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Abstract
Segregation and integration are two general principles of the brain’s functional architecture.
Therefore, brain network analysis is of significant importance in understanding brain function.
Critical to brain network construction and analysis is the identification of reliable, reproducible,
and accurate network nodes, or Regions of Interest (ROIs). Task-based fMRI has been widely
considered as a reliable approach to identify functionally meaningful ROIs in the brain. However,
recent studies have shown that factors such as spatial smoothing could considerably shift the
locations of detected activation peaks. As a result, structural and functional connectivity patterns
can be significantly altered. Here, we propose a novel framework by which to optimize ROI sizes
and locations, ensuring that differences between the structural connectivity profiles among a
group of subjects is minimized. This framework is based on functional ROIs derived from task-
based fMRI and diffusion tensor imaging (DTI) data. Accordingly, we present a new approach to
describe and measure the fiber bundle similarity quantitatively within and across subjects which
will facilitate the optimization procedure. Experimental results demonstrated that this framework
improved the localizations of fMRI-derived ROIs. Through our optimization procedure, structural
and functional connectivities were more consistent across different individuals. Overall, the ability
to accurately localize network ROIs could facilitate many applications in brain imaging that rely
on the accurate identification of ROIs.

1. INTRODUCTION
The human brain is a complex, closely intertwined network, in which the principles of
functional segregation and integration play a significant role in the network’s actualization
(Friston, 2009; Frackowiak et al., 2004). Current knowledge dictates that the brain’s
functions are integrated via structural and functional connections (Friston et al., 2003;
Sporns et al., 2005; Biswal et al., 2010; Van Dijk et al., 2010; Hagmann et al., 2010).
Therefore, brain network analysis is of significant importance to neuroscience (Friston et al.,
2003; Sporns et al., 2005; Bullmore et al., 2009; Biswal et al., 2010; Van et al., 2010;
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Hagmann et al., 2010). When constructing brain networks, network node Regions of Interest
(ROIs) provide the structural substrates for measuring connectivities within individual
brains and for pooling data across populations (Friston et al., 2003; Sporns et al., 2005;
Biswal et al., 2010; Van Dijk et al., 2010; Hagmann et al., 2010). Thus, identification of
reliable, reproducible, and accurate network node ROIs is critically important for the success
of network construction and analysis (Bullmore et al., 2009). However, in our view, this task
is challenging for several critical reasons: 1) The boundaries between cortical brain regions
are unclear (Cabeza et al., 2001). Therefore, it is quite challenging to delineate boundaries
between cortical regions based on in-vivo imaging data such as MRI or DTI data. 2) The
individual variability of cortical anatomy, connection, and function is significant (Van Essen
et al., 2007). For instance, despite the considerable regularity of global cortical folding
patterns, individual cortical shape variation is remarkable. Hence, it is often difficult to
accurately pinpoint corresponding ROIs across individual brains. 3) ROIs exhibit highly
nonlinear properties. For instance, a slight change to the size or location of an ROI might
dramatically alter its structural and functional connectivity profiles.

Definitions of ROIs could be quite different in various applications, e.g., structural vs
functional ROIs

Current approaches for identifying or selecting ROIs on an individual brain can be classified
into four broad categories, depending on application scenarios and questions being asked.
The first, and most widely used method, is manual labeling by experts based on their domain
knowledge (Biswal et al., 2010; Sobel et al., 1993). The second is clustering ROIs based on
multivariate methods that, for example, may either calculate the amount of variance that the
ROIs can account for within a neighborhood of fMRI signals or decompose the fMRI signals
into statistically independent ROIs (Hyvärinen et al., 2000; Zang et al., 2004; Brun et al.,
2004; Calhoun et al., 2004; Beckmann et al., 2005). The third is template warping based on
image registration (Liu et al., 2004; Van Essen et al., 2007); this method is typically
automated and reproducible. The fourth method uses task-based fMRI paradigms to identify
task-relevant brain regions as ROIs (Saxe et al., 2006). This methodology is regarded as the
benchmark approach for ROI identification. Yet, task-based fMRI for ROI localization can
be further improved. For instance, recent studies (White et al., 2001; Jo et al., 2008) have
reported a significant shift in fMRI activation peaks after spatial smoothing, a common pre-
processing step performed on fMRI data based on individual analysis. According to Li et al.,
(2010a), commonly used spatial smoothing parameters could cause local maxima to shift by
4mm, on average.

The focus of this paper is on cortical regions activated by task-based fMRI data, and hence
brain ROIs here mean fMRI-derived brain regions

Our recent work in Li et al., (2010a) addressed the issue of optimizing cortical ROI
locations. In that work, ROI location optimization was formulated as an energy
minimization problem. Our rationale for doing so was that an ROI should have similar inter-
subject functional and structural connectivity patterns. Even though significant advances
were made in Li et al., 2010a, we believe further advancement can be made on the methods
presented therein. Mainly, the energy function in Li et al., 2010a only considered coarse-
scale structural connectivity, e.g., the connectivity pattern at the cortical lobe scale.
Additionally, the method in Li et al., 2010a did not optimize for ROI size. These limitations
resulted in some ROIs that could not be optimized via the approaches in Li et al., 2010a, as
shown in Fig. 1. Considering that structural and functional brain connectivity are closely
related (Passingham et al., 2002), and the same ROI should have similar structural
connectivity patterns, in this paper, we aim to optimize both the locations and sizes of ROIs
by maximizing the consistency of structural connectivity profiles at the finer scale and at the
individual ROI level.
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Our rationale is that the activation peaks obtained via task-based fMRI are situated near the
true functional ROIs, but the accuracy of their locations and sizes can be compromised by
factors such as normalization and spatial smoothing (Li et al., 2010a). Hence, we propose
optimizing the location and size of each individual ROI by searching around the
neighborhood of the detected fMRI activation peak in order to maximize the consistency of
that ROI’s structural connectivity profiles across different subjects. The assumption is that
each brain cytoarchitectonic area has a unique set of extrinsic inputs and outputs, and this
unique set of connections, called the connectional ‘fingerprint’ (Passingham et al., 2002),
largely determines the function that area performs. Hence, to a certain extent, the
maximization of structural connectivity consistency reflects the maximization of functional
correspondence.

As previously mentioned, using detected activation regions from task-based fMRI data is a
well-accepted strategy for defining ROIs, but task-based data is not always available. For
instance, it may be difficult to acquire task-based fMRI data on children or demented
individuals. In such cases, it would be beneficial to accurately localize the ROIs solely based
on DTI data. The optimized ROIs obtained in this paper could be used as priors by which to
identify those ROIs. This would be accomplished by comparing the similarity of the fiber
bundle shapes in the target image to those in the models.

To achieve our goal of optimizing fMRI-derived ROIs through making their structural
connectivity more consistent, a model was needed to measure and compare the structural
connection patterns quantitatively. Consequently, we proposed a new model, named
trace-map, to depict fiber bundle properties

In the proposed method, we extract the fiber bundles with different locations and sizes
around the initial ROI for each subject, which will serve as the candidates to optimize. They
are then transformed to trace-maps, which allow us to compare them in a standard sphere
space, and calculate the distance between any pair of trace-maps between subjects. By using
the clustering algorithm, we obtain small numbers of fiber bundle as cluster centers and
perform a whole-space search to find the combination that gives the least variance for the
ROI in consideration within the whole group of subjects.

Overall, our main contributions are summarized as follows. 1) Based on functional ROIs
derived from task-based fMRI and DTI data, we present a novel framework for optimizing
the location and size of an ROI by maximizing the group-wise consistency of the ROI’s
structural connectivity profile. 2) We present a novel approach for quantitatively measuring
the consistency of an ROI’s structural connectivity profile by projecting the associated fiber
curves onto a standard spherical space. Therefore, we are able to compare the fiber bundles
from different subjects quantitatively; this significantly facilitates ROI optimization within a
group of subjects. 3) This framework has been extensively evaluated, and our results
indicate that the structural connectivity patterns, especially to the subcortical regions which
are considered as reliable landmarks of the human brain, for each individual functional ROI
in different brains are reasonably consistent after optimization. At the same time, the
variance of functional connectivity is reduced, suggesting that our optimization is
meaningful in terms of structural and functional connectivities.

2. MATERIALS AND METHODS
2.1. Data acquisition

We used the data of fifteen subjects from recent studies (Li et al., 2010a; Faraco et al.,
2011). Briefly, fMRI data was acquired for each subject for 2 runs. Each run included three
block types: a modified version of the operation-span (OSPAN) working memory task, an
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Arithmetic task and a Baseline. DTI data was also acquired. The scans were performed on a
3T GE Signa HDx scanner. Acquisition parameters were as follows: fMRI: 64×64 matrix, 4
mm slice thickness, 220 mm FOV, 30 slices, TR=1.5 s, TE=25 ms, ASSET=2; DTI:
128×128 matrix, 2 mm slice thickness, 256 mm FOV, 60 slices, TR=15100 ms, TE=min-
full, ASSET=2, 3 B0 images, 30 optimized gradient directions, b-value=1000; all aligned to
the AC-PC line.

Each participant’s fMRI data was pre-processed and analyzed, using the OSPAN –
Arithmetic contrast, through FSL FEAT. We achieved group activation map through group-
wise fMRI data analysis, which was then linearly warped into each individual subject’s
space such that the correspondences and rough localizations of activations in different
subjects’ brains were obtained. Then, we used FSL FEAT to map an individual activation
map for each subject. Under the guidance of the initialized group-wise activation map in
each individual brain, we recognized the local maximum on the individual fMRI activation
map as ROI. Table 1 lists the names of the anatomical regions where our sixteen ROIs are
located. In total, we identified sixteen activated ROIs for each individual subject. More
details of the preprocessing of fMRI data are referred to Faraco et al., 2011. DTI pre-
processing included skull removal, motion correction, and eddy current correction. Fiber
tracking was performed using MEDINRIA (FA threshold=0.2; minimum fiber length=20).
Brain tissue segmentation was conducted on DTI data by the method in Liu et al., 2007 and
the cortical surface was reconstructed using the marching cubes algorithm. Results were
reported in DTI since DTI and fMRI are both echo planar imaging (EPI) sequences and
exhibit similar distortions (Li et al., 2010b). This results in reduced misalignment between
DTI and fMRI images as compared to T1 and fMRI images. Co-registration between fMRI
and DTI data was performed using FSL FLIRT, since the following ROI optimization
procedure will search a neighborhood and nonlinear registration is not required. The
endpoints of tracked fibers and activated ROIs were then mapped onto the cortical surface.

2.2. Overview of the framework
In this paper, the first-round optimization adopted the methods in Li et al., 2010a as our
input, meaning that the initial locations of the ROIs had been previously calculated. We then
applied our algorithmic pipeline, outlined in Fig. 2, to the initialized ROIs. It should be
noted that the brain volumes and cortical surfaces were aligned to a randomly selected
template via a linear registration method (FSL FLIRT) beforehand.

First, we extracted the fiber bundles with different locations and sizes around the initial ROI
for each subject, which served as the optimization candidates. As shown in Fig. 2(a), the
green bubbles in the yellow circles represent the initial locations of the same ROI for each
subject. We extracted all fiber bundles within various neighborhoods of the ROI (we used 3-
ring, 4-ring and 5-ring mesh vertex neighborhoods). Here, for a vertex V, its 1-ring
neighborhood includes all vertices which connect to V. The neighborhoods are on the
cortical surface, and the points of 1-ring neighborhood are approximately 1–2 mm to the
center point. The resulting fiber bundles are shown in Fig. 2(b). Fiber bundles were then
projected onto the standard trace-maps (Fig. 2(c)) and the distance between any pair of
trace-maps within the subject was calculated (Fig. 2(d)). By using the affinity propagation
(AP) clustering (Frey et al. 2007), we obtained the fiber bundle centers shown in Fig. 2(e),
and then performed a whole-space search to find the combination (Fig. 2(f)) that yielded the
least variance for the ROI within the whole group of subjects. Fig. 2(g) shows the new ROI
location (red bubble) according to the optimal fiber bundle we found in Fig. 2(f).
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2.3. Bundle description based on the trace-map model
Many algorithms, such as spectral clustering (O’Donnell et al., 2006), normalized cut
clustering (Brun et al., 2004) and atlas-based clustering (Maddah et al., 2005), have been
developed to cluster white matter fibers into different bundles. However, an open problem
remains: how can a fiber bundle be described quantitatively? In this paper, we needed a
quantitative fiber bundle descriptor or model to represent fibers and compare their
similarities within and across different subjects.

Hence, we have proposed a novel method by which to describe the fiber bundle; we call this
method the trace-map model. Initially, each fiber curve was divided into segments, where
each segment was composed of a collection of points. Then, the Principal Component
Analysis (PCA) was used to find the principal direction of each segment, represented as a
vector as seen in Fig. 3(a). Finally, the vectors were translated to the origin of a global
spherical coordinate system and shoot from the origin to the surface of a unit sphere
centered at the origin. In this way, we can have a trace point on the sphere, and then perform
the same procedure on the segments of all fibers in each bundle (Fig. 3(b) and (c)). Fig. 3(d)
shows two examples. The top image is a U-shape fiber bundle and its respective trace-map.
The bottom image is a line-shape case.

There are two issues to be noted here. One is that all subjects’ brains must be aligned. In our
implementation, the principal direction of each brain was calculated using PCA. This
principal direction was then used to align different brains onto a randomly selected template
subject. Thus, fiber bundles with similar shapes but different orientations can be
differentiated by the different trace-point distributions on the standard sphere surface. The
second issue is that one of the two ends of the fiber bundles needs to be assigned as the
starting point. Since each fiber bundle was extracted from a small region on the cortical
surface, we selected the end that was closest to the center of the region. This is very
important to ensure that the trace-maps of one fiber at different optimization procedures are
consistent.

The proposed trace-map model has the following advantages. 1) It is an effective way to
represent and compare fiber bundles. Essentially, the trace-map model transforms a fiber
bundle to a set of points distributed on the surface of a unit sphere. It projects the complex,
geometric features of the fiber onto point distribution patterns in a standard space, in which
different fiber bundles from different subjects can be compared quantitatively. The patterns
reflect the accumulation of the strength of the fiber bundle in different directions. To a
certain extent, it is similar to the idea of inflating the convoluted cortical surface onto a
standard sphere. After projecting the cortical surface to a standard sphere surface, the
folding patterns across different subjects can be compared and analyzed. 2) The trace-map
model is not sensitive to the small compositional changes occurring throughout a fiber
bundle. This is a very important property when performing comparisons across different
subjects, because we are interested in comparing the overall shapes of the fiber bundles.

2.4. Fiber bundle comparison based on trace-map model
Our rationale for comparing fiber bundles through trace-maps is that similar fiber bundles
have similar overall trace-map patterns. Fig. 4 shows four examples. Figs. 4(a) and 4(b) are
a pair of fiber bundles that appear similar upon visual inspection. We can see that their trace-
maps, Fig. 4(e) and 4(f), are also similar. Fig. 4(c) and 4(d) show another pair of similar
fiber bundles and their corresponding trace-maps are shown in Fig. 4(g) and 4(h). Again, we
can clearly see the similar patterns of the point distributions in the trace-maps.

After arriving at a trace-map representation of the fiber bundles, the bundles can be
compared by defining the distance between their corresponding trace-maps, as shown in Fig.
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5. For each point, Pi, in one trace-map, its corresponding location, denoted by Pi′, in the
other trace-map can easily be found in terms of the same location. The point density,
denoted by den(Pi), is then calculated as follows.

(1)

ni is the number of points in the trace-map whose center is Pi with radius d, which is in the
range of 0–1.0, since the standard sphere onto which we project the fiber bundles is a unit
sphere surface. In this paper, we empirically chose d=0.3. N is total number of points in the
trace-map. As shown in Fig. 5, we calculate the point density in the red circle. The total
distance of two trace-maps is defined as:

(2)

T1 and T2 are two trace-maps. Pi is a point in T1 and Pi′ is its corresponding point in T2. Pj
is a point in T2 and Pj′ is its corresponding point in T1. n and m are the numbers of points in
T1 and T2, respectively. Intuitively, Eq. (2) means that we iterate over all data points in one
trace-map, and measure the density within a circle centered at the data point in
consideration and also a circle placed in the corresponding location in the other trace-map.
This iterative process is repeated over the data points in the other trace-map, and the same
procedure is iterated over all possible locations in each trace-map. Notably, we simplified
the computation by only considering locations where a data point is present in one or the
other trace-map.

To evaluate the effectiveness and distinctiveness of the trace-map model, we randomly
chose a subject and extracted the fiber bundles from all possible ROIs whose centers are the
vertices of the cortical surface with a certain scale of neighborhood (4-ring mesh vertex
neighborhood in this paper). The fiber bundles were then represented by trace-maps and the
distances between the trace-maps of the selected ROIs and the rest were calculated. The
distance between the trace-map of the selected ROI and the trace-maps of all other ROIs on
the cortical surface are shown in Fig. 6.

From the result, we can see that: 1) most of the fiber bundles emanating from other ROIs
have significant differences in comparison with the selected ROI. That is, most of the
regions in the cortex are blue. 2) Considering the small neighborhood of the ROI we chose,
the trace-map distances between the selected ROI and others roughly follow a Gaussian
distribution. This result suggests that the trace-map of an ROI is quite distinctive, which is
needed to unambiguously characterize the current ROI.

2.5. Optimization of ROIs across subjects
We formulate the problem of optimization of ROI locations and sizes as an energy
minimization problem, which aims to maximize the consistency of structural connectivity
patterns across a group of subjects. By searching the whole-space of ROI locations and
sizes, we can find an optimal combination of ROI parameters that ensure that fiber bundles
from different subjects have the least group variance. Mathematically, the energy function
we want to minimize is defined as:

(3)
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S1 .. S15 are fifteen subjects. Let E (Sk, Sl) = D (Sk, Sl) and rewrite Eq. (3) as below:

(4)

For any two subjects Sk and Sl, we transformed them to the corresponding trace-maps Tk
and Tl. Pi is a point on Tk and Pj is a point on Tl. Pj′ is the closest point to Pi on Tl and Pj′ is
the closest point to Pj on Tk.

In our implementation, for each of the fifteen subjects, we extracted around 300 fiber
bundles from a neighborhood of each ROI with different sizes. Given subject s, n fiber
bundles were extracted and represented as trace-map t. Then the distance between each of
them was calculated. Thus, we had one n×n symmetric matrix m. After that, the AP
clustering was applied to the similarity matrix and the fiber bundles were clustered them into
several candidate centers (e.g., 3–5; Fig. 7). The exact number of candidate centers depends
on the ROI itself and is determined by the AP clustering algorithm automatically, given a
preference (p value) that makes the cluster number the least. These candidates are chosen as
representative examples for the subject in question and later used in the optimization. We
performed the same procedure for all of the subjects and obtained fifteen groups of
representative candidate centers. Note that after applying AP clustering and shrinking the
search space, the space is reduced from 30015 to approximately N15 (N<=5). Fig. 7 shows an
example wherein AP clustering was able to group 278 fiber bundles into 3 centers. The three
black rectangles in the matrix highlight the three clusters and the representative fiber
bundles are shown in the right column. The dramatically pruned search space (315) makes it
possible to conduct a whole-space search to find the optimal result. Additionally, it should
be noted that this search space pruning approach dramatically speeds up optimization, while
accurately representing the fiber shapes, as indicated by the relatively small fiber distances
between individuals in each black box in the AP clustered matrix in Fig. 7. We visually
examined randomly selected examples in each cluster and found the representative fiber
bundle selected by the AP clustering to be reasonable.

3. RESULTS
Our results consist of four parts. First, we demonstrated the difference between fiber bundles
penetrating 16 ROIs in 15 subjects before and after the optimization process. Second, we
performed a quantitative measurement of the optimization and the average of the reduced
variances. Then, we randomly selected one subject to display the ROI movement trajectory
during the optimization. Lastly, two external validation studies from functional and
structural connectivity aspects were performed to further validate the proposed approach.

3.1. The results of ROI optimization for all 15 subjects and 16 ROIs
Fig. 8 shows the results before and after optimization for 16 ROIs in 15 subjects. Each ROI
includes the structural connectivity profiles of 15 subjects before and after our optimization
procedure. For example, ROI 0 includes two sub-figures: on the left are the connectivity
profiles of the 15 subjects before optimization (green balls); on the right are the profiles after
optimization (red balls). The colored balls represent the ROIs from which we extracted the
emanating fibers. From the figure, it can be seen that after optimization, the structural
connectivity profiles are much more similar across subjects, demonstrating the success of
our method. It should be noted that ROI 0 and ROI 9 are two extreme cases in which most
of the subjects did not exhibit fibers originating from those ROIs before the optimization;
after our optimization their structural connectivity profiles tended to be consistent.
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3.2. Measurement of structural connectivity profiles and reproducibility study
We calculated the decrease of fiber bundle distances within the group before and after our
optimization using Eq. (4), as shown in Fig. 9(a). Essentially, Eq. (4) reflects the difference
among the fiber bundles at the group level. If the energy is high, that means the consistency
of the fiber bundles in the group is low and vice versa. We can see that after optimization the
group energy decreased significantly. This demonstrated that the connectivity pattern of the
fiber bundles became more consistent. To test the reproducibility of the results, we split the
subjects into two groups and performed the same optimization process; the results are shown
in Fig. 9(b) and Fig. 9(c). Fig. 9(b) shows the first group (8 subjects), from which we can see
that the group energy still decreased. Fig. 9(c) shows the second group (7 subjects). The
average energy decrease was 53.3%. From Fig. 9, we can see that ROI-0 and ROI-9 are
exemplary in demonstrating the effectiveness of our method. Before optimization some
subjects had few fibers, causing poor alignment across subjects for these ROIs. As a result,
the energy of these ROIs decreased dramatically after optimization (ROI-0 and ROI-9 in
Figs. 9(a)~(c)). After excluding these two cases, we still achieved a 30.8% average decrease
in energy.

3.3. Visualization of ROIs’ movements
Fig. 10 shows the optimization trajectories of the 16 ROIs’ movements for one subject. It is
evident that the ROIs’ movements are within a small neighborhood. However, the structural
connectivities of these ROIs were significantly improved, as demonstrated in Fig. 8.
Therefore, these results indicate that the optimization objectives were achieved. Table 2
shows the Euclidean distances between ROIs before and after the optimization. The average
ROI movement was 5.79 mm. This is reasonable given that the spatial shift due to the spatial
smoothing used in fMRI preprocessing is within this range (White et al., 2001; Jo et al.,
2008; Li et al., 2010a). Meanwhile, the result also suggests that the proposed ROI
optimization procedure is necessary in order to more accurately localize brain regions from
fMRI data.

3.4. External validations
3.4.1 Functional validation—As an example shown in Fig. 11, when the ROI moved
from the green position to the red position (Fig. 11a), its structural fiber connection pattern
changes from that in Fig. 11b to that in Fig. 11c. Meanwhile, the fMRI BOLD signal
extracted from the center voxel of this ROI also changes significantly, as shown in the top
panel in Fig. 11d by the green and red time-series signals. If we extract the averaged BOLD
signals within a neighborhood (20~30 vertices around the ROI), there is no appreciable
difference between two locations (the lower panel in Fig. 11d).

To quantitate, for each ROI in each subject we extracted the BOLD fMRI signals within the
neighborhood of the ROI before and after optimization. By applying PCA to the signals in
each ROI, we obtained the representative signal for the neighborhood and performed the
following quantitative measurements. 1) The correlation of the BOLD signals before and
after the optimization of the same ROI. The details for all ROIs are shown in Table 3. From
the table, we can see that after our optimization the signals are very similar to the original
ones (with an average Pearson correlation of 0.93). In addition, we calculated the changes of
Z-values of the ROI locations before and after optimization for all ROIs, and the average Z-
values decreased by 10.7%. That means although we moved the ROIs about 6 mm, they still
belong to the same functional regions. 2) The functional connectivities (measured by
Pearson correlation) among all ROIs within a subject. As a result, we had a 16×16 functional
connectivity matrix for each subject. Then, we calculated the variance of each functional
connectivity element separately across all subjects. As shown in Fig. 12, after the
optimization, the average of functional connectivity variance within the whole matrix in Fig.
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12 is reduced by 13%. We performed statistical paired t-test for some individual items in
Fig. 12 based on the hypothesis that the variance after optimization is significantly different.
For instance, the region we highlighted by black box has significantly decreased variance
after optimization (p-value = 0.013). This result suggests that ROI’s functional connectivity
tends to be more consistent within the group after structural connectivity pattern
optimization, which is considered as an external validation.

3.4.2 Validation through examination of structural connectivity patterns to
subcortical regions—Subcortical regions are quite consistent across different brains and
provide a natural set of benchmark anatomical landmarks for measurement of structural
connectivities. In addition, current tools such as FSL FIRST are sufficiently accurate in
segmenting subcortical regions from MRI images. We used subcortical regions as the
benchmark landmarks to evaluate the consistency of structural connectivity patterns before
and after our ROI optimization. Specifically, we randomly selected one cortical ROI (ROI #
11, right paracingulate gyrus) that has fiber connections to subcortical regions, as shown in
Fig. 13. Then we constructed a feature vector <V1, V2, V3, V4, V5, V6> representing the
connectivity pattern from cortical region to the intra-hemisphere subcortical structures
(amygdala, hippocampus, thalamus, caudate, putamen and globus pallidus). For instance, if
there is any fiber that connects the cortical ROI region to a specified subcortical region, we
set its corresponding item to one. Otherwise, it is set to zero. Then we used L-1 distance to
measure the group distance of the cortical-subcortical connectivity patterns within the group
of subjects before and after optimization. Our results showed that the average L-1 distance
decreased by 26%, suggesting the substantial improvement of the group-wise consistency of
cortical-subcortical connectivity patterns. As a visual conformation, Fig. 13 shows the DTI-
derived fibers connecting the right paracingulate gyrus to the right thalamus. The upper and
lower panels show the fiber connections before and after ROI optimization. It is evident that
before the optimization a few cases highlighted by yellow arrows do not have fiber
connection to the right thalamus, though a majority of other subjects have. After
optimization, it is striking that ROI #11 for these three subjects have fiber connections to the
right thalamus. These results suggest that our optimization procedure indeed significantly
improves the group-wise consistency of connectivity patterns. This experiment result
suggests the validity of our premise in this paper that fiber shape pattern is a good indicator
of structural connectivity pattern.

4. DISCUSSION AND CONCLUSION
In this paper, we presented a novel framework for the optimization of both ROI location and
size via maximization of group-wise consistency of each ROI’s structural connectivity
profiles. We also proposed a novel approach for quantitative measurement of the similarity
of each ROI’s structural connectivity profiles by projecting the fiber curves onto a standard
spherical space. This framework was evaluated on 16 ROIs across 15 subjects, and our
results indicated that the structural connectivity patterns of each individual’s functional
ROIs are much more consistent after optimization, suggesting the success of our ROI
optimization framework.

In the implementation of the ROI optimization framework, we performed fiber bundle
clustering in order to reduce the candidate numbers, which made it feasible to conduct a
whole space search. The computational scale was dramatically reduced from 30015 to N15

(N <= 5). We ran the algorithm on a Dell PC (2 cores at 2.4G, 4G RAM) and it took
approximately 1.5 hours for the optimization procedure to complete for each ROI. Increased
processing times were evidenced when the number of points on the trace-map were denser
than usual. In future implementations we plan to add further parameters to constrain the
search space; these include adjusting the length of the segment when computing the trace-
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map according to different fiber shapes. This step would ensure that the number of points on
the trace-map is within an acceptable scale for any type of fiber bundle.

In its current form, the ROI optimization procedure is initialized by activation peaks derived
from task-based fMRI data. This step requires the availability of task-based fMRI data,
which might be not available in certain applications. For instance, it is challenging to
acquire high-quality task-based fMRI data for elderly or child populations. In these
application scenarios, it would be helpful to accurately localize the ROIs in an individual’s
brain solely through DTI acquisition. Given the close relationship between structural
connection and brain function, the optimized ROIs obtained in this paper could be used as
priors to identify ROIs based on the similarity of the fiber bundle shapes to those of the
models. As such, we hope this will be one of the major applications areas of the methods
presented in this paper.

We used the trace-map approach to present the fiber bundles in a standard space, which not
only made it possible to compare fiber shapes across subjects but also provided a new
approach for extracting descriptive connectivity pattern features for ROIs. An important
observation from our work in this paper is that global connectivity pattern information of
fiber bundles was well preserved during the trace-map projection. This trace-map approach
could be possibly extended and used in the future for DTI image segmentation and
registration.

In this paper, the working memory network was used as a test bed system. Multimodal fMRI
and DTI data were used for the ROI optimization. It should be emphasized that our ROI
optimization framework is based on fMRI-derived ROIs as initialization and is an
improvement to the ROI localizations. In our experiment, the sizes of ROIs do not change
much before and after the optimization because size changes will likely alter the fiber
connection patterns; this would be penalized in the energy function. The size of one ROI is
typically in the range of 3 to 4 rings of neighborhoods on the surface meshes before and
after the optimization. It should be noted that in future implementations the shape of one
ROI should also be considered as an additional optimization parameter. However, given its
high dimensionality and variability of ROI shapes, we currently do not have an appropriate
solution to deal with ROI shapes. We aim to parameterize the ROI shape and consider it as
an additional optimization objective in our future work. We also plan on evaluating and
validating our ROI optimization framework based on other brain networks such as the
attention, emotional and visual systems. We envision that our framework would be a general
framework capable of revealing the common architecture of the human brain, as represented
by consistent structural connectivity patterns across individuals. Additionally, we plan on
applying our ROI optimization framework on clinical datasets with for the purpose of
elucidating possible consistent alteration patterns in structural and functional connectivities
in brain diseases such as Alzheimer’s disease.
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Fig. 1.
Fiber connection patterns after optimization, in Li et al., 2010a. They are from the same
ROIs of fifteen subjects. Their connection patterns are quite different.
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Fig. 2.
The optimization scheme. (a) A group of subjects with initial locations and sizes of ROIs
indicated by yellow circles. (b) A group of fiber bundle candidates for each ROI. (c) Trace-
maps corresponding to each fiber bundle. (d) Distance matrices of different trace-maps for
each subject. (e) Typical fiber bundles for each subject after AP clustering. (f) The
optimized fiber bundle (locations and sizes). (g) The movement from initial location (green)
to the optimized location (red). (1) Extracting fiber bundles from different locations and
sizes close to the initial ROI. (2) Transforming fiber bundles to trace-maps. (3) Calculating
the similarity of different trace-maps within subjects. (4) Using AP clustering to find the
typical fiber bundles for each subject. (5) Finding the group of fiber bundles which make the
group variance the least. (6) Finding the optimized location and size of the ROI.
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Fig. 3.
(a) Calculation of the principal direction for one segment of each fiber. (b) Each segment
could be represented by a series of vectors. (c) After translation to the origin of a global
coordinate system, each vector shoots to a unit sphere whose center is the origin. (d) Two
examples of fiber bundles and their trace-maps. The top row is a U-shape fiber bundle
example and the bottom row is a line-shape one. For both cases, the left are fiber bundles
and the right are their trace-map representations.
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Fig. 4.
(a), (b) and (c), (d) are two pairs of similar fiber bundles. (e)–(h) are their trace-maps,
respectively.
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Fig. 5.
Illustration of the comparison between two trace-maps. The point densities in red circles are
compared.
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Fig. 6.
Effectiveness validation of the trace-map model. (a), (b): Distance between one fiber bundle
and all the others in the same brain. The chosen fiber bundle is exactly located at the red
peak area within the yellow circle. (b), (d): Larger view of yellow circles in (a) and (b).
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Fig. 7.
Example of using the AP clustering to prune the search space. By using the AP clustering
algorithm we clustered 278 fiber bundles into three clusters and obtained three typical fiber
bundles as depicted in the right column.
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Fig. 8.
The results before and after optimization for 15 subjects and 16 ROIs (ROI 0 – ROI 15).
Each row shows the structural connectivity profiles of 15 subjects before and after our
optimization procedure, in the left and right panel respectively. The green and red spheres
represent the ROIs before and after optimization, from which the emanating fibers were
extracted. ROIs highlighted by yellow boxes are the ones which demonstrate very notable
changes in connectivity profile consistency within the subject in question.
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Fig. 9.
Comparison of group energy before and after optimization. (a) Comparison of 15 subjects.
(b) and (c): Comparison of sub-groups after we randomly split all subjects into two groups.
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Fig. 10.
Movement of sixteen ROIs before (green ball) and after (red ball) optimization for one
subject. Yellow lines indicate the trajectories of the movements.
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Fig. 11.
Illustration of structural and functional connectivity changes when the location of an ROI
changed about 3 mm. (a): ROI location moves from the green to the red bubble. (b)–(c):
Structural profiles before and after the movement. The DTI-derived fibers emanating from
the ROI are rendered in white. (d) The upper and lower figures show the BOLD fMRI
signals extracted from the center voxels of the ROIs (TS) and from averaged signals within
the neighborhoods (AVG), before and after the optimization, respectively. Green and red
represent BOLD signals before and after the movement.
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Fig. 12.
Comparison of the variance of functional connectivity before (left) and after (right) our ROI
optimization. Lower values (blue) represent more consistent connectivity patterns within the
group. Two corresponding items with significant difference (p-value is 0.013) are
highlighted.
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Fig. 13.
Illustration of fibers (in cyan) connecting ROI #11 and the right thalamus (blue region). 12
subjects are shown here as examples. The upper and lower panels correspond to the fiber
connection patterns before and after optimization. Green and red circles represent the ROI
locations before and after optimization, respectively. Yellow arrows highlight three cases
where significant improvements were achieved after the optimization. That is, there was no
fiber connecting ROI #11 to the right thalamus before optimization in these three cases, but
there are significantly more connecting fibers after the optimization.
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Table 1

The anatomical regions where the ROIs are located.

ROI-0 Left Insula ROI-8 Right Dorsolateral Prefrontal Cortex

ROI-1 Left Medial Frontal Cortex ROI-9 Right Insula

ROI-2 Left Occipital Pole ROI-10 Right Lateral Occipital Gyrus

ROI-3 Left Paracingulate Gyrus ROI-11 Right Paracingulate Gyrus

ROI-4 Left Precentral Gyrus ROI-12 Right Precentral Gyrus

ROI-5 Left Precuneus ROI-13 Right Precuneus

ROI-6 Left Superior Frontal Gyrus ROI-14 Right Superior Frontal Gyrus

ROI-7 Left Inferior Parietal Lobule ROI-15 Right Inferior Parietal Lobule
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Table 3

The Pearson correlation between the extracted BOLD signals before and after our ROI optimization. The
average correlation over 16 ROIs is 0.93, meaning that even though we moved the ROIs about 6mm, they still
belong to the same functional regions.

ROI-0 0.85 ROI-8 0.95

ROI-1 0.87 ROI-9 0.93

ROI-2 0.96 ROI-10 0.97

ROI-3 0.91 ROI-11 0.94

ROI-4 0.92 ROI-12 0.94

ROI-5 0.97 ROI-13 0.93

ROI-6 0.93 ROI-14 0.90

ROI-7 0.95 ROI-15 0.92
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