Fig. 4). The predicted means
did not have the issue of negative values. These results from examination of the residual plots
further supported our concern regarding use of the standard linear regression model for fMRI
count data.

For the purpose of analyzing active voxel counts in a neuroimaging study, our experiences
suggest that NBM/GNBM is a more appropriate statistical model compared with Poisson model
and PLNM, because active voxel counts often show a characteristic feature of severe
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overdispersion. One should proceed with caution in using a GLM directly, or a GLM with a
transformation for fMRI count data. The assumption of GLM is invalid for count data; and
linear regression models with nonlinear transformed response could be difficult for biomedical
scientists to explain. All of the compound Poisson models discussed can be programmed and
calculated using commercially-validated statistical software. For instance, SAS proc
nlimixed can be used to specify the models.

Clinically, our results supported the notion that motor training alters brain activation towards
the normal pattern in stroke patients and this change is essential for motor function recovery.
The training program resulted in a more normal volume of activation, which was correlated
with improvement of upper limb motor function (Daly et al., 2006). However, based on the
analysis using conventional GLM, this effect could not be detected. Our results underscore the
importance of selecting appropriate statistical models for analyzing count data in neuroimaging
research.

Although quantifying brain activation by the NAV is common in neurophysiological studies,
criticism has been raised about its stability as the measure of signal magnitude in fMRI. Cohen
and DuBois (1999) found that in their study the voxel counting was unstable. This issue could
be viewed as the response measurement error problem (Carroll et al., 2006; Wang and Wang,
2011). The response measurement error increased the variability of the fitted function, and thus
decreased the power of the model. A potential remedy of the measurement error problem is to
get repeated measurements for each subject if possible. Modeling the repeated NAVs together
can increase the statistical power and reduce the effect of measurement error. In addition,
Cohen and DuBois(1999) evaluated the brain activation as the slope of the regression line
between the modeled time course and the actual data, and found the measured slope was largely
independent of the contrast-to-noise ratio. One may use the slope as the activation measurement
and fit a GLIM with an appropriate distribution. Other approaches, such as clustering methods,
may work as well in ROI analysis of fMRI data.
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Appendix A

List of abbreviations

AII: averaged image intensity
ANOVA: analysis of variance
BA1-2-3: Brodmann areas 1, 2, & 3
BA24-33: Brodmann areas 24 & 33
BA4: Brodmann area 4
BA5-7: Brodmann areas 5 & 7
BA6: Brodmann area 6
FDR: false discovery rate
GLM: general linear model
GLIM: generalized linear model
GNBM: generalized negative-binomial model
MLE: maximum likelihood estimation
NAV: number of activated voxels
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NB: negative-binomial
NBM: negative-binomial model
PLNM: Poisson-log-normal model
ROI: region of interest
SD: standard deviation

SAS code
The following is the SAS 9.2 programming code we used to fit the GNBM.

%let IntialParameters b_0=0 b_1=0 b_2=0 b_3=0 b_4=0 b_5=0 b_6=0 b_7=0
   b_8=0 b_9=0 b_10=0 b_11=0 b_12=0 a_0=0 a_1=0 a_2=0;
%let LinearFunction b_0+b_1*(Group='Control')+b_2*(Group= 'Post')
  + b_3*(Task='shoulder-elbow')
  + b_4*(Region='BA4 Left')+b_5*(Region='BA4 Right')
  + b_6*(Region='BA6 Left')+b_7*(Region='BA6 Right')
  + b_8*(Region='BA24-33 Left')+b_9*(Region='BA24-33 Right')
  + b_10*(Region='BA1-2-3 Left')+b_11*(Region='BA1-2-3 Right')
  + b_12*(Region='BA5-7 Left');
%let DispersionFunction a_0 +a_1*(Group = 'Control') + a_2* (Group='Post');
title "Generalized Negative Binomial model";
proc nlmixed data=fMRI_counts;
  parms &IntialParameters;
  eta_lambda=&LinearFunction;
  mean=exp(eta_lambda);
  eta_k=&DispersionFunction;
  k=exp(eta_k);
  loglike=(lgamma(Counts+(1/k)) − lgamma(Counts+1) − lgamma(1/k) + Counts*log
(k*mean) − (Counts +(1/k))× log(1 +k*mean));
  model Counts~general(loglike);
  contrast 'Mode' b_1, b_2;
  contrast 'Mode2_1' b_1;
  contrast 'Mode2_2' b_2;
  contrast 'Mode2_3' b_1-b_2;
  contrast 'Task' b_3;
  contrast 'Region' b_4, b_5, b_6, b_7, b_8, b_9, b_10, b_11, b_12;
  contrast 'dispersion' a_1, a_2;
  contrast 'dispersion2' a_1-a_2;
  predict eta_lambda out=eta_lambda;
run;
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Fig. 1.
Boxplots of NAVs by different groups and tasks. The dots in the plots are outliers, which have
a greater distance from the median than 1.5 times the inter-quartile range. The count data are
highly positively skewed and severely dispersed. The dispersion levels of the counts vary
among the groups.
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Fig. 2.
Activation maps for multi-subject fMRI analysis with shoulder–elbow movement at Talairach
coordinate (0, 0, 0).
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Fig. 3.
Activation maps for multi-subject fMRI analysis with wrist–hand movement at Talairach
coordinate (0, 0, 0).
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Fig. 4.
Diagnostic plots for the statistical models in ROI analysis of the fMRI stroke study: (a) the
residual plot based on the GLM, and (b) the residual plot based on the GNBM.
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Table 3

The GNBM results showing significant difference for group overall and for each ROI according to NAV.

Parameter Estimate Standard error Approximate F test

Intercept 6.2404 0.2419

Group Control 0.7894 0.1732 <0.0001

Post 0.6147 0.2050

Pre 0 –

Task Shoulder–elbow 0.1177 0.1193 0.3246

Wrist–hand 0 –

Region BA4 Left −1.7957 0.2652 <0.0001

BA4 Right −0.8858 0.2639

BA6 Left 0.3198 0.2620

BA6 Right 0.3985 0.2621

BA24–33 Left −0.1365 0.2621

BA24–33 Right −0.2676 0.2623

BA1–2–3 Left −0.9195 0.2625

BA1–2–3 Right −0.5711 0.2620

BA5–7 Left −0.2313 0.2621

BA5–7 Right 0 –

Dispersion Intercept 1.2263 0.1083

Group (Control) −1.5392 0.1547 <0.0001

Group (Post) −0.9292 0.1782

Group (Pre) 0 –
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Table 4

P-values for pairwise comparison of the different groups overall according the number of active voxels. The p-
values were calculated based on the GNBM, GLM (denoted by GLM1), GLM with log transformation (denoted
by GLM2), and GLM with square root transformation (denoted by GLM3).

GNBM GLM1 GLM2 GLM3

Pre vs Post <0.0001 <0.0001 <0.0001 <0.0001

Pre vs Control 0.0058 0.1202 0.0096 0.0444

Post vs Control 0.2494 0.8800 0.4808 0.7585

Neuroimage. Author manuscript; available in PMC 2012 January 2.


